CONSTRUCTING AN AUTOMORPHISM FROM AN ANTI-AUTOMORPHISM

Christine Ayoub

```
(received March 18, 1968)
```

We consider the following problem: Let G be a group with distinct automorphisms β and σ and an anti-automorphism α such that

$$
\begin{equation*}
\mathbf{x} \in G \Rightarrow \sigma(x)=\beta(x) \text { or } \alpha(x) . \tag{1}
\end{equation*}
$$

What can be said about G ?
If $\sigma=\alpha, \sigma$ is both an automorphism and an anti-automorphism so that G is abelian. Hence we assume that $\sigma \neq \alpha$. In this case, we show that G is non-abelian, but has an abelian subgroup of index 2. Conversely, for such a group G there always exist distinct automorphisms β and σ and an anti-automorphism α such that (1) holds.

The case when β is the identity mapping and α is the mapping $x \rightarrow x^{-1}$ was the content of a problem (\# 5471) in the Monthly. It was required to prove that G is solvable. Theorem 4 shows what structure G must have.

THEOREM 1. Let G be a group, α an anti-automorphism of G, and $\sigma \neq \alpha$ a non-trivial automorphism of G and assume

$$
\begin{equation*}
\mathbf{x} \in \mathrm{G} \Rightarrow \sigma(\mathrm{x})=\mathbf{x} \text { or } \sigma(\mathbf{x})=\alpha(\mathbf{x}) . \tag{2}
\end{equation*}
$$

Then G has a (normal) abelian subgroup H of index 2 . a induces a non-trivial automorphism on H . If $\mathrm{G}=\langle\mathrm{H}, \mathrm{g}\rangle, \mathrm{g}^{-1} \mathrm{hg}=\alpha(\mathrm{h})$ for $\mathrm{h} \in \mathrm{H}$. Furthermore, $\alpha(\mathrm{g})=\mathrm{bg}$, where $1 \neq \mathrm{b} \in \mathrm{H}$ and $\alpha(\mathrm{b})=\mathrm{b}^{-1}$.

Proof. Let $H=\{\mathbf{x} \in G \mid \sigma(x)=\mathbf{x}\}$. Then H is a proper subgroup of G . If $\mathrm{h} \in \mathrm{H}, \mathrm{g} \notin \mathrm{H}, \sigma(\mathrm{hg})=\alpha(\mathrm{hg})=\alpha(\mathrm{g}) \alpha(\mathrm{h})=$ $\sigma(\mathrm{h}) \sigma(\mathrm{g})=\mathrm{h} \dot{\alpha}(\mathrm{g})$. Hence we have

$$
\begin{equation*}
\alpha(\mathrm{h})=\alpha(\mathrm{g})^{-1} \mathrm{~h} \alpha(\mathrm{~g}), \quad \text { for } \mathrm{h} \in \mathrm{H}, \mathrm{~g} \notin \mathrm{H} . \tag{3}
\end{equation*}
$$

Canad. Math. Bull. vol. 11, no. 3, 1968

From (3) we see that for x and y in $H, \quad \alpha(x y)=\alpha(x) \alpha(y)$, but $\alpha(y x)=\alpha(x) \alpha(y)$. Hence $x y=y x$ and H is abelian.

If there exists an element g_{o} in $G \backslash H$ such that $\alpha\left(g_{o}\right) \in H$, we have: $\alpha(\mathrm{h})=\alpha\left(\mathrm{g}_{\mathrm{o}}\right)^{-1} \mathrm{~h} \alpha\left(\mathrm{~g}_{\mathrm{o}}\right)=\mathrm{h}$, for all $\mathrm{h} \in \mathrm{H}$. This implies that $\sigma(g)=\alpha(g)$ for all $g \in G$, or that $\sigma=\alpha$, contrary to hypothesis.
Hence $\alpha^{-1}(\mathrm{H}) \leq \mathrm{H}$. Applying α^{-1} to (3) we get

$$
\begin{equation*}
\alpha^{-1}(h)=g^{-1} h g \text { for } h \in H, g \notin H \tag{4}
\end{equation*}
$$

Since $\alpha^{-1}(h) \in H$, (4) shows that H is normal in G.
Now let $x, y \in G \backslash H$. Then for $h \in H,(x y)^{-1} h(x y)=$ $y^{-1} \alpha^{-1}(h) y=\alpha^{-2}(h)$ since $\alpha^{-1}(h) \in H$. On the other hand, if xy $\& H,(x y)^{-1} h(x y)=\alpha^{-1}(h)$ so that $\alpha^{-1}(h)=\alpha^{-2}(h) \Rightarrow \alpha(h)=h$ for $h \in H$. But this implies that $\alpha=\sigma$, contrary to hypothesis.

Hence if $x, y \in G \backslash H$, $x y \in H$ and $\alpha^{-2}(h)=h$ for $h \in H$. Thus G / H has order 2, and α induces an automorphism of order 2 on H.

