INFLUENCE OF STRONGLY CLOSED 2-SUBGROUPS ON THE STRUCTURE OF FINITE GROUPS

HUNG P. TONG-VIET
Department of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
e-mail: tongviet@maths.bham.ac.uk

(Received 21 May 2010; accepted 30 November 2010; first published online 10 March 2011)

Abstract

Let $H \leq K$ be subgroups of a group G. We say that H is strongly closed in K with respect to G if whenever $a^{g} \in K$, where $a \in H, g \in G$, then $a^{g} \in H$. In this paper, we investigate the structure of a group G under the assumption that every subgroup of order 2^{m} (and 4 if $m=1$) of a 2-Sylow subgroup S of G is strongly closed in S with respect to G. Some results related to 2-nilpotence and supersolvability of a group G are obtained. This is a complement to Guo and Wei (J. Group Theory 13(2) (2010), 267-276).

2010 Mathematics Subject Classification. Primary 20D20.

1. Introduction. All groups are finite. Let $H \leq K$ be subgroups of a group G. We say that H is strongly closed in K with respect to G if whenever $a \in H, a^{g} \in K$, where $g \in G$ then $a^{g} \in H$. We also say that H is strongly closed in G if H is strongly closed in $N_{G}(H)$ with respect to G. The structure of groups which possess a strongly closed p-subgroup has been extensively studied. One of the most interesting results is due to Goldschmidt [4] that classified groups with an abelian strongly closed 2-subgroup. This result is a generalization of the celebrated Glauberman Z^{*}-theorem. These results play an important role in the proof of the classification of the finite simple groups. Recently, Bianchi et al. in [3], called a subgroup H, an \mathcal{H}-subgroup of G if $H^{g} \cap N_{G}(H) \leq H$ for all $g \in G$. It is easy to see that these two definitions coincide. With this concept, they gave a new characterization of supersolvable groups in which normality is a transitive relation which are called supersolvable \mathcal{T}-groups. In more detail, it is shown that every subgroup of G is strongly closed in G if and only if G is a supersolvable \mathcal{T}-group (see [3, Theorem 10]). Some local versions of this result have been studied in [1] and [7]. For example, Asaad ([1, Theorem 1.1]) proved that G is p-nilpotent if and only if every maximal subgroup of a p-Sylow subgroup P of G is strongly closed in G, and $N_{G}(P)$ is p-nilpotent. Guo and Wei ([7, Theorem 3.1]) showed that whenever p is odd and P is a p-Sylow subgroup of G, G is p-nilpotent if and only if $N_{G}(P)$ is p-nilpotent and either P is cyclic or every non-trivial proper subgroup of a given order of P is strongly closed in G. Also these results still hold without the p-nilpotence assumption on $N_{G}(P)$ if p is the smallest prime divisor of the order of G. The purpose of this paper is to prove the following theorem, which is a complement to [7, Theorem 3.1].

Theorem 1.1. Let $P \in S y l_{2}(G)$ and $D \leq P$ with $1<|D|<|P|$. If P is either cyclic or every subgroup of P of order $|D|$ (and 4 if $|D|=2$) is strongly closed in G, then G is 2-nilpotent.

The following example shows that the additional assumption when $|D|=2$ in Theorem 1.1 is necessary.

Example. Let $G=S L_{2}(17)$. If $P \in S y l_{2}(G)$ then $P \cong Q_{32}$, a quaternion group of order 32. Moreover, P is maximal in G and hence $N_{G}(P)=P$ is 2-nilpotent in G. Clearly, the centre of G is a unique subgroup of order 2 and so it is strongly closed in G. However, G is not 2-nilpotent.

Theorem 1.1 above and [7, Theorem 3.4] now yield:
Theorem 1.2. Let p be the smallest prime divisor of $|G|$ and $P \in S y l_{p}(G)$. If P is cyclic or P has a subgroup D with $1<|D|<|P|$ such that every subgroup of P of order $|D|$ (and 4 if $|D|=2$) is strongly closed in G, then G is p-nilpotent.

We can now drop the odd order assumption on Theorems 3.5 and 3.6 in [7].
Theorem 1.3. If every non-cyclic Sylow subgroup P of G has a subgroup D with $1<|D|<|P|$ such that every subgroup of P of order $|D|$ (and 4 if $|D|=2$) is strongly closed in G, then G is supersolvable.

