ELEMENTARY FACTORIZATION IN π-REGULAR RINGS

ARTHUR STEGER*

1. Introduction. This paper extends the results of A. L. Foster (1) on elementary factorization in Boolean-like rings to commutative π-regular rings. After proving some preliminary lemmas we proceed to the partition of the set of non-units of a π-regular ring into irreducible and composite elements. Finally, we prove a number of theorems concerning factorization rings, weakly unique factorization rings, principal ideal rings, etc. The principal result is that a π-regular ring is a weakly unique factorization ring if and only if it is a principal ideal ring.

In this paper, ring will always mean a commutative ring with identity. Following van der Waerden (5), we say that two elements b, c of a ring R are associates provided there exists a unit $u \in R$ such that $b=u c$. In this event, we write $b \sim c$.
2. Preliminary lemmas. In each of the lemmas of this section, R denotes a ring.

Lemma 2.1. Let $b, e \in R$ with $e^{2}=e$. If $b R=e R$, then $b \sim e$.
Proof. Since e is idempotent, $b=b e$ and $b=e(1-e+b)$. Let $e=b x$. It is easily verified that $(1-e+b)(1-e+e x)=1$. Hence, $b \sim e$.

Lemma 2.2. Let $b \in R$ and let n be a natural number. Then the following are equivalent:
I. $b^{n}=b^{n} x b^{n}$ for some $x \in R$.
II. $b \sim e+\beta$ for some $e, \beta \in R$ with $e^{2}=e$ and $\beta^{n}=0$.
III. $b^{n} \sim f$ for some idempotent $f \in R$.

Proof. I \Rightarrow II. Let $e=x b^{n}$. Then $e=e^{2}=b e x b^{n-1}$ and $e \in b e R$. Thus, $e R=b e R$ and, by Lemma 2.1, $e \sim b e$. Now let $b e=u e$ where u is a unit in R, and let $\gamma=b(1-e)$. Then $\gamma^{n}=0$ and $b=b e+\gamma$. Hence,

$$
b=u e+\gamma=u\left(e+u^{-1} \gamma\right) .
$$

Therefore, $b \sim e+\beta$ where $\beta=u^{-1} \gamma$ and $\beta^{n}=0$.
$\mathrm{II} \Rightarrow \mathrm{III} .(e+\beta)^{n}=e(1+\delta)$ where $\delta=n \beta+\ldots+n \beta^{n-1}$. Hence, δ is nilpotent and $1+\delta$ is a unit. Therefore, $b^{n} \sim(e+\beta)^{n} \sim e$.

Received November 30, 1964. Research supported by the National Science Foundation, Grant GP-1816.

III \Rightarrow I. Let $f=v b^{n}$ with v a unit in R. Therefore, $\left(v b^{n}\right)^{2}=v b^{n}$ and $b^{n}=b^{n} v b^{n}$.

Lemma 2.3. Let $b, e \in R$ with $e^{2}=e$. If $b^{n} \sim e$, then, for every $m \geqslant n$, $b^{m} \sim e$.

Proof. Let k be a natural number such that $k n \geqslant m$. Hence,

$$
e R=b^{k n} R \subseteq b^{m} R \subseteq b^{n} R=e R
$$

Therefore, $b^{m} R=e R$ and $b^{m} \sim e$.
It follows, from the proof of Lemma 2.2 and the fact that associated idempotents are equal, that if R is a ring and $b \in R$, then there is at most one idempotent $e \in R$ such that, for some nilpotent $\beta \in R, b \sim e+\beta$. Further, by Lemma 2.3, e is the unique idempotent associated with all sufficiently high powers of b.
3. Irreducible and composite elements. N. H. McCoy (3) defined a ring S to be π-regular provided that for every $b \in S$ there is an $x \in S$ and a natural number n such that $b^{n}=b^{n} x b^{n}$. Lemma 2.2 provides two alternative characterizations of π-regular rings. Included among π-regular rings are regular rings with Boolean rings and p-rings as special cases; rings with descending chain condition on ideals (in particular, finite rings); and Boolean-like rings. The following facts are well known and easily verified. (1) The homomorphic image (in particular, a direct summand) of a π-regular ring is π-regular. (2) A finite direct sum of π-regular rings is π-regular. This need not be the case for infinite direct sums. (3) A ring is both an integral domain and π-regular if and only if it is a field. (4) In a π-regular ring any prime ideal (other than the entire ring) is a maximal ideal.

