LINEAR TRANSFORMATIONS ON MATRICES: THE INVARIANGE OF THE THIRD ELEMENTARY SYMMETRIC FUNCTION

LeROY B. BEASLEY

1. Introduction. Let T be a linear transformation on M_{n} the set of all $n \times n$ matrices over the field of complex numbers, \mathscr{C}. Let $A \in M_{n}$ have eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and let $E_{r}(A)$ denote the r th elementary symmetric function of the eigenvalues of A :

$$
E_{r}(A)=\sum_{1 \leqq i_{1}<\cdots<i_{r} \leqq n} \prod_{j=1}^{r} \lambda_{i_{j}}=E_{r}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Equivalently, $E_{r}(A)$ is the sum of all the principal $r \times r$ subdeterminants of A. T is said to preserve E_{r} if $E_{r}[T(A)]=E_{r}(A)$ for all $A \in M_{n}$. Marcus and Purves [3, Theorem 3.1] showed that for $r \geqq 4$, if T preserves E_{r} then T is essentially a similarity transformation; that is, either $T: A \rightarrow U A V$ for all $A \in M_{n}$ or $T: A \rightarrow U A^{t} V$ for all $A \in M_{n}$, where $U V=e^{i \theta} I_{n}, r \theta \equiv 0(\bmod 2 \pi)$. They also showed that not all linear transformations which preserve E_{2} are essentially similarity transformations. However, their results did not include a definite theorem on E_{3} preservers.

In this paper we shall prove the following.
Theorem 1.1. If T preserves E_{3}, then there exist non-singular matrices U and V in M_{n} such that either
(i) $T: A \rightarrow U A V$ for all $A \in M_{n}$, or
(ii) $T: A \rightarrow U A^{t} V$ for all $A \in M_{n}$, where
(iii) $U V=e^{i \theta} I_{n}$ and $3 \theta \equiv 0(\bmod 2 \pi)$.
2. Preliminary lemmas. The main burden of the proof of Theorem 1.1 lies in showing that if T preserves E_{3}, then T maps rank one matrices into rank one matrices; for then a theorem of Marcus and Moyls [2, Theorem 1] shows that T has the structure indicated in either (i) or (ii). Obviously, if the rank $\rho(A)=1$, then $E_{r}(x A+B)$, considered as a polynomial in x, has degree $\leqq 1$. Marcus and Purves [3, Lemma 3.1] showed that if T preserves E_{r} for some $r \geqq 2$, then T is non-singular. It follows that for such T,

$$
\begin{align*}
& \operatorname{deg} E_{r}(x A+B) \leqq 1 \text { for all } B \in M_{n} \text { if and only if } \tag{2.1}\\
& \qquad \operatorname{deg} E_{r}[x T(A)+B] \leqq 1 \text { for all } B \in M_{n} .
\end{align*}
$$

They also showed that, for $r \geqq 4$,
(2.2) $\operatorname{deg} E_{r}(x A+B) \leqq 1$ for all $B \in M_{n}$ if and only if $\rho(A)=1$.

With A replaced by $T(A)$ this leads to the desired result. For $r=3$, their proof of (2.2) does not appear to work. However, (2.2) does turn out to be true if A has a non-zero eigenvalue (Lemma 2.2). If such is the case, $T(A)$ also has a non-zero eigenvalue (Lemma 2.3). With these lemmas, along with a continuity argument (Theorem 2.6), we show that T preserves rank one matrices.

We need two results of Marcus and Purves [3, Lemmas 3.2 and 3.3] which we state in the following.

Lemma 2.1. If $A \in M_{n}$ and $A \neq 0$, then:
(i) $\operatorname{deg} \operatorname{det}(x A+B) \leqq 1$ for all $B \in M_{n}$ if and only if $\rho(A)=1$;
(ii) if $3 \leqq r<n$, then $\operatorname{deg} E_{r}(x A+B) \leqq 1$ for all $B \in M_{n}$ implies that A has at most one non-zero eigenvalue.