Theorem 1.4. Let E be a normal subgroup of G such that G / E is supersolvable. If every non-cyclic Sylow subgroup P of E has a subgroup D with $1<|D|<|P|$ such that every subgroup of P of order $|D|$ (and 4 if $|D|=2$) is strongly closed in G, then G is supersolvable.
2. Preliminaries. In this section, we collect some results needed in the proofs of the main theorems.

Lemma 2.1. (Schur-Zassenhauss [6, Theorem 6.2.1]). If P is a normal 2-Sylow subgroup of G then G possesses a complement Hall-2'-subgroup.

Lemma 2.2. ([6, Theorem 7.6.1]). If a 2 -Sylow subgroup of G is cyclic then G is 2-nilpotent.

Lemma 2.3. ([1, Corollary 1.2]). Let P be a 2-Sylow subgroup of G. Then G is 2 -nilpotent if and only if every maximal subgroup of P is strongly closed in G.

Lemma 2.4. Suppose that H is a strongly closed p-subgroup of G.
(a) If $H \leq L \leq G$ then H is strongly closed in L;
(b) If \bar{G} is a homomorphic image of G, then \bar{H} is strongly closed in \bar{G} and $N_{\bar{G}}(\bar{H})=$ $\overline{N_{G}(H)}$;
(c) If H is subnormal in G then $H \unlhd G$.

Proof. (a) is [3, Lemma 7(2)] and (c) is [3, Theorem 6(2)]. Finally, (b) is [5, (2.2)(a)].

Lemma 2.5. ([5, Corollary B3]). Suppose that H is a strongly closed 2-subgroup of G and $N_{G}(H) / C_{G}(H)$ is a 2-group. Then $H \in S y l_{2}\left(\left\langle H^{G}\right\rangle\right)$.

Lemma 2.6. ([8, Satz 4.5.5]). If every element of order 2 and 4 of G are central then G is 2-nilpotent.

Lemma 2.7. ([2, Baumann]). If G is a non-abelian simple group in which a 2-Sylow subgroup of G is maximal, then G is isomorphic to $L_{2}(q)$, where q is a prime number of the form $2^{m} \pm 1 \geq 17$.

A component of G is a subnormal quasi-simple subgroup of G. Denote by $E(G)$, the subgroup of G generated by all components of G. Then the generalised Fitting subgroup $F^{*}(G)$ of G is a central product of $E(G)$ and the Fitting subgroup $F(G)$ of G.

Lemma 2.8. ([9, Theorem 9.8]). $C_{G}\left(F^{*}(G)\right) \leq F^{*}(G)$.
Lemma 2.9. ([9, Problem 4D.4, p. 146]). Let A act via automorphisms on a 2-group P, where $|A|$ is odd. If A centralises every element of order 2 and 4 in P, then A acts trivially on P.

The following result is a special case of [7, Lemma 2.10].
Lemma 2.10. Let P be an elementary abelian 2-subgroup of G and D a subgroup of P with $1<|D|<|P|$. If every subgroup of P of order $|D|$ is normal in G, then every minimal subgroup of P is central in G.

Proof. It follows from [7, Lemma 2.10] that every minimal subgroup of P is normal in G. As minimal subgroups of P are cyclic of order 2, they are all central.

Lemma 2.11. Let A be an odd order group acting on a 2 -group P. Let $D \leq P$ with $1<|D|<|P|$. If every subgroup of P of order $|D|$ (and 4 if $|D|=2$) is A-invariant, then A acts trivially on P.

