LINEAR TRANSFORMATIONS ON MATRICES: THE INVARIANCE OF THE THIRD ELEMENTARY SYMMETRIC FUNCTION

LEROY B. BEASLEY

1. Introduction. Let T be a linear transformation on M_n the set of all $n \times n$ matrices over the field of complex numbers, \mathscr{C} . Let $A \in M_n$ have eigenvalues $\lambda_1, \ldots, \lambda_n$ and let $E_r(A)$ denote the *r*th elementary symmetric function of the eigenvalues of A:

$$E_r(A) = \sum_{1 \leq i_1 < \cdots < i_r \leq n} \prod_{j=1}^r \lambda_{i_j} = E_r(\lambda_1, \ldots, \lambda_n).$$

Equivalently, $E_r(A)$ is the sum of all the principal $r \times r$ subdeterminants of A. T is said to *preserve* E_r if $E_r[T(A)] = E_r(A)$ for all $A \in M_n$. Marcus and Purves [3, Theorem 3.1] showed that for $r \ge 4$, if T preserves E_r then T is essentially a similarity transformation; that is, either $T: A \to UAV$ for all $A \in M_n$ or $T: A \to UA^t V$ for all $A \in M_n$, where $UV = e^{i\theta}I_n$, $r\theta \equiv 0 \pmod{2\pi}$. They also showed that not all linear transformations which preserve E_2 are essentially similarity transformations. However, their results did not include a definite theorem on E_3 preservers.

In this paper we shall prove the following.

THEOREM 1.1. If T preserves E_3 , then there exist non-singular matrices U and V in M_n such that either

(i) $T: A \to UAV$ for all $A \in M_n$, or

(ii) $T: A \to UA^{t}V$ for all $A \in M_{n}$, where

(iii) $UV = e^{i\theta}I_n$ and $3\theta \equiv 0 \pmod{2\pi}$.

2. Preliminary lemmas. The main burden of the proof of Theorem 1.1 lies in showing that if T preserves E_3 , then T maps rank one matrices into rank one matrices; for then a theorem of Marcus and Moyls [2, Theorem 1] shows that T has the structure indicated in either (i) or (ii). Obviously, if the rank $\rho(A) = 1$, then $E_r(xA + B)$, considered as a polynomial in x, has degree ≤ 1 . Marcus and Purves [3, Lemma 3.1] showed that if T preserves E_r for some $r \geq 2$, then T is non-singular. It follows that for such T,

Received May 26, 1969 and in revised form, September 11, 1969.

(2.1) deg
$$E_r(xA + B) \leq 1$$
 for all $B \in M_n$ if and only if
deg $E_r[xT(A) + B] \leq 1$ for all $B \in M_n$.

They also showed that, for $r \geq 4$,

(2.2) deg $E_r(xA + B) \leq 1$ for all $B \in M_n$ if and only if $\rho(A) = 1$.

With A replaced by T(A) this leads to the desired result. For r = 3, their proof of (2.2) does not appear to work. However, (2.2) does turn out to be true if A has a non-zero eigenvalue (Lemma 2.2). If such is the case, T(A) also has a non-zero eigenvalue (Lemma 2.3). With these lemmas, along with a continuity argument (Theorem 2.6), we show that T preserves rank one matrices.

We need two results of Marcus and Purves [3, Lemmas 3.2 and 3.3] which we state in the following.

LEMMA 2.1. If $A \in M_n$ and $A \neq 0$, then: (i) deg det $(xA + B) \leq 1$ for all $B \in M_n$ if and only if $\rho(A) = 1$; (ii) if $3 \leq r < n$, then deg $E_r(xA + B) \leq 1$ for all $B \in M_n$ implies that A has at most one non-zero eigenvalue.

LEMMA 2.2. If $A \in M_n$ and A has a non-zero eigenvalue, then deg $E_3(xA + B) \leq 1$ for all $B \in M_n$

if and only if $\rho(A) = 1$.

Proof. If $\rho(A) = 1$, then clearly deg $E_3(xA + B) \leq 1$ for all $B \in M_n$. Suppose that deg $E_3(xA + B) \leq 1$ for all $B \in M_n$. By Lemma 2.1 (ii), A has at most one non-zero eigenvalue, and hence exactly one, λ_1 .