Lemma 2.2. If $A \in M_{n}$ and A has a non-zero eigenvalue, then

$$
\operatorname{deg} E_{3}(x A+B) \leqq 1 \text { for all } B \in M_{n}
$$

if and only if $\rho(A)=1$.
Proof. If $\rho(A)=1$, then clearly $\operatorname{deg} E_{3}(x A+B) \leqq 1$ for all $B \in M_{n}$. Suppose that deg $E_{3}(x A+B) \leqq 1$ for all $B \in M_{n}$. By Lemma 2.1 (ii), A has at most one non-zero eigenvalue, and hence exactly one, λ_{1}.

Let $S: B \rightarrow P B P^{-1}$ for all $B \in M_{n}$, where $P A P^{-1}$ is the Jordan normal form of A :

$$
P A P^{-1}=\left[\begin{array}{ccccccc}
\lambda_{1} & 0 & & & & \\
& 0 & \epsilon_{2} & & & \mathbf{0} \\
& & \cdot & \cdot & & & \\
& & & \cdot & \cdot & & \\
& 0 & & & \cdot & \\
& & & & & & \epsilon_{n-1} \\
& & & & & 0
\end{array}\right] \text {, }
$$

where $\epsilon_{i}=1$ or $\epsilon_{i}=0$ for all $i, i=1, \ldots, n-1$.
Suppose that $\epsilon_{i}=1$ for some $i, i=2, \ldots, n-1$. Then, $E_{3}(x S(A)+B)=$ $\lambda_{1} \epsilon_{i} x^{2}$ for $B=E_{i+1, i}$, where $E_{i, j}$ denotes the matrix with a " 1 " in the (i, j) position and zeros in all other positions. Since E_{3} is invariant under similarity transformations, $\operatorname{deg} E_{3}[x S(A)+B]=\operatorname{deg} E_{3}\left[x A+S^{-1}(B)\right] \leqq 1$. Hence $\epsilon_{i}=0$ for all $i, i=2, \ldots, n-1$, and thus $\rho(A)=1$.

Lemma 2.3. If T preserves $E_{3}, A \in M_{n}, n \geqq 4, \rho(A)=1$, and A has a non-zero eigenvalue, then $T(A)$ has a non-zero eigenvalue.

Proof. Suppose that all eigenvalues of $T(A)$ are zero. Since E_{3} is invariant under similarity transformations, and since a matrix is similar to its Jordan
normal form, we may assume that A and $T(A)$ are in Jordan normal form: $A=\lambda_{1} E_{11}$, and

$$
T(A)=\left[\begin{array}{ccccccc}
0 & \epsilon_{1} & & & & & \\
& 0 & \epsilon_{2} & & & 0 & \\
& & \cdot & . & & & \\
& & & \cdot & . & & \\
& 0 & & & \cdot & \cdot & \\
& & & & & \cdot & \epsilon_{n-1} \\
& & & & & 0
\end{array}\right]
$$

where $\epsilon_{i}=0$ or $\epsilon_{i}=1, i=1, \ldots, n-1$.
If $\epsilon_{i} \neq 0$, for some i, let $B=E_{i+2, i}$. Then, $E_{3}[x T(A)+B]=\epsilon_{i} \epsilon_{i+1} x^{2}$. However, by (2.1), $\operatorname{deg} E_{3}[x T(A)+B] \leqq 1$. Hence $\epsilon_{i+1}=0$. Similarly, $\epsilon_{i-1}=0$ if $\epsilon_{i} \neq 0, i>1$. Hence $\rho[T(A)] \leqq n / 2$.

We now close up the ones on the superdiagonal so that they alternate with zeros. Let $P_{i j}$ represent the permutation matrix which by multiplication on the left (right) interchanges the i th and j th rows (columns). Thus $P_{i j}{ }^{-1}=P_{i j}$. Suppose that in $T(A), \epsilon_{i-2}=\epsilon_{i-1}=0$ and $\epsilon_{i} \neq 0$. (Note that ϵ_{i+1} must then be zero.) Then

$$
P_{i, i+1} P_{i-1, i} T(A) P_{i-1, i} P_{i, i+1}=\left[\begin{array}{ccccccc}
0 & \epsilon_{1}^{\prime} & & & & \\
& 0 & \epsilon_{2}^{\prime} & & & 0 \\
& & \cdot & . & & 0 \\
& & . & . & & \\
& 0 & & . & . & \\
& & & & & \cdot & \epsilon_{n}^{\prime}{ }^{\prime} \\
& & & & & 0
\end{array}\right]
$$

