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LINEAR TRANSFORMATIONS ON MATRICES: 
THE INVARIANCE OF THE THIRD ELEMENTARY 

SYMMETRIC FUNCTION 

L E R O Y B. BEASLEY 

1. Introduction. Let T be a linear transformation on Mn the set of all 
n X n matrices over the field of complex numbers, fé\ Let A £ Mn have 
eigenvalues Xi, . . . , \n and let ET(A) denote the rth elementary symmetric 
function of the eigenvalues of A : 

EM) E II X«y = £r(Xi, . . . , \n). 
l£il<...<ir^n j=l 

Equivalently, ET(A) is the sum of all the principal r X r subdeterminants of A. 
T is said to preserve ET if Er[T(A)] = Er(A) for all A Ç Mn. Marcus and 
Purves [3, Theorem 3.1] showed that for r ^ 4, if T preserves Er then T is 
essentially a similarity transformation; that is, either T: A —> UAV for all 
i ^ M B o r r : i - > ZX4 lV for all L̂ G Mn, where C/F = e<fl/n, rd = 0 (mod 2TT). 
They also showed that not all linear transformations which preserve E2 are 
essentially similarity transformations. However, their results did not include 
a definite theorem on £ 3 preservers. 

In this paper we shall prove the following. 

THEOREM 1.1. If T preserves Z£3, then there exist non-singular matrices U and V 
in Mn such that either 

(i) T-.A-+UA Vfor all A £ Mn, 
or 

(ii) T: A -» UA'Vfor all A 6 Mn, 
where 

(iii) UV = eieln and 36 = 0 (mod 2TT). 

2. Preliminary lemmas. The main burden of the proof of Theorem 1.1 
lies in showing that if T preserves E3, then T maps rank one matrices into rank 
one matrices; for then a theorem of Marcus and Moyls [2, Theorem 1] shows 
that T has the structure indicated in either (i) or (ii). Obviously, if the rank 
p(A) = 1, then Er(xA + B), considered as a polynomial in x, has degree ^ 1 . 
Marcus and Purves [3, Lemma 3.1] showed that if T preserves Er for some 
r ^ 2, then T is non-singular. It follows that for such T, 
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LINEAR TRANSFORMATIONS 747 

(2.1) deg Er(xA + S ) g 1 for all B 6 Mn if and only if 
deg E r [* r ( i l ) + B ] g l for all B Ç M.. 

They also showed that, for r ^ 4, 

(2.2) deg Er(x,4 + 5 ) ^ 1 for all JB € Mn if and only if p(A) = 1. 

With 4̂ replaced by T(A) this leads to the desired result. For r = 3, their 
proof of (2.2) does not appear to work. However, (2.2) does turn out to be 
true if A has a non-zero eigenvalue (Lemma 2.2). If such is the case, T{A) also 
has a non-zero eigenvalue (Lemma 2.3). With these lemmas, along with a 
continuity argument (Theorem 2.6), we show that T preserves rank one 
matrices. 

We need two results of Marcus and Purves [3, Lemmas 3.2 and 3.3] which 
we state in the following. 

LEMMA 2.1. If A 6 Mn and A ^ 0, then: 
(i) deg det{xA + B) ^ 1 for all B G Mn if and only if p{A) = 1; 

(ii) if 3 ^ r < n, then deg£r(x^4 + B) ^ 1 for all B 6 Mn implies that 
A has at most one non-zero eigenvalue. 

LEMMA 2.2. If A £ Mn and A has a non-zero eigenvalue, then 
deg E3(xA + B) ^ 1 for all B £ Mn 

if and only if p(A) = 1. 

Proof. If P(A) = 1, then clearly deg E3(xA + B) ^ 1 for all B <G Mn. 
Suppose that deg Ed(xA + B) g 1 for all J3 <E Mn. By Lemma 2.1 (ii), A has 
at most one non-zero eigenvalue, and hence exactly one, Xi. 

Let S: B -> PBP~X for all B G Mni where P^IP"1 is the Jordan normal form 
of A: 

[Xi 0 1 

I " . o I 
I v - e«-i I 

L o J 
where ef = 1 or et = 0 for all i, i = 1, . . . , n — 1. 