Let $S: B \to PBP^{-1}$ for all $B \in M_n$, where PAP^{-1} is the Jordan normal form of A:

$$PAP^{-1} = \begin{bmatrix} \lambda_1 & 0 & & & \\ & 0 & \epsilon_2 & & \\ & \ddots & \ddots & & \\ & 0 & & \ddots & \ddots & \\ & 0 & & & \ddots & \epsilon_{n-1} \\ & & & & & 0 \end{bmatrix}$$

where $\epsilon_i = 1$ or $\epsilon_i = 0$ for all $i, i = 1, \ldots, n - 1$.

Suppose that $\epsilon_i = 1$ for some i, i = 2, ..., n - 1. Then, $E_3(xS(A) + B) = \lambda_1 \epsilon_i x^2$ for $B = E_{i+1,i}$, where $E_{i,j}$ denotes the matrix with a "1" in the (i, j) position and zeros in all other positions. Since E_3 is invariant under similarity transformations, deg $E_3[xS(A) + B] = \deg E_3[xA + S^{-1}(B)] \leq 1$. Hence $\epsilon_i = 0$ for all i, i = 2, ..., n - 1, and thus $\rho(A) = 1$.

LEMMA 2.3. If T preserves E_3 , $A \in M_n$, $n \ge 4$, $\rho(A) = 1$, and A has a non-zero eigenvalue, then T(A) has a non-zero eigenvalue.

Proof. Suppose that all eigenvalues of T(A) are zero. Since E_3 is invariant under similarity transformations, and since a matrix is similar to its Jordan

normal form, we may assume that A and T(A) are in Jordan normal form: $A = \lambda_1 E_{11}$, and

$$T(A) = \begin{bmatrix} 0 & \epsilon_1 & & & \\ 0 & \epsilon_2 & & 0 \\ & \ddots & \ddots & \\ 0 & & \ddots & \ddots \\ 0 & & & \ddots & \epsilon_{n-1} \\ & & & & 0 \end{bmatrix}$$

where $\epsilon_i = 0$ or $\epsilon_i = 1, i = 1, \ldots, n-1$.

If $\epsilon_i \neq 0$, for some *i*, let $B = E_{i+2,i}$. Then, $E_3[xT(A) + B] = \epsilon_i \epsilon_{i+1} x^2$. However, by (2.1), deg $E_3[xT(A) + B] \leq 1$. Hence $\epsilon_{i+1} = 0$. Similarly, $\epsilon_{i-1} = 0$ if $\epsilon_i \neq 0$, i > 1. Hence $\rho[T(A)] \leq n/2$.

We now close up the ones on the superdiagonal so that they alternate with zeros. Let P_{ij} represent the permutation matrix which by multiplication on the left (right) interchanges the *i*th and *j*th rows (columns). Thus $P_{ij}^{-1} = P_{ij}$. Suppose that in T(A), $\epsilon_{i-2} = \epsilon_{i-1} = 0$ and $\epsilon_i \neq 0$. (Note that ϵ_{i+1} must then be zero.) Then

where $\epsilon_j' = \epsilon_j$ if $j \neq i, i - 1$, and $\epsilon_{i-1}' \neq 0$ and $\epsilon_i' = 0$. Continuing in this way we obtain a permutation matrix P such that

has the property that for some α , $\mu_{2i-1} = 1$ and $\mu_{2i} = 0$ for $1 \leq i \leq \alpha$, and $\mu_j = 0$ for $j \geq 2\alpha$. (Note that $PT(A)P^{-1}$ cannot be 0 since T is non-singular.)

Remark. The proof does not show that μ_1 can be made 1, although the argument for this is similar to (but not part of) the argument given above.

Let Q be the permutation matrix $\prod_{i=1}^{\beta} P_{2i,\gamma-2i}$, where $\beta = [(n + 1)/4]$ (greatest integer) and $\gamma = n + 2$, if n is odd; and $\beta = [n/4]$ and $\gamma = n + 1$, if n is even.

We observe that in $PT(A)P^{-1}$ the only columns with non-zero entries are even-numbered columns and hence can conclude that $QPT(A)P^{-1}Q^{-1}$ has the form $\begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix}$, where X is of order $(n/2) \times (n/2)$ if n is even, and of order $[(n + 1)/2] \times [(n - 1)/2]$ if n is odd, and has non-zero entries (in fact, ones) on only one diagonal.