where $\epsilon_{j}^{\prime}=\epsilon_{j}$ if $j \neq i, i-1$, and $\epsilon_{i-1}{ }^{\prime} \neq 0$ and $\epsilon_{i}{ }^{\prime}=0$. Continuing in this way we obtain a permutation matrix P such that

$$
P T(A) P^{-1}=\left[\begin{array}{ccccccc}
0 & \mu_{1} & & & & & \\
& 0 & \mu_{2} & & & \mathbf{0} \\
& & \cdot & . & & \mathbf{0} \\
& & & \cdot & . & & \\
& \mathbf{O} & & & \cdot & . & \\
& & & & & \cdot & \mu_{n-1} \\
& & & & & 0
\end{array}\right]
$$

has the property that for some $\alpha, \mu_{2 i-1}=1$ and $\mu_{2 i}=0$ for $1 \leqq i \leqq \alpha$, and $\mu_{j}=0$ for $j \geqq 2 \alpha$. (Note that $P T(A) P^{-1}$ cannot be 0 since T is non-singular.)

Remark. The proof does not show that μ_{1} can be made 1 , although the argument for this is similar to (but not part of) the argument given above.

Let Q be the permutation matrix $\prod_{i=1}^{\beta} P_{2 i, \gamma-2 i}$, where $\beta=[(n+1) / 4]$ (greatest integer) and $\gamma=n+2$, if n is odd; and $\beta=[n / 4]$ and $\gamma=n+1$, if n is even.

We observe that in $P T(A) P^{-1}$ the only columns with non-zero entries are even-numbered columns and hence can conclude that $Q P T(A) P^{-1} Q^{-1}$ has the form $\left[\begin{array}{ll}0 & X \\ 0 & 0\end{array}\right]$, where X is of order $(n / 2) \times(n / 2)$ if n is even, and of order $[(n+1) / 2] \times[(n-1) / 2]$ if n is odd, and has non-zero entries (in fact, ones) on only one diagonal.

Define S by $S(B)=Q P T(B) P^{-1} Q^{-1}$. Then, S is non-singular, S preserves E_{3}, and all eigenvalues of $S(A)$ are zero.

Let \mathscr{M} be the subspace of M_{n} generated by $\left\{E_{i j}: 1 \leqq i \leqq \alpha, \beta \leqq j \leqq n\right\}$, where $\alpha=(n+1) / 2$ and $\beta=(n+3) / 2$, if n is odd; and $\alpha=n / 2$ and $\beta=(n+2) / 2$, if n is even. That is, if $G \in \mathscr{M}$, then

$$
G=\left[\begin{array}{ll}
0 & Y \\
0 & 0
\end{array}\right]
$$

where Y is a matrix of order $(n / 2) \times(n / 2)$ if n is even, and of order

$$
[(n+1) / 2] \times[(n-1) / 2]
$$

if n is odd.
Now, if $G \in \mathscr{M}$, then any principal 3×3 submatrix of G is either of the form

$$
\left[\begin{array}{lll}
0 & g_{i j} & g_{i k} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

or of the form

$$
\left[\begin{array}{ccc}
0 & 0 & g_{i j} \\
0 & 0 & g_{k j} \\
0 & 0 & 0
\end{array}\right] .
$$

Since $E_{3}(C)$ is the sum of the principal 3×3 subdeterminants of C, it follows that if $G \in \mathscr{M}$, then $\operatorname{deg} E_{3}(x G+B) \leqq 1$ for all $B \in M_{n}$. Now, $S(A) \in \mathscr{M}$. Hence, $\operatorname{deg} E_{3}(x[\lambda S(A)+G]+B) \leqq 1$ for all $\lambda \in \mathscr{C}$, for all $B \in M_{n}$, and for any $G \in \mathscr{M}$. Hence by (2.1), deg $E_{3}\left(x\left[\lambda A+S^{-1}(G)\right]+B\right) \leqq 1$ for all $B \in M_{n}$, for all $\lambda \in \mathscr{C}$, and for any $G \in \mathscr{M}$. Now, for

$$
\lambda \neq\left[-\operatorname{tr} S^{-1}(G)\right] / \lambda_{1},
$$

$\lambda A+S^{-1}(G)$ has a non-zero eigenvalue. Hence, by Lemma 2.4, $\rho\left[\lambda A+S^{-1}(G)\right]=1$ for $\lambda \neq\left[-\operatorname{tr} S^{-1}(G)\right] / \lambda_{1}$.