Suppose that e* = 1 for some i, i = 2, . . . , n — 1. Then, E3(x5(^4) + B) = 
Xie^x2 for 5 = Ei+iti, where Eitj denotes the matrix with a " 1 " in the (i, j) 
position and zeros in all other positions. Since E3 is invariant under similarity 
transformations, deg£3[xS(,4) + B] = deg Ez[xA + 5"1(^)] ^ 1. Hence 
et = 0 for all i, i = 2, . . . , n — 1, and thus p(^4) = 1. 

LEMMA 2.3. If T preserves Ez, A £ Mn, n ^ 4, p(^4) = 1, awd 4̂ to a 
non-zero eigenvalue, then T(A) has a non-zero eigenvalue. 

Proof. Suppose that all eigenvalues of T(A) are zero. Since E3 is invariant 
under similarity transformations, and since a matrix is similar to its Jordan 
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normal form, we may assume that A and T(A) are in Jordan normal form: 
A = Xi£n, and 

" 0 €1 

0 -. o 
T(A) = 

0 
0 

where et = 0 or et = 1, i = 1, . . . , n — 1. 
If 6t ?£ 0, for some i, let B = Ei+2ti. Then, Ez[xT(A) + B] = €iei+1x

2. 
However, by (2.1), deg Ez[xT(A) + B] ^ 1. Hence €*+i = 0. Similarly, 
€<-i = 0 if €, ^ 0, i > 1. Hence p|T(i4)] ^ »/2. 

We now close up the ones on the superdiagonal so that they alternate with 
zeros. Let Pi3 represent the permutation matrix which by multiplication on 
the left (right) interchanges the ith andjth rows (columns). ThusP*/"1 = P ^ . 
Suppose that in T(A), €z_2 = €*_i = 0 and et 9* 0. (Note that ez+i must then 
be zero.) Then 

"0 ex' 

iT(A)Pi_1,iPl 

0 €2 ' 0 
0 

0 

where €j if j 9^ i, i — 1, and €*_/ 7̂  0 and e/ = 0. Continuing in this 
way we obtain a permutation matrix P such that 

PT(A)P~1 = 

0 MI 
0 M2 0 
0 

0 

has the property that for some a, y.2i-i ~ 1 and M2Z = 0 for 1 ^ i ^ a, and 
/xy = Oforj" è 2a. (Note that PP(^4)P _ 1 cannot be 0 since P is non-singular.) 

Remark. The proof does not show that m can be made 1, although the 
argument for this is similar to (but not part of) the argument given above. 

Let Q be the permutation matrix YL?=i Pu,y-2u where /3 = [(n + l ) /4 ] 
(greatest integer) and 7 = n + 2, if n is odd; and /3 = [w/4] and 7 = w + 1, 
if w is even. 
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We observe that in PT(A)P~1 the only columns with non-zero entries are 
even-numbered columns and hence can conclude that QPT(A)P~1Q~l has the 
form [o if], where X is of order (n/2) X (n/2) if n is even, and of order 
[(n + l ) /2] X [(n — l ) /2] if n is odd, and has non-zero entries (in fact, ones) 
on only one diagonal. 

DefineSby>S(£) = QPT(B)P~lQ-\ Then, 5 is non-singular, S preserves JE3, 
and all eigenvalues of S (A) are zero. 

L e t ^ # be the subspace of Mn generated by {Etj: l ^ i ^ a , p^j^n}, 
where a = (n + l ) / 2 and fi = (n + 3)/2, if n is odd; and a = n/2 and 
0 = (n + 2)/2, if » is even. That is, if G G Jt, then 

"0 71 
0 0 G = 

0 
0 

gij gik 

0 0 
0 0 0 

0 
0 
0 

0 gij] 
0 gk]\ 

0 0 j 

where F is a matrix of order {n/2) X {n/2) if n is even, and of order 

[{n + l ) /2] X [{n - l ) /2] 
if n is odd. 