For the remainder of this paper, S will always denote a π-regular ring. In addition, the following conventions will be observed. Letters followed by an asterisk, $b^{*}, c^{*}, d^{*}, \ldots$, will denote idempotents; Greek letters, $\beta, \gamma, \delta, \ldots$, will denote nilpotents; and, lastly, if $b \in S$, the unique idempotent associated with all sufficiently high powers of b will be denoted by b^{*}.

Lemma 3.1. Let $b, c \in S$. Then $(b c)^{*}=b^{*} c^{*}$.
Proof. By Lemma 2.3, for some $n, b^{n} \sim b^{*}$ and $c^{n} \sim c^{*}$. Hence $(b c)^{n} \sim b^{*} c^{*}$.
Lemma 3.2. Let $u \in S$. Then u is a unit if and only if $u^{*}=1$.
Proof. If $u^{*}=1$, then $u^{n} \sim 1$ for some n and u is a unit. Conversely, if u is a unit, then $u \sim 1, u^{*} \sim 1$, and $u^{*}=1$.

Lemma 3.3. Let $b, c \in S$. If $b \sim c$, then $b^{*}=c^{*}$.
Proof. Let $b=u c$ with u a unit. Then $b^{*}=u^{*} c^{*}=c^{*}$.
Lemma 3.4. Let $b^{*}, \beta \in S$. Then $b^{*}+\beta \sim b^{*}$ if and only if $b^{*} \beta=\beta$.

Proof. If $b^{*} \beta=\beta$, then $b^{*}+\beta=b^{*}+b^{*} \beta=b^{*}(1+\beta)$. Conversely, if $b^{*}+\beta \sim b^{*}$, let $b^{*}+\beta=u b^{*}$. Multiplying by $1-b^{*}$, we obtain

$$
\left(1-b^{*}\right) \beta=0
$$

Thus, $b^{*} \beta=\beta$.
Definition 3.1. Let R be a ring, $b \in R$, and b not be a unit. Then, b is irreducible provided its only divisors are associates and units; b is composite provided there are elements $s, t \in R$ such that $s \nsim b, t \nsim b$, and $b=s t$.

It is clear that a non-unit cannot be both irreducible and composite. It may, however, be neither. For example, in $Z \dot{+} Z, Z=$ integers, the non-unit $(1,0)$ is neither irreducible nor composite. The definitions above are equivalent to the classical ones for integral domains where the cancellation law provides a trivial proof that a non-zero non-unit is either irreducible or composite. The next theorem will characterize the irreducible and composite elements of a π-regular ring. It is then an immediate consequence that in a π-regular ring every non-unit (including zero) is either irreducible or composite. In the partition of the non-units of a π-regular ring into irreducible and composite elements we may, by Lemmas 2.2 and 3.2, restrict our attention to elements of the form $b^{*}+\beta$ with $b^{*} \neq 1$. Recall, finally, that if R is a ring and J is the set of idempotents in R, then $\left\langle J, \cap,^{\prime}\right\rangle$ is a Boolean algebra where $a \cap b=a b$ and $a^{\prime}=1-a$ (2). An element of J is said to be a co-atom ($=$ prime) if its only divisors in J are itself and 1 .