Let G be any member of \mathscr{M}, and $S^{-1}(G)=\left(s_{i j}\right)$. Then, $s_{i j}=0$ if $i>1$ and $j>1$; for if not, say $s_{i j} \neq 0$, then $\operatorname{det}\left(\lambda A+S^{-1}(G)\right)[1, i ; 1, j] \neq 0$ for all but one value of λ, which contradicts the fact that $\rho\left[\lambda A+S^{-1}(G)\right]=1$. If $s_{1 j} \neq 0$ for some $j>1$, and $s_{i 1} \neq 0$ for some $i>1$, then $\operatorname{det}\left(S^{-1}(G)\right)[1, i ; 1, j] \neq 0$. In a similar way we can argue that, if for some $G \in \mathscr{M}, S^{-1}(G)$ has a non-zero entry in the first row (column) which is not in the first column (row), then for every $H \in \mathscr{M}, S^{-1}(H)$ may have non-zero entries only in the first row (column). It now follows that $\operatorname{dim} S^{-1}(\mathscr{M}) \leqq n$, however, $\operatorname{dim} \mathscr{M}=n^{2} / 4$ if n is even and $\operatorname{dim} \mathscr{M}=\left(n^{2}-1\right) / 4$ if n is odd. In either case we conclude that $n \leqq 4$.

Suppose then that $n=4$. Define \mathscr{R} to be the subspace of M_{4} generated by $\left\{E_{i 1}: i=1, \ldots, 4\right\}, \mathscr{V}$ to be the subspace of M_{4} generated by

$$
\left\{E_{1 j}: j=1, \ldots, 4\right\}
$$

\mathscr{M} to be the subspace of M_{4} generated by $\left\{E_{13}, E_{14}, E_{23}, E_{24}\right\}$, and \mathscr{S} to be the subspace of M_{4} generated by $\left\{E_{i j}: i<j\right\}$.

We know that $S^{-1}(\mathscr{M}) \subseteq \mathscr{V}$ or $S^{-1}(\mathscr{M}) \subseteq \mathscr{R}$. We may assume that $S^{-1}(\mathscr{M}) \subseteq \mathscr{V}$ since the argument for $S^{-1}(\mathscr{M}) \subseteq \mathscr{R}$ is parallel. However, $\operatorname{dim} \mathscr{V}=\operatorname{dim} \mathscr{M}$; hence $S(\mathscr{V})=\mathscr{M}$. We shall show that there exists a linear transformation S^{*} such that S^{*} preserves E_{3} (hence is non-singular), and

$$
S^{*}(\mathscr{R}+\mathscr{V}) \subseteq \mathscr{S}
$$

This will yield a contradiction since $\operatorname{dim} \mathscr{S}=6$ and $\operatorname{dim}(\mathscr{R}+\mathscr{V})=7$.
Since $S(\mathscr{V})=\mathscr{M}$, it follows that there exist coefficients $\alpha_{2}, \alpha_{3}, \alpha_{4}$ such that $\rho\left[S\left(A^{\prime}\right)\right]=2$, where

$$
A^{\prime}=A+\sum_{i=2}^{4} \alpha_{i} E_{1 i}
$$

Let $Q_{1}=I_{4}-\left(\alpha_{2} / \lambda_{1}\right) E_{12}-\left(\alpha_{3} / \lambda_{1}\right) E_{13}-\left(\alpha_{4} / \lambda_{1}\right) E_{14}$. Now, the Jordan normal form of A^{\prime} is $Q_{1}^{-1} A^{\prime} Q_{1}=\lambda_{1} E_{11}=A$. (Note that $Q_{1}^{-1 \mathscr{V}} Q_{1}=\mathscr{V}$.) Also, there exists non-singular matrices R and Z such that

