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Abstract

A natural number n is called k-perfect if σ(n) = kn. In this paper, we show that for any integers r ≥ 2
and k ≥ 2, the number of odd k-perfect numbers n with ω(n) ≤ r is bounded by

(
b4r log32c+r

r

) ∑r
i=1

(
bkr/2c

i

)
,

which is less than 4r2
when r is large enough.

2010 Mathematics subject classification: primary 11A25.

Keywords and phrases: odd perfect numbers, k-perfect numbers.

1. Introduction

Let k ≥ 2 be a positive integer. A natural number N is said to be k-perfect (or
multiperfect of abundancy k) if σ(N) = kN, where σ(N) denotes the sum of all the
divisors of N. We say N is perfect when k = 2. The even perfect numbers were
completely classified by Euler. Namely, N is an even perfect number if and only if
N = 2p−1(2p − 1), where 2p − 1 is prime. However we know less about odd perfect
numbers. We do not have a single example, and we do not have a proof that they do
not exist.

Let ω(N) denote the number of distinct prime factors of a natural number N. In
1913, Dickson [4] proved that there are only finitely many odd perfect numbers with k
distinct prime factors. In 1977, Pomerance [8] gave an explicit upper bound in terms
of k. Heath-Brown [5] improved the bound to N < 44k

, and Cook [2] reduced this
bound to N < D4k

with D = (195)1/7. Nielsen [6] slightly improved and generalised
Cook’s method; he proved that if N is an odd multiperfect number with k distinct
prime factors, then

N < 24k
. (1.1)

In addition to an upper bound on the size of such N, Pollack [7] proved that for
each positive integer k the number of odd perfect numbers N with ω(N) ≤ k is bounded
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by 4k2
. This result was generalised by Chen and Luo [1], who showed that, for any

integer r ≥ 1, the number of odd k-perfect numbers n with ω(n) ≤ r is bounded by
(k − 1) · 4r3

. More recently, Dai et al. [3] improved the bound of Chen and Luo to
4r2

(k − 1)2r2+3. The purpose of this paper is to improve the above result. We prove the
following estimate.

T 1.1. For any integers r ≥ 2 and k ≥ 2, the number of odd k-perfect numbers
n with ω(n) ≤ r is bounded by

(
4rblog3 2c+r

r

) ∑r
i=1

(
bkr/2c

i

)
, which is less than 4r2

when r is
large enough .

2. The proof

The proof is essentially in the spirit of Pollack’s work [7], and is a modification of
Wirsing’s method [9], but with a different counting argument. Let x be a positive real
number. Suppose that N < x is an odd k-perfect number and ω(N) ≤ r. Write N = AB,
where A :=

∏
pe ||N,p>kr pe and B :=

∏
pe ||N,p≤kr pe. We have

σ(A)
A

=
∏
pe ||A

(
1 +

1
p

+ · · · +
1
pe

)
<

∏
p|A

(
1 +

1
p

+
1
p2

+ · · ·

)
,

and so
A

σ(A)
>

∏
p|A

(
1 −

1
p

)
≥ 1 −

∑
p|A

1
p
≥ 1 −

r
kr + 1

>
k − 1

k
, (2.1)

which implies that B > 1. Since N is k-perfect, σ(AB) = kAB, and hence

(k − 1)B =
k − 1

k
kB <

A
σ(A)

kB = σ(B) ≤ kB, (2.2)

with equality on the right precisely when A = 1. Suppose A , 1. By the previous
inequality,

σ(B) > (k − 1)B and σ(B) | kAB. (2.3)

If gcd(A, σ(B)) = 1, then by the second formula of (2.3), σ(B) | kB, and so σ(B) ≤
kB/2 ≤ (k − 1)B, which contradicts (2.3). Therefore, there is a prime p dividing
gcd(A, σ(B)), which means that σ(B) has a prime factor p with p > kr and gcd(p, B) =

1 by the definition of A. Let p1 be the least such prime factor of σ(B). Suppose pe1
1 ||A,

where e1 ≥ 1. Then, if we put

A′ := A/pe1
1 and B′ := Bpe1

1 ,

it is clear that (2.1)–(2.3) hold with A′ and B′ replacing A and B. By the same argument
as in [7], continuing the above procedure, we eventually obtain a factorisation

A = pe1
1 pe2

2 · · · p
et
t ,

where t = ω(A) = ω(N) − ω(B) ≤ r − 1.
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We note that the prime p1 depends only on B, while for i > 1, the prime pi depends
only on B and the exponents e1, . . . , ei−1. It follows that for a given B, the cofactor A
(if A > 1) is entirely determined by e1, . . . , et, and we have ei ≤ log5 x, i = 1, . . . , t.

Let B = q f1
1 q f2

2 · · · q
fs
s . Then f j ≤ log3 x, j = 1, . . . , s, s + t = r. Let m be the

number of odd primes not exceeding kr, so m < kr/2. To estimate the number of
possibilities for B and e1, . . . , et, we first choose s, 1 ≤ s ≤ r, odd primes from the first
m odd primes, then choose positive integers f j ≤ log3 x, j = 1, . . . , s, and nonnegative
integers ei ≤ log5 x, i = 1, . . . , t, with s + t = r and obviously e1 + · · · + et + f1 + · · · +

fs ≤ log3 x. The number of possibilities for e1 + · · · + et + f1 + · · · + fs ≤ log3 x is not
larger than the number of nonnegative integer solutions of the equation

e1 + · · · + et + f1 + · · · + fs + y = blog3 xc,

which is
(
blog3 xc+r

r

)
. It follows that the number of possibilities for B and e1, . . . , et is

bounded by (
blog3 xc + r

r

) r∑
i=1

(
m
i

)
≤

(
blog3 xc + r

r

) r∑
i=1

(
bkr/2c

i

)
.

Recall Mertens’ formula: for x ≥ 2∏
p≤x

(
1 −

1
p

)−1

= eγ log x + O(1),

where γ = 0.577 . . . is Euler’s constant. Recall also the prime number theorem: if pn

denotes the nth prime number, then pn ∼ n log n. We have

k =
σ(N)

N
<

∏
p|N

(
1 +

1
p

+
1
p2

+ · · ·

)
=

∏
p|N

(
1 −

1
p

)−1

≤
1
2

∏
p≤pr

(
1 −

1
p

)−1

∼
eγ

2
log r.

(2.4)

By (1.1), we take x = 24r
so that the number of odd k-perfect numbers n with

ω(n) ≤ r is bounded by(
b4r log3 2c + r

r

) r∑
i=1

(
bkr/2c

i

)
≤

2kr/2

r!
b4r log3 2 + rcr ≤

2kr/2

r!
4r2
.

By (2.4) and the fact that the Taylor series for exp(2k/2) =
∑∞

i=0 2ki/2/i! converges,
2kr/2/r! must go to 0 as r→∞. This proves the theorem.
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