Now, if G G ̂ , then any principal 3 X 3 submatrix of G is either of the 
form 

or of the form 

Since E%(C) is the sum of the principal 3 X 3 subdeterminants of C, it 
follows that if G f 4 then deg Ez(xG + B) ^ 1 for all B G Mn. Now, 
S(A) e ^ . Hence, deg£3(*[XS(,4) + G] + B) g 1 for all X G # , for all 
£G Af», and for any G G Jt. Hence by (2.1), deg£3(x[X,4 +5" 1 (G) ] + 5 ) ^ 1 
for all B G Mn, for all X G fé\ and for any G ÇiJé. Now, for 

X ̂  [-tnS^(G)]/Xi, 

X̂4 + 5_1(G) has a non-zero eigenvalue. Hence, by Lemma 2.4, 
p[\A + 5-UG)] = 1 for X ̂  [-tnS-HGJJ/Xi. 

Let G be any member o f ^ , and 5 - 1(G) = (s*;). Then, s^ = 0 if i > 1 and 
j > 1; for if not, say s „ ^ 0, then det(X4 + 5~1(G))[1, i; 1, j] ^ 0 for all but 
one value of X, which contradicts the fact that p[\A + S~1(G)] = 1. If Sij =̂  0 
for some j > 1, and Sn 9^ 0 for some i > 1, then det(5_1(G))[l, i;l,j] 7e 0. In 
a similar way we can argue that, if for some G G ^ , S"1 (G) has a non-zero 
entry in the first row (column) which is not in the first column (row), then for 
every H G ^ , «S""1 (H) may have non-zero entries only in the first row (column). 
It now follows that dim S~1(*Jif) ^ n, however, dim~# = w2/4 if n is even and 
d i m ^ = (n2 — l ) / 4 if n is odd. In either case we conclude that n ^ 4. 
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Suppose then that n = 4. Define S% to be the subspace of Af4 generated by 
{Ea: i = 1, . . . , 4 } , ^ to be the subspace of ikf4 generated by 

{Eu'.j = 1, . . . , 4} , 

^ # to be the subspace of ikf4 generated by {£13, £14, £23, £24}, and S^ to be the 
subspace of MA generated by {Etj: i < j). 

We know that Sr-^Jt) C "V or S~x^Jé) ÇL<%. We may assume that 
S~l(<Jiï) Ç >^ since the argument for S~l(*J£) Ç ^? is parallel. However, 
d i m ^ = d i m ^ ; hence S{^V) =^é. We shall show that there exists a linear 
transformation 5* such that 5* preserves £3 (hence is non-singular), and 

S * ( ^ + ^ ) Ç ^ . 

This will yield a contradiction since d i m j ^ = 6 and dim( ^ + 7^) = 7. 
Since S(^) = ^# , it follows that there exist coefficients a2, a3, a4 such that 

p[S(,4')] = 2, where 
4 

4 ' = A + E ««£«• 
i=2 

LetÇi = I A — (a2/Xi)Ei2 — (a3Ai)£i3 — (a4/Xi)£i4. Now, the Jordan normal 
form of A' is Qr^Qi = X1E11 = 4 . (Note that Q r 1 ^ Q1=^.) Also, there 
exists non-singular matrices R and Z such that 

R 0 
0 Z 

S(A>) 

0 0 1 0 
R 0" - 1 0 0 0 1 
0 Z 0 0 0 0 

.0 0 0 0 

Define S' by S'(B) = P1[S(Q1BQ1-
1)]Pr\ where 

Thus S' preserves £3 (hence is non-singular) and 

S'(A) 

0 0 1 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 

Also, S'{V) = Je since Qjf Qr1 = Y, P^Jé Pr1 = - # , and SQC) = uT. 
Let G <= ^ , G ^ 7-Eii; then deg £3[xG + B] ^ 1 for all B <= Af4. By (2.1) 

it follows that deg Es[xS'(G) + B] £ 1 for all B € MK. We then have 
p[5'(G)] ^ »/2 = 2 as in the first paragraph of this proof. In particular, 
p[S'ixA + G)] ^ 2 for all x € <#. Hence every 3 X 3 minor of S'(xA + G) 
is zero. Suppose that 