If we let $G=\langle H, g\rangle$, then $g^{2}=a \in H$; and by (4), $g^{-1} h g=\alpha(h)$ for $h \in H$. Clearly $\alpha(a)=a$. Since $\alpha(g) \notin H$, we have $\alpha(g)=b g$, where $b \in H$. If $b=1, \sigma(h)=h$ and $\sigma(h g)=\sigma(h) \sigma(g)=h \alpha(g)=h g$ for $h \in H$, i.e. σ is the trivial automorphism of G. Hence $b \neq 1$.

$$
\text { Now } a=\alpha(a)=\alpha\left(g^{2}\right)=\alpha(g)^{2}=(b g)^{2}=b^{2} g^{-1} b g=b a \alpha(b)
$$

Thus $\alpha(b)=b^{-1}$.
THEOREM 2. Let G be a non-abelian group with an abelian subgroup H of index 2. Then there exists an anti-automorphism α of G and an automorphism σ of G such that

$$
\left\{\begin{array}{l}
\sigma(h)=h \text { for } h \in H \tag{5}\\
\sigma(x)=\alpha(x) \neq x \text { for } x \not \& H
\end{array}\right.
$$

Proof. Let $G=\langle H, g\rangle$, and let $g^{2}=a \in H$. Let $\alpha(h)=g^{-1} h g$ for $h \in H$. We note next that there exists an element $b \neq 1$ such that $\alpha(b)=$ b^{-1}. In fact, if we choose $h \in H$ with $g^{-1} h g \neq h$ (hexists since G is non-abelian) and let $b=h^{-1} \alpha(h)$, then $b \neq 1$ and
$\alpha(\mathrm{b})=\alpha(\mathrm{h})^{-1} \alpha^{2}(\mathrm{~h})=\alpha(\mathrm{h})^{-1} \mathrm{~h}=\mathrm{b}^{-1}$ since H is abelian. Define $\alpha(\mathrm{hg})=\mathrm{bhg}$ for $\mathrm{h} \in \mathrm{H}$. Then $\alpha(\mathrm{hg})=\mathrm{bg}^{-1} \mathrm{hg}=\alpha(\mathrm{g}) \alpha(\mathrm{h})$. Define σ by equations (5).

We have to verify that α is an anti-automorphism and σ an automorphism of G, i.e. for $x_{1}, x_{2} \in G$ we have to show that $\alpha\left(\mathbf{x}_{1} \mathbf{x}_{2}\right)=\alpha\left(\mathbf{x}_{2}\right) \alpha\left(\mathbf{x}_{1}\right)$ and $\sigma\left(\mathbf{x}_{1} \mathbf{x}_{2}\right)=\sigma\left(\mathbf{x}_{1}\right) \sigma\left(\mathbf{x}_{2}\right)$. There are four cases to distinguish:

$$
\begin{aligned}
& \text { (i) } x_{1}, x_{2} \in H \\
& \text { (ii) } x_{1} \in H, x_{2} \notin H \\
& \text { (iii) } x_{1} \notin H, x_{2} \in H \\
& \text { (iv) } x_{1} \notin H, x_{2} \notin H
\end{aligned}
$$

It is a simple matter to compute that the required equations hold in each of these cases. We prove case (iv) as an example: Let $x_{1}=h_{1} g, x_{2}=h_{2} g$ where $h_{1}, h_{2} \in H$. Then $x_{1} x_{2}=h_{1} g h_{2} g=h_{1} a \alpha\left(h_{2}\right)$; $\alpha\left(\mathrm{x}_{1} \mathrm{x}_{2}\right)=\alpha\left(\mathrm{h}_{1}\right) \mathrm{a} \mathrm{h}_{2}$;
$\alpha\left(x_{2}\right) \alpha\left(x_{1}\right)=b h_{2} \mathrm{gbh}_{1} g=b h_{2} a g^{-1}\left(\mathrm{bh}_{1}\right) g=b h_{2} a \alpha(b) \alpha\left(h_{1}\right)$

$$
=b h_{2} a b^{-1} \alpha\left(h_{1}\right)=\alpha\left(h_{1}\right) a h_{2} .
$$

Hence $\alpha\left(x_{1} x_{2}\right)=\alpha\left(x_{2}\right) \alpha\left(x_{1}\right) . \quad \sigma\left(x_{1} x_{2}\right)=x_{1} x_{2}$ since $x_{1} x_{2} \in H$. $\sigma\left(\mathrm{x}_{1}\right) \sigma\left(\mathrm{x}_{2}\right)=\alpha\left(\mathrm{x}_{1}\right) \alpha\left(\mathrm{x}_{2}\right)=\alpha\left(\mathrm{x}_{2} \mathrm{x}_{1}\right)=\alpha\left(\mathrm{h}_{2}\right) a \mathrm{~h}_{1}=\mathrm{x}_{1} \mathrm{x}_{2}$. Hence $\sigma\left(\mathbf{x}_{1} \mathbf{x}_{2}\right)=\sigma\left(\mathbf{x}_{1}\right) \sigma\left(\mathbf{x}_{2}\right)$.