Proof. We can assume that $|D| \geq 4$. Let $\mathcal{D}=\{E \leq P:|E|=|D|\}$. Suppose that $\langle\mathcal{D}\rangle<P$. If $|\langle\mathcal{D}\rangle|>|D|$, then by inductive hypothesis, A centralises $\langle\mathcal{D}\rangle$, so that it centralises every subgroup of P of order 2 and 4 , hence the result follows from Lemma 2.9. If $|\langle\mathcal{D}\rangle|=|D|$, then P has a unique subgroup of order $|D|$. As $2<|D|<|P|, P$ must be cyclic and thus A centralises P by applying Lemma 2.2 to the semi-direct product $A \ltimes P$. Therefore, we can assume that $\langle\mathcal{D}\rangle=P$. Next, if A centralises every element of \mathcal{D}, then as $|D| \geq 4, A$ centralises every element of order 2 and 4 , and we are done by using Lemma 2.9 . Hence there exists $E \in \mathcal{D}$ such that $[E, A] \neq 1$. It follows that $\Phi(P) \leq E$, otherwise, $E<E \Phi(P)<P$, and by applying the inductive hypothesis for $E \Phi(P), A$ would centralise E, which contradicts the choice of E, thus prove the claim. If $\Phi(P)$ is trivial, then P is elementary abelian, and hence the result follows from Lemma 2.10. Thus $\Phi(P)>1$. Assume that $|E / \Phi(P)| \geq 2$. By Lemma 2.10 again, A centralises $P / \Phi(P)$, and then $[P, A] \leq \Phi(P)$. By Coprime Action Theorem, A acts trivially on P and we are done. Thus we assume that $E=\Phi(P)$. For any $F \in \mathcal{D}-\{\Phi(P)\}$, we have $|F|=|\Phi(P)|$ and $\Phi(P) \neq F$, it follows that $F<F \Phi(P)<P$ and $F \Phi(P)$ is A-invariant. By inductive hypothesis, A centralises F, and hence P, as P is generated by $\mathcal{D}-\{\Phi(P)\}$. The proof is now complete.

3. Proofs of the main results.

Proposition 3.1. Let $P \in S y l_{2}(G)$ and $D \leq P$ with $2<|D|<|P|$. Assume that either P is cyclic or every subgroup of P of order $|D|$ is strongly closed in G, then G is 2-nilpotent.

Proof. Suppose that the proposition is false. Let G be a minimal counter example. By Lemma 2.2, we can assume that P is non-cyclic.

Claim 1. $O_{2^{\prime}}(G)=1$. Assume that $O_{2^{\prime}}(G) \neq 1$. Passing to $\bar{G}=G / O_{2^{\prime}}(G)$, we see that \bar{G} satisfies the hypothesis of the proposition by Lemma 2.4(b), so that by inductive hypothesis, \bar{G} is 2-nilpotent and hence G is 2-nilpotent.

Claim 2. If $L \unlhd G$ and $L \neq G$, then $L \leq O_{2}(G)$. Assume that L is a proper normal subgroup of G which is not a 2-group. As $L \unlhd G, P L$ is a subgroup of G. Assume that $P L \neq G$. By Lemma 2.4(a) and the inductive hypothesis, $P L$ is 2 -nilpotent. Let $Q=O_{2^{\prime}}(P L)$. Then $1 \neq Q \leq L \unlhd G$ and since Q is characteristic in L, we have $Q \unlhd G$ and hence $Q \leq O_{2^{\prime}}(G)=1$ by Claim 2, which is a contradiction. Thus $G=P L$. Let $U=P \cap L$. Then $U \in S y l_{2}(L)$. Suppose that U is not maximal in P. Let P_{1} be a maximal subgroup of P that contains U. By comparing the order, we see that $P_{1} L$ is a proper subgroup of $P L=G$. Then by Lemma 2.3, $2<|D|<\left|P_{1}\right|$ and so $P_{1} L$ is 2-nilpotent by induction. Arguing as above, we obtain $1 \neq O_{2^{\prime}}\left(P_{1} L\right) \leq L \unlhd G$ and hence $O_{2^{\prime}}\left(P_{1} L\right) \leq O_{2^{\prime}}(G)=1$. This contradiction shows that U is maximal in P. Now by Lemma 2.3 again, $2<|D|<|U|$. By induction again, L is 2-nilpotent which leads to a contradiction as above. This proves our claim.

Claim 3. $N_{G}(P)$ is 2-nilpotent. If $N_{G}(P)<G$, then it is 2-nilpotent by induction and we are done. Thus assume that $N_{G}(P)=G$. Then $P \unlhd G$ and hence every subgroup of P of order $|D|$ is both subnormal and strongly closed in G so that they are normal in G by Lemma 2.4(c). By Schur-Zassenhaus Theorem, there exists a subgroup A of odd order such that $G=P A$. Since every subgroup of P of order $|D|$ with $2<|D|<|P|$ is A-invariant, by Lemma 2.11, A centralises P and hence G is 2-nilpotent, which contradicts our assumption.