$$
\left[\begin{array}{ll}
R & 0 \\
0 & Z
\end{array}\right] S\left(A^{\prime}\right)\left[\begin{array}{ll}
R & 0 \\
0 & Z
\end{array}\right]^{-1}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Define S^{\prime} by $S^{\prime}(B)=P_{1}\left[S\left(Q_{1} B Q_{1}^{-1}\right)\right] P_{1}^{-1}$, where

$$
P_{1}=\left[\begin{array}{ll}
R & 0 \\
0 & Z
\end{array}\right] .
$$

Thus S^{\prime} preserves E_{3} (hence is non-singular) and

$$
S^{\prime}(A)=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Also, $S^{\prime}(\mathscr{V})=\mathscr{M}$ since $Q_{1} \mathscr{V} Q_{1}{ }^{-1}=\mathscr{V}, P_{1} \mathscr{M} P_{1}{ }^{-1}=\mathscr{M}$, and $S(\mathscr{V})=\mathscr{M}$.
Let $G \in \mathscr{R}, G \neq \gamma E_{11}$; then $\operatorname{deg} E_{3}[x G+B] \leqq 1$ for all $B \in M_{4}$. By (2.1) it follows that $\operatorname{deg} E_{3}\left[x S^{\prime}(G)+B\right] \leqq 1$ for all $B \in M_{4}$. We then have $\rho\left[S^{\prime}(G)\right] \leqq n / 2=2$ as in the first paragraph of this proof. In particular, $\rho\left[S^{\prime}(x A+G)\right] \leqq 2$ for all $x \in \mathscr{C}$. Hence every 3×3 minor of $S^{\prime}(x A+G)$ is zero. Suppose that

$$
S^{\prime}(G)=\left[\begin{array}{ll}
K & L \\
J & M
\end{array}\right]
$$

where K, L, J, and M are 2×2 matrices. Then

$$
S^{\prime}(x A+G)=\left[\begin{array}{cc}
K & L+x I_{2} \\
J & M
\end{array}\right]
$$

Since each minor of the form $\operatorname{det} S^{\prime}(x A+G)[1,2, i ; j, 3,4](j=1,2 ; i=3,4)$ is zero for all $x \in \mathscr{C}$, it follows that $J=0$. Now, since for some $x \in \mathscr{C}$, $\rho\left[S^{\prime}(x A+G)\right]=2$, if $S^{\prime}(G)$ had a non-zero eigenvalue, it would follow that $\operatorname{deg} E_{3}[z(x A+G)+B]>1$ by Lemma 2.2 and (2.1), which would contradict the fact that $\rho(x A+G)=1$. Thus $S^{\prime}(G)$ and hence K and M have non-zero eigenvalues. Let D_{1} and D_{2} be non-singular 2×2 matrices such that

$$
D_{1}^{-1} K D_{1}=\left[\begin{array}{cc}
0 & c \\
0 & 0
\end{array}\right] \quad \text { and } \quad D_{2}^{-1} M D_{2}=\left[\begin{array}{ll}
0 & d \\
0 & 0
\end{array}\right]
$$

and define S^{*} by

$$
S^{*}(B)=\left[\begin{array}{ll}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right]^{-1} S^{\prime}(B)\left[\begin{array}{ll}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right] .
$$

Then

$$
S^{*}(x A+G)=\left[\begin{array}{llll}
0 & c & & N \\
0 & 0 & & \\
0 & 0 & 0 & d \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$S^{*}(\mathscr{V})=\mathscr{M}$, and S^{*} preserves E_{3}.
Now, either $c \neq 0$ or $d \neq 0$; for if $c=d=0$, then $S^{*-1}(\mathscr{M})$ strictly contains \mathscr{V}, a contradiction. Also, if for any $H \in \mathscr{R}, S^{\prime}(H)$ has a non-zero (u, v) entry, for some $u=3,4, v=3,4$, and if for some $H^{\prime} \in \mathscr{R}, S^{\prime}\left(H^{\prime}\right)$ has a non-zero (u, v) entry, for some $u=1,2, v=1,2$, then we may take $G \in \mathscr{R}$ such that both $c \neq 0$ and $d \neq 0$.