~K L ~ 
S'(G) = 

/ i f 
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where K, L, J, and M are 2 X 2 matrices. Then 

S'(xA + G) 
\K L + xI2] 
[j M J ' 

Since each minor of the form det S'(xA + G)[l, 2,i;j, 3, 4] (j = 1, 2;i = 3,4) 
is zero for all x £ ^ \ it follows that J = 0. Now, since for some x ^ ? , 
p[Sf (xA + G)] = 2, if S''(G) had a non-zero eigenvalue, it would follow that 
deg Ez[z(xA + G) + B] > 1 by Lemma 2.2 and (2.1), which would contradict 
the fact that p(xA + G) = 1. Thus S' (G) and hence K and ikf have non-zero 
eigenvalues. Let D\ and Z>2 be non-singular 2 X 2 matrices such that 

DrlKD 

and define 5* by 

Then 

[0 c 
1 = Lo o 

S*{B) = [ J 1 

and D2~*MD2 = 
0 d] 
o oj 

0 

2?» 
5 ' (5) -Di 

0 
0 
Dy 

S*(xA + G) = 

0 
0 

c 
0 

N 

0 0 0 d 
0 0 0 0 

S * 0 O = Jt, and 5* preserves E3. 
Now, either c ^ 0 or d ?* 0; for if c = J = 0, then S*~l(^) strictly contains 

"V, a contradiction. Also, if for any H £ S%, S'(H) has a non-zero (w, z>) entry, 
for some u = 3, 4, y = 3, 4, and if for some iiT G ^ , Sf(H') has a non-zero 
(w, v) entry, for some u = 1, 2, A = 1, 2, then we may take G f ^ such that 
both c ^ 0 and d ^ 0. 

Let B <E &t\ then 5*(5) has the form [f £,], and i£' and AP have no 
non-zero eigenvalues. Consider 

K*(x) =K'+ [° 
0 

xc 

0 

Now, i£*(x) has no non-zero eigenvalues, and p[K*(x)] S 1. Since x can be 
taken to be an indeterminate and since p[K*(x)] ^ 1, it follows that k2i = 0. 
Hence Kf is an upper triangular matrix with zero diagonal ; that is k2i = kn = 
k22 = 0. Similarly m21' = w u ' = m22' = 0. Hence S*(<^ + f ) ç y , We 
have arrived at our contradiction. 

THEOREM 2.1. / / T preserves E3 awd p(A) = 1, /feew p[T(^4)] = 1. 

Proof. If « = 3, the lemma is an immediate consequence of Lemma 2.1 (i) 
and (2.1). Thus assume that n ^ 4. 

If p(A) = 1, assume that A is in Jordan normal form: A = XEn + eEi2, 
where X = 0 and e = 1, or X ̂  0 and e = 0. If X ?* 0, let A (J) = A for all 
t e <%. On the other hand, if X = 0, let A (f) = /En + E i 2 . 
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Now, for ail t £ fë, t 9^ 0, T[A (t)] has a non-zero eigenvalue by Lemma 2.3. 
Since p[A(t)} = 1 for all/ 6 &, deg Ez[xA (t) + B] ^ 1 for all B € Mn, and by 
(2.1), d e g E 8 ( * r [ ^ ( 0 ] + -B) ^ 1 for all B 6 Jlf„. Thus by Lemma 2.2, 
p(T[A (t)]) = 1 for all / j* 0. By a continuity argument and the non-singularity 
of r , P[T(A)] = 1. 

3. On the proof of Theorem 1.1. For the proof of Theorem 1.1, one must 
first show that T satisfies (i) or (ii). However, this is an immediate consequence 
of Theorem 2.1 and the result of Marcus and Moyls [2, Theorem 1] mentioned 
above. 

Marcus and Purves [3, Theorem 3.1] proved that if T preserves Er, r ^ 4, 
then T has the structure given in Theorem 1.1 (i) or (ii), where (hi') UV = ei6In 

and rd = 0 (mod 2w). However, the proof given by Marcus and Purves for 
(iiir) assuming (i) or (ii) is valid for r ^ 3. We thus omit the proof of (iii). 
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