Define S by $S(B) = QPT(B)P^{-1}Q^{-1}$. Then, S is non-singular, S preserves E_3 , and all eigenvalues of S(A) are zero.

Let \mathscr{M} be the subspace of M_n generated by $\{E_{ij}: 1 \leq i \leq \alpha, \beta \leq j \leq n\}$, where $\alpha = (n + 1)/2$ and $\beta = (n + 3)/2$, if *n* is odd; and $\alpha = n/2$ and $\beta = (n + 2)/2$, if *n* is even. That is, if $G \in \mathscr{M}$, then

$$G = \begin{bmatrix} 0 & Y \\ 0 & 0 \end{bmatrix},$$

where Y is a matrix of order $(n/2) \times (n/2)$ if n is even, and of order

$$[(n+1)/2] \times [(n-1)/2]$$

if n is odd.

Now, if $G \in \mathcal{M}$, then any principal 3×3 submatrix of G is either of the form

$$\begin{bmatrix} 0 & g_{ij} & g_{ik} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 0 & g_{ij} \\ 0 & 0 & g_{kj} \\ 0 & 0 & 0 \end{bmatrix}.$$

or of the form

Since $E_3(C)$ is the sum of the principal 3×3 subdeterminants of C, it follows that if $G \in \mathcal{M}$, then deg $E_3(xG + B) \leq 1$ for all $B \in M_n$. Now, $S(A) \in \mathcal{M}$. Hence, deg $E_3(x[\lambda S(A) + G] + B) \leq 1$ for all $\lambda \in \mathcal{C}$, for all $B \in M_n$, and for any $G \in \mathcal{M}$. Hence by (2.1), deg $E_3(x[\lambda A + S^{-1}(G)] + B) \leq 1$ for all $B \in M_n$, for all $\lambda \in \mathcal{C}$, and for any $G \in \mathcal{M}$. Now, for

$$\lambda \neq [-\operatorname{tr} S^{-1}(G)]/\lambda_1,$$

 $\lambda A + S^{-1}(G)$ has a non-zero eigenvalue. Hence, by Lemma 2.4, $\rho[\lambda A + S^{-1}(G)] = 1$ for $\lambda \neq [-\operatorname{tr} S^{-1}(G)]/\lambda_1$.

Let G be any member of \mathcal{M} , and $S^{-1}(G) = (s_{ij})$. Then, $s_{ij} = 0$ if i > 1 and j > 1; for if not, say $s_{ij} \neq 0$, then det $(\lambda A + S^{-1}(G))[1, i; 1, j] \neq 0$ for all but one value of λ , which contradicts the fact that $p[\lambda A + S^{-1}(G)] = 1$. If $s_{1j} \neq 0$ for some j > 1, and $s_{i1} \neq 0$ for some i > 1, then det $(S^{-1}(G))[1, i; 1, j] \neq 0$. In a similar way we can argue that, if for some $G \in \mathcal{M}$, $S^{-1}(G)$ has a non-zero entry in the first row (column) which is not in the first column (row), then for every $H \in \mathcal{M}$, $S^{-1}(H)$ may have non-zero entries only in the first row (column). It now follows that dim $S^{-1}(\mathcal{M}) \leq n$, however, dim $\mathcal{M} = n^2/4$ if n is even and dim $\mathcal{M} = (n^2 - 1)/4$ if n is odd. In either case we conclude that $n \leq 4$.

Suppose then that n = 4. Define \mathscr{R} to be the subspace of M_4 generated by $\{E_{i1}: i = 1, \ldots, 4\}, \mathscr{V}$ to be the subspace of M_4 generated by

$${E_{1j}: j = 1, \ldots, 4},$$

 \mathscr{M} to be the subspace of M_4 generated by $\{E_{13}, E_{14}, E_{23}, E_{24}\}$, and \mathscr{S} to be the subspace of M_4 generated by $\{E_{ij}: i < j\}$.