Note: If H is an abelian group of order $\neq 1$ and $\neq 2$, then H has a non-trivial automorphism of order 2, and hence there exists a non-abelian extension G of H such that G / H has order 2.

THEOREM 3. Let G be a group with distinct automorphisms β and σ and an anti-automorphism $\alpha \neq \sigma$ such that (1) $x \in G \Rightarrow \sigma(x)=\beta(x)$ or $\alpha(x)$. Then G is non-abelian and has an abelian subgroup H of index 2 .

Proof. Let $\rho=\beta^{-1} \sigma$. Then ρ is an automorphism of G and $\rho(x)=x$ or $\rho(x)=\beta^{-1} \alpha(x) . \beta^{-1} \alpha$ is an anti-automorphism of G and $\rho \neq \beta^{-1} \alpha$, since $\sigma \neq \alpha$. The theorem follows by applying Theorem 1.

THEOREM 4. Let G be a group and assume that G has a non-trivial automorphism σ such that (6) $\mathbf{x} \in G \Rightarrow \sigma(\mathbf{x})=\mathbf{x}$ or $\sigma(x)=x^{-1}$. Then either: (a) $\sigma(x)=x^{-1}$ for all x in G, G is abelian and $G^{2} \neq 1$, or : (b) $G=\langle H, g\rangle$, where H is an abelian group which contains an element a of order 2 , and $H^{2} \neq 1$.
$g^{2}=a$ and $g^{-1} h g=h^{-1}$ for all $h \in H$. Then:

$$
\left\{\begin{array}{l}
\sigma(x)=x \text { for } \quad x \in H \tag{7}\\
\sigma(x)=x^{-1} \text { for } x \notin H
\end{array}\right.
$$

Conversely, if G is defined by (b) the mapping given by (7) is an automorphism of G.

Proof. If $\sigma(x)=x^{-1}$ for all x in G, then G is abelian; $\mathrm{G}^{2} \neq 1$ since σ is not trivial. Let α be defined by $\alpha(\mathrm{x})=\mathrm{x}^{-1}$ and assume that $\alpha \neq \sigma$. By Theorem 1, $G=\langle H, g\rangle$, where H is abelian, $\mathrm{g}^{-1} \mathrm{hg}=\mathrm{h}^{-1}, \mathrm{~g}^{2}=a \in \mathrm{H}$. Since α is non-trivial on $\mathrm{H}, \mathrm{H}^{2} \neq 1$. Also $\mathrm{a}^{-1}=\alpha(\mathrm{a})=\mathrm{g}^{-1} \mathrm{a} \mathrm{g}=\mathrm{a}$ so that $\mathrm{a}^{2}=1$. If $\mathrm{g}^{2}=1, \sigma(\mathrm{hg})=\sigma(\mathrm{h}) \sigma(\mathrm{g})=$ $\mathrm{hg}^{-1}=\mathrm{hg}$ for all $\mathrm{h} \in \mathrm{H}$ and this implies that σ is trivial, contrary to hypothesis. Hence a has order 2. (7) holds from the definition of H in Theorem 1.

Conversely, suppose that $G=\langle\mathrm{H}, \mathrm{g}\rangle$, where H is abelian, $\mathrm{g}^{-1} \mathrm{hg}=\mathrm{h}^{-1}, \mathrm{~g}^{2}=\mathrm{a} \in \mathrm{H}$ has order 2 , and $\mathrm{H}^{2} \neq 1$. Then by Theorem 2 there exists an anti-automorphism α of G and an automorphism σ of G such that (5) holds. To show that (7) holds it is only necessary to show that $\alpha(h)=h^{-1}$. But in the proof of Theorem 2, we defined α so that $\alpha(h)=g^{-1} h g$. Hence $\alpha(h)=h^{-1}$ for $h \in H$, and the theorem is proved.

Remark. If instead of studying the problem stated in the
introduction, we require that α and β both be automorphisms and σ an automorphism such that (1) holds, it is easy to see that $\sigma=\alpha$. For let $A=\{g \in G \mid \alpha(g)=\alpha(g)\}$ and $B=\{g \in G \mid \sigma(g)=\beta(g)\}$. Then A and B are subgroups of G and $G=A \cup B$. This implies that $\mathrm{G}=\mathrm{A}$ or $\mathrm{G}=\mathrm{B}$. But $\mathrm{G} \neq \mathrm{B}$ and hence $\mathrm{G}=\mathrm{A}, \sigma=\alpha$.

If on the other hand, we require both α and β to be anti-automorphisms, the answer seems to be much more difficult. I was not able to determine when this could happen.

This work was supported by an NSF Science Faculty Fellowship.
Pennsylvania State University