Claim 4. $F^{*}(G)=O_{2}(G)$. As $O_{2^{\prime}}(G)=1$, we have $F^{*}(G)=O_{2}(G) E(G)$. Assume that $E(G) \neq 1$. By Claim 2, we have $E(G)=G$ and then by applying that claim again, we see that G must be a quasi-simple group. Let $H \leq P$ be any subgroup of order $|D|$. Assume first that $H \npreceq Z(G)$. Then H is not normal in G so that $\left\langle H^{G}\right\rangle=G$ and $P \leq$ $N_{G}(H)<G$. By induction, $N_{G}(H)$ is 2-nilpotent so that $N_{G}(H) / C_{G}(H)$ is a 2-group. By Lemma 2.5, $H \in S y l_{2}(G)$, which is a contradiction as $|H|<|P|$. Thus $H \leq Z(G)$ and since $|D|>2$, every subgroup of order 2 or 4 is central in G, whence the result follows from Lemma 2.6.

The final contradiction. We first show that P is maximal in G. Let L be any maximal subgroup of G that contains P. By induction, $L=P O_{2^{\prime}}(L)$. Since $O_{2}(G) \unlhd L$, we obtain $\left[O_{2}(G), O_{2^{\prime}}(L)\right] \leq O_{2}(G) \cap O_{2^{\prime}}(L)=1$, hence $O_{2^{\prime}}(L) \leq C_{G}\left(O_{2}(G)\right) \leq O_{2}(G)$ by Lemma 2.8. Thus $O_{2^{\prime}}(L)=1$, which implies that P is maximal in G. Moreover by Claim 2, $O_{2}(G)$ is a maximal normal subgroup of G, and then $\bar{G}=G / O_{2}(G)$ is a simple group with a nilpotent maximal subgroup $P / O_{2}(G)$. Assume that \bar{G} is non-solvable. Then by Lemma 2.7, $\bar{G} \cong L_{2}(q)$, where q is a prime of the form $2^{m} \pm 1 \geq 17$. Let \bar{M} be the maximal subgroup of $L_{2}(q)$ which is isomorphic to the dihedral group $D_{2 s}$, where $s>1$ is odd. Let M, K and A be the full inverse images of \bar{M}, the 2-Sylow subgroup and the cyclic subgroup of order s of \bar{M} in G. By Schur-Zassenhauss Theorem, $A=O_{2}(G) T$, where $|T|=s$. Also $O_{2}(G) \leq K \in S y l_{2}(M)$ and $M=K T$, where $A \unlhd M$. We next show that $|D| \leq\left|O_{2}(G)\right|$. Assume false. Then $\left|O_{2}(G)\right|<|D|$. Now if $\left|O_{2}(G)\right|<|D| / 2$ then \bar{G} satisfies the hypothesis of Proposition 3.1 with $|\bar{D}|=|D| /\left|O_{2}(G)\right|$, and hence \bar{G} is 2-nilpotent, contradicts the simplicity of G. Thus we can assume that $\left|O_{2}(G)\right|=$ $|D| / 2$. Let $H \leq P$ be such that $O_{2}(G) \leq H$ and $|\bar{H}|=\left|H / O_{2}(G)\right|=2$. In this case, $P \leq N_{G}(H)<G$ and so $N_{G}(H)=P$ as P is maximal in G. By Lemma 2.4(b), we have $N_{\bar{G}}(\bar{H})=\bar{P}$. Thus $1 \neq \bar{H}$ is strongly closed in \bar{G} and $N_{\bar{G}}(\bar{H})$ is a 2-group. By Lemma 2.5, $\bar{H}=\bar{P} \in S y l_{2}(G)$ and so by Lemma 2.2, \bar{G} is 2-nilpotent. This contradiction shows that $|D| \leq\left|O_{2}(G)\right|$. Therefore, $2<|D| \leq\left|O_{2}(G)\right|<|K|$, where $K \in S y l_{2}(M)$. By induction again, $M=K T$ is 2-nilpotent and thus $O_{2^{\prime}}(M)=T \unlhd M$. Hence $T \leq C_{G}\left(O_{2}(G)\right) \leq$ $O_{2}(G)$ and then $T=1$, which contradicts the fact that $|T|=s>1$. We conclude that
\bar{G} is solvable. Thus \bar{G} must be a cyclic subgroup of prime order. Clearly $|\bar{G}|>2$, otherwise G is a 2-group. Let $r=|\bar{G}|$ and $R \in S y l_{r}(G)$. Then $G=O_{2}(G) R$ and $r>2$, which implies that $P=O_{2}(G) \unlhd G$, and hence $G=N_{G}(P)$ is 2-nilpotent by Claim 3 . The proof is now complete.