We know that $S^{-1}(\mathscr{M}) \subseteq \mathscr{V}$ or $S^{-1}(\mathscr{M}) \subseteq \mathscr{R}$. We may assume that $S^{-1}(\mathscr{M}) \subseteq \mathscr{V}$ since the argument for $S^{-1}(\mathscr{M}) \subseteq \mathscr{R}$ is parallel. However, $\dim \mathscr{V} = \dim \mathscr{M}$; hence $S(\mathscr{V}) = \mathscr{M}$. We shall show that there exists a linear transformation S^* such that S^* preserves E_3 (hence is non-singular), and

$$S^*(\mathscr{R} + \mathscr{V}) \subseteq \mathscr{S}.$$

This will yield a contradiction since dim $\mathscr{S} = 6$ and dim $(\mathscr{R} + \mathscr{V}) = 7$.

Since $S(\mathscr{V}) = \mathscr{M}$, it follows that there exist coefficients $\alpha_2, \alpha_3, \alpha_4$ such that $\rho[S(A')] = 2$, where

$$A' = A + \sum_{i=2}^{4} \alpha_i E_{1i}.$$

Let $Q_1 = I_4 - (\alpha_2/\lambda_1)E_{12} - (\alpha_3/\lambda_1)E_{13} - (\alpha_4/\lambda_1)E_{14}$. Now, the Jordan normal form of A' is $Q_1^{-1}A'Q_1 = \lambda_1E_{11} = A$. (Note that $Q_1^{-1}\mathscr{V} Q_1 = \mathscr{V}$.) Also, there exists non-singular matrices R and Z such that

$$\begin{bmatrix} R & 0 \\ 0 & Z \end{bmatrix} S(A') \begin{bmatrix} R & 0 \\ 0 & Z \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Define S' by $S'(B) = P_1[S(Q_1BQ_1^{-1})]P_1^{-1}$, where

$$P_1 = \begin{bmatrix} R & 0 \\ 0 & Z \end{bmatrix}.$$

Thus S' preserves E_3 (hence is non-singular) and

$$S'(A) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Also, $S'(\mathscr{V}) = \mathscr{M}$ since $Q_1 \mathscr{V} Q_1^{-1} = \mathscr{V}$, $P_1 \mathscr{M} P_1^{-1} = \mathscr{M}$, and $S(\mathscr{V}) = \mathscr{M}$.

Let $G \in \mathscr{R}$, $G \neq \gamma E_{11}$; then deg $E_3[xG + B] \leq 1$ for all $B \in M_4$. By (2.1) it follows that deg $E_3[xS'(G) + B] \leq 1$ for all $B \in M_4$. We then have $\rho[S'(G)] \leq n/2 = 2$ as in the first paragraph of this proof. In particular, $\rho[S'(xA + G)] \leq 2$ for all $x \in \mathscr{C}$. Hence every 3×3 minor of S'(xA + G) is zero. Suppose that

$$S'(G) = \begin{bmatrix} K & L \\ J & M \end{bmatrix},$$

where K, L, J, and M are 2×2 matrices. Then

$$S'(xA + G) = \begin{bmatrix} K & L + xI_2 \\ J & M \end{bmatrix}.$$

Since each minor of the form det S'(xA + G)[1, 2, i; j, 3, 4] (j = 1, 2; i = 3, 4) is zero for all $x \in \mathcal{C}$, it follows that J = 0. Now, since for some $x \in \mathcal{C}$, $\rho[S'(xA + G)] = 2$, if S'(G) had a non-zero eigenvalue, it would follow that deg $E_3[z(xA + G) + B] > 1$ by Lemma 2.2 and (2.1), which would contradict the fact that $\rho(xA + G) = 1$. Thus S'(G) and hence K and M have non-zero eigenvalues. Let D_1 and D_2 be non-singular 2×2 matrices such that

$$D_1^{-1}KD_1 = \begin{bmatrix} 0 & c \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad D_2^{-1}MD_2 = \begin{bmatrix} 0 & d \\ 0 & 0 \end{bmatrix}$$

and define S^* by

$$S^{*}(B) = \begin{bmatrix} D_{1} & 0 \\ 0 & D_{2} \end{bmatrix}^{-1} S'(B) \begin{bmatrix} D_{1} & 0 \\ 0 & D_{2} \end{bmatrix}.$$

Then

$$S^*(xA + G) = \begin{bmatrix} 0 & c & N \\ 0 & 0 & N \\ 0 & 0 & 0 & d \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

 $S^*(\mathscr{V}) = \mathscr{M}$, and S^* preserves E_3 .