Theorem 3.1. Let $b^{*}+\beta \in S$ with $b^{*} \neq 1$. Then (1) $b^{*}+\beta$ is irreducible if b^{*} is a co-atom, and either $b^{*} \eta=\eta$ for every nilpotent $\eta \in S$ or ($\left.1-b^{*}\right) \beta$ cannot be expressed as the product of two nilpotents; and (2) $b^{*}+\beta$ is composite if either b^{*} is not a co-atom, or $b^{*} \eta \neq \eta$ for some nilpotent $\eta \in S$ and $\left(1-b^{*}\right) \beta$ can be expressed as the product of two nilpotents.

Proof. (1) Suppose $b^{*} \eta=\eta$ for every nilpotent $\eta \in S$. Let $c^{*}+\gamma$ be a non-unit divisor of $b^{*}+\beta$. Since b^{*} is a co-atom, by Lemmas 3.1 and 3.2, $c^{*}=b^{*}$. By Lemma 3.4, $c^{*}+\gamma \sim b^{*} \sim b^{*}+\beta$. On the other hand, assume that $\left(1-b^{*}\right) \beta$ cannot be expressed as the product of two nilpotents, and let

$$
b^{*}+\beta=\left(c^{*}+\gamma\right)\left(d^{*}+\delta\right)
$$

where $c^{*}+\gamma$ and $d^{*}+\delta$ are non-units. Multiplying by $1-b^{*}$, we see that

$$
\left(1-b^{*}\right) \beta=\left[\left(1-b^{*}\right) \gamma\right]\left[\left(1-b^{*}\right) \delta\right],
$$

a contradiction. Hence, $b^{*}+\beta$ is irreducible.
(2) Suppose b^{*} is not a co-atom. Then there is c^{*} such that $c^{*} \neq 1, c^{*} \neq b^{*}$, and $b^{*}=b^{*} c^{*}$. One verifies that

$$
b^{*}+\beta=\left[c^{*}+\left(1-c^{*}+b^{*}\right) \beta\right]\left[\left(1-c^{*}+b^{*}\right)+\left(c^{*}-b^{*}\right) \beta\right]
$$

and that $1-c^{*}+b^{*}$ is idempotent. Further, $1-c^{*}+b^{*} \neq b^{*}$ since $c^{*} \neq 1$. By Lemma 3.3, $b^{*}+\beta$ is reducible.

Finally, assume that $b^{*} \eta \neq \eta$ for some $\eta \in S$ and that $\left(1-b^{*}\right) \beta$ can be expressed as the product of two nilpotents. There are two cases: $b^{*} \beta=\beta$ and $b^{*} \beta \neq \beta$. If $b^{*} \beta=\beta$, let $\gamma=\left(1-b^{*}\right) \eta$. Then $\gamma \neq 0$ and $b^{*} \gamma=0$. Let $n=$ the least natural number such that $\gamma^{n}=0$. Since $\gamma \neq 0, n>1$. Clearly,

$$
b^{*}=\left(b^{*}+\gamma\right)\left(b^{*}+\gamma^{n-1}\right)
$$

Assume that $b^{*} \sim b^{*}+\gamma$ and let $u b^{*}=b^{*}+\gamma$. Multiplying by $1-b^{*}$, we see that $\gamma=0$, a contradiction. Similarly, $b^{*} \propto b^{*}+\gamma^{n-1}$. Thus, b^{*} is reducible. The assumption that $b^{*} \beta=\beta$ implies that $b^{*}+\beta \sim b^{*}$. Thus, $b^{*}+\beta$ is reducible.

If $b^{*} \beta \neq \beta$, let $\left(1-b^{*}\right) \beta=\rho \sigma$. One verifies that

$$
b^{*}+\beta=\left[b^{*}+\left(1-b^{*}\right) \rho\right]\left[b^{*}+b^{*} \beta+\left(1-b^{*}\right) \sigma\right] .
$$

Assume that $b^{*}+\beta \sim b^{*}+\left(1-b^{*}\right) \rho$ and let $b^{*}+(1-b)^{*} \rho=u\left(b^{*}+\beta\right)$. Multiplying by $1-b^{*}$, we see that

$$
\left(1-b^{*}\right) \rho=u\left(1-b^{*}\right) \beta=u\left(1-b^{*}\right) \rho \sigma .
$$