Let $B \in \mathscr{R}$; then $S^{*}(B)$ has the form $\left[\begin{array}{c}K^{\prime} \\ M^{\prime}\end{array}\right]$, and K^{\prime} and M^{\prime} have no non-zero eigenvalues. Consider

$$
K^{*}(x)=K^{\prime}+\left[\begin{array}{cc}
0 & x c \\
0 & 0
\end{array}\right]
$$

Now, $K^{*}(x)$ has no non-zero eigenvalues, and $\rho\left[K^{*}(x)\right] \leqq 1$. Since x can be taken to be an indeterminate and since $\rho\left[K^{*}(x)\right] \leqq 1$, it follows that $k_{21}{ }^{\prime}=0$. Hence K^{\prime} is an upper triangular matrix with zero diagonal; that is $k_{21}{ }^{\prime}=k_{11}{ }^{\prime}=$ $k_{22}{ }^{\prime}=0$. Similarly $m_{21}{ }^{\prime}=m_{11}{ }^{\prime}=m_{22}{ }^{\prime}=0$. Hence $S^{*}(\mathscr{R}+\mathscr{V}) \subseteq \mathscr{S}$. We have arrived at our contradiction.

Theorem 2.1. If T preserves E_{3} and $\rho(A)=1$, then $\rho[T(A)]=1$.
Proof. If $n=3$, the lemma is an immediate consequence of Lemma 2.1(i) and (2.1). Thus assume that $n \geqq 4$.

If $\rho(A)=1$, assume that A is in Jordan normal form: $A=\lambda E_{11}+\epsilon E_{12}$, where $\lambda=0$ and $\epsilon=1$, or $\lambda \neq 0$ and $\epsilon=0$. If $\lambda \neq 0$, let $A(t)=A$ for all $t \in \mathscr{C}$. On the other hand, if $\lambda=0$, let $A(t)=t E_{11}+E_{12}$.

Now, for all $t \in \mathscr{C}, t \neq 0, T[A(t)]$ has a non-zero eigenvalue by Lemma 2.3. Since $\rho[A(t)]=1$ for all $t \in \mathscr{C}, \operatorname{deg} E_{3}[x A(t)+B] \leqq 1$ for all $B \in M_{n}$, and by (2.1), $\operatorname{deg} E_{3}(x T[A(t)]+B) \leqq 1$ for all $B \in M_{n}$. Thus by Lemma 2.2, $\rho(T[A(t)])=1$ for all $t \neq 0$. By a continuity argument and the non-singularity of $T, \rho[T(A)]=1$.
3. On the proof of Theorem 1.1. For the proof of Theorem 1.1, one must first show that T satisfies (i) or (ii). However, this is an immediate consequence of Theorem 2.1 and the result of Marcus and Moyls [2, Theorem 1] mentioned above.

Marcus and Purves [3, Theorem 3.1] proved that if T preserves $E_{r}, r \geqq 4$, then T has the structure given in Theorem 1.1 (i) or (ii), where (iii') $U V=e^{i \theta} I_{n}$ and $r \theta \equiv 0(\bmod 2 \pi)$. However, the proof given by Marcus and Purves for (iii') assuming (i) or (ii) is valid for $r \geqq 3$. We thus omit the proof of (iii).

Acknowledgement. I would like to thank Professor B. N. Moyls for his suggestions during the preparation of this paper.

References

1. M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities (Allyn and Bacon, Boston, 1964).
2. M. Marcus and B. N. Moyls, Transformations on tensor product spaces, Pacific J. Math. 9 (1959), 1215-1221.
3. M. Marcus and R. Purves, Linear transformations on algebras of matrices: The invariance of the elementary symmetric functions, Can. J. Math. 11 (1959), 383-396.
4. M. Marcus and R. Westwick, Linear maps on skew-symmetric matrices: The invariance of the elementary symmetric functions, Pacific J. Math. 10 (1960), 917-924.

University of British Columbia, Vancouver, British Columbia;
3806 Lake,
Lawton, Oklahoma