Now, either $c \neq 0$ or $d \neq 0$; for if c = d = 0, then $S^{*-1}(\mathcal{M})$ strictly contains \mathcal{V} , a contradiction. Also, if for any $H \in \mathcal{R}$, S'(H) has a non-zero (u, v) entry, for some u = 3, 4, v = 3, 4, and if for some $H' \in \mathcal{R}$, S'(H') has a non-zero (u, v) entry, for some u = 1, 2, v = 1, 2, then we may take $G \in \mathcal{R}$ such that both $c \neq 0$ and $d \neq 0$.

Let $B \in \mathscr{R}$; then $S^*(B)$ has the form $\begin{bmatrix} K' & l' \\ 0 & M' \end{bmatrix}$, and K' and M' have no non-zero eigenvalues. Consider

$$K^*(x) = K' + \begin{bmatrix} 0 & xc \\ 0 & 0 \end{bmatrix}.$$

Now, $K^*(x)$ has no non-zero eigenvalues, and $\rho[K^*(x)] \leq 1$. Since x can be taken to be an indeterminate and since $\rho[K^*(x)] \leq 1$, it follows that $k_{21}' = 0$. Hence K' is an upper triangular matrix with zero diagonal; that is $k_{21}' = k_{11}' = k_{22}' = 0$. Similarly $m_{21}' = m_{11}' = m_{22}' = 0$. Hence $S^*(\mathscr{R} + \mathscr{V}) \subseteq \mathscr{S}$. We have arrived at our contradiction.

THEOREM 2.1. If T preserves E_3 and $\rho(A) = 1$, then $\rho[T(A)] = 1$.

Proof. If n = 3, the lemma is an immediate consequence of Lemma 2.1(i) and (2.1). Thus assume that $n \ge 4$.

If $\rho(A) = 1$, assume that A is in Jordan normal form: $A = \lambda E_{11} + \epsilon E_{12}$, where $\lambda = 0$ and $\epsilon = 1$, or $\lambda \neq 0$ and $\epsilon = 0$. If $\lambda \neq 0$, let A(t) = A for all $t \in \mathcal{C}$. On the other hand, if $\lambda = 0$, let $A(t) = tE_{11} + E_{12}$. Now, for all $t \in \mathcal{C}$, $t \neq 0$, T[A(t)] has a non-zero eigenvalue by Lemma 2.3. Since $\rho[A(t)] = 1$ for all $t \in \mathcal{C}$, deg $E_3[xA(t) + B] \leq 1$ for all $B \in M_n$, and by (2.1), deg $E_3(xT[A(t)] + B) \leq 1$ for all $B \in M_n$. Thus by Lemma 2.2, $\rho(T[A(t)]) = 1$ for all $t \neq 0$. By a continuity argument and the non-singularity of T, $\rho[T(A)] = 1$.

3. On the proof of Theorem 1.1. For the proof of Theorem 1.1, one must first show that T satisfies (i) or (ii). However, this is an immediate consequence of Theorem 2.1 and the result of Marcus and Moyls [2, Theorem 1] mentioned above.

Marcus and Purves [3, Theorem 3.1] proved that if T preserves E_r , $r \ge 4$, then T has the structure given in Theorem 1.1 (i) or (ii), where (iii') $UV = e^{i\theta}I_n$ and $r\theta \equiv 0 \pmod{2\pi}$. However, the proof given by Marcus and Purves for (iii') assuming (i) or (ii) is valid for $r \ge 3$. We thus omit the proof of (iii).

Acknowledgement. I would like to thank Professor B. N. Moyls for his suggestions during the preparation of this paper.

References

- 1. M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities (Allyn and Bacon, Boston, 1964).
- 2. M. Marcus and B. N. Moyls, Transformations on tensor product spaces, Pacific J. Math. 9 (1959), 1215-1221.
- 3. M. Marcus and R. Purves, Linear transformations on algebras of matrices: The invariance of the elementary symmetric functions, Can. J. Math. 11 (1959), 383-396.
- 4. M. Marcus and R. Westwick, Linear maps on skew-symmetric matrices: The invariance of the elementary symmetric functions, Pacific J. Math. 10 (1960), 917–924.

University of British Columbia, Vancouver, British Columbia; 3806 Lake, Lawton, Oklahoma