Proof of Theorem 1.1. If P is cyclic or $|D|>2$ or $|D|=2$ but $|P|>2|D|=4$ then the theorem follows from Proposition 3.1. Thus we can assume that P is non-cyclic, $|D|=2$ and $|P|=4$. It follows that every maximal subgroup of P is strongly closed in G, hence G is 2-nilpotent by Lemma 2.3. The proof is now complete.

Proof of Theorem 1.3. By Theorem 1.2, G possesses a Sylow tower of supersolvable type. Let p be the largest prime divisor of $|G|$. If $p=2$, then G must be a 2 -group and hence it is supersolvable. Assume that $p>2$. The proof now proceeds as in that of Theorem 3.5 in [7].

Proof of Theorem 1.4. By Lemma 2.4 and Theorem 1.3, E is supersolvable. Let p be the largest prime divisor of $|E|$. If $p>2$, then the result follows as in Theorem 3.6 in [7]. Hence we can assume that $p=2$ and so E is a 2 -group. As G is supersolvable whenever G is a 2 -group, we also assume that G is not a 2 -group. Since G / E is supersolvable, it has a Sylow tower of supersolvable type and so G / E is 2-nilpotent. Let K / E be the normal 2'-complement of G / E. By Schur-Zassenhauss Theorem, $K=E A$, where A is of odd order. Let $E \leq P \in S y l_{2}(G)$. Then $G=A P$, where $A E \unlhd G$. As $|A|$ is odd, $E \in S y l_{2}(A E)$ and $A E$ satisfies the hypothesis of Theorem 1.1 so that $A E$ is 2-nilpotent. Hence $A=O_{2^{\prime}}(A E) \unlhd A E \unlhd G$, and so $A \unlhd G$. We have $G / A \cong P$ is supersolvable and by hypothesis, G / E is also supersolvable. Since the class of supersolvable groups is a saturated formation, we have $G /(A \cap E) \cong G$ is supersolvable. This completes the proof.

Acknowledegment. The author is grateful to the referee for his or her comments. The author is also grateful to Prof. Chris Parker for pointing out reference [2] and simplifying the proof of Lemma 2.11 . The author is financially supported by the Leverhulme Trust.

REFERENCES

1. M. Asaad, On p-nilpotence and supersolvability of finite groups, Commun. Algebra 34(1) (2006), 189-195.
2. B. Baumann, Endliche nichtauflösbare Gruppen mit einer nilpotenten maximalen Untergruppe, J. Algebra 38(1) (1976), 119-135.
3. M. Bianchi, A. Mauri, M. Herzog and L. Verardi, On finite solvable groups in which normality is a transitive relation, J. Group Theory 3(2) (2000), 147-156.
4. D. Goldschmidt, 2-fusion in finite groups, Ann. Math. 99(3) (1974), 70-117.
5. D. Goldschmidt, Strongly closed 2-subgroups of finite groups, Ann. Math. 102(3) (1975), 475-489.
6. D. Gorenstein, Finite groups, 2nd edn. (Chelsea Publishing Company, New York, 1980).
7. X. Guo and X. Wei, The influence of \mathcal{H}-subgroups on the structure of finite groups, J. Group Theory 13(2) (2010), 267-276.
8. B. Huppert, Endliche Gruppen I, in Die Grundlehren der Mathematischen Wissenschaften, band vol. 134 (Springer-Verlag, Berlin-New York, 1967).
9. M. Isaacs, Finite group theory, in Graduate Studies in Mathematics, vol. 92 (AMS, Providence, RI, 2008).