Hence,

$$
\left[\left(1-b^{*}\right) \rho\right][1-u \sigma]=0 .
$$

Since $1-u \sigma$ is a unit, $\left(1-b^{*}\right) \rho=0$. Therefore $\left(1-b^{*}\right) \beta=0$ and $b^{*} \beta=\beta$, a contradiction. Similarly,

$$
b^{*}+\beta \nsim b^{*}+b^{*} \beta+\left(1-b^{*}\right) \sigma .
$$

Thus, $b^{*}+\beta$ is reducible.

4. Factorization in π-regular rings.

Lemma 4.1. Let $b, c \in S$ with $b S=c S$. Then $b \sim c$.
Proof. Let $b=r c$ and $c=s b$. Then, for every natural number $n, b=r^{n} s^{n} b$ and $c=r^{n} s^{n+1} b$. Therefore, $b \sim r^{*} s^{*} b, c \sim r^{*} s^{*} b$, and $b \sim c$.

Recall that a non-unit p of a ring R is said to be a prime provided $p R$ is a prime ideal in R. For a π-regular ring, it follows from Lemma 4.1 that a composite cannot be a prime; and since in a π-regular ring a non-unit is either irreducible or composite it further follows that a prime is necessarily irreducible. The important special case in which, conversely, each irreducible element is necessarily a prime will be discussed later in this section.

Lemma 4.2. Let p be a prime in S and let $p^{m} \mid p^{n} f$ where $m>n$ and $p \nmid f$. Then $p^{m} \sim p^{n}$.

Proof. Since each prime ideal in S is maximal, for some $x, y \in S, p x+f y=1$. Therefore, $p^{n+1} x+p^{n} f=p^{n}$. Since $n+1 \leqslant m, p^{n+1} \mid p^{n} f$. Hence $p^{n+1} \mid p^{n}$ and $p^{n+1} \sim p^{n}$. The result follows by induction.

Definition 4.1. A ring R is said to be a factorization ring if each non-unit of R can be expressed as the product of irreducible elements.

Theorem 4.1. If S satisfies the ascending chain condition, then S is a factorization ring.

We omit the proof, which can be patterned after the proof of the corresponding theorem for integral domains. The only properties of a π-regular ring that are needed are: (1) a non-unit is either irreducible or composite and (2) two elements generating the same principal ideal are associates.

Theorem 4.2. If S is a factorization ring, then S has only a finite number of idempotents.

Proof. Let $0=p q \ldots r$ where p, q, \ldots, r are irreducible. Then

$$
0=p^{*} q^{*} \ldots r^{*}
$$

where $p^{*}, q^{*}, \ldots, r^{*}$ are co-atoms. The conclusion follows from a well-known theorem of Boolean algebra.

The following example shows that the converse of Theorem 4.2 is false. Let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}, \ldots\right]$ where K is a field. Let

$$
A=\left(x_{1}^{2}, x_{1}-x_{2}^{2}, \ldots, x_{n}-x_{n+1}^{2}, \ldots\right)
$$

Then R / A is a π-regular ring with 0 and 1 as its only idempotents but R / A is not a factorization ring.

In all that follows, exponents are assumed to be non-negative integers.
Definition 4.2. Let R be a ring, $b \in R$, and suppose that

$$
b \sim p_{1}{ }^{i_{1}} p_{2}{ }^{i_{2}} \ldots p_{n}{ }^{i_{n}}
$$

with each p_{i} irreducible and $p_{i} \nsim p_{j}$ if $i \neq j$. Then $p_{1}{ }^{i_{1}} p_{2}{ }^{i_{2}} \ldots p_{n}{ }^{i_{n}}$ is savd to be an irredundant factorization of b if

$$
j_{1} \leqslant i_{1}, j_{2} \leqslant i_{2}, \ldots, j_{n} \leqslant i_{n}, \text { and } \sum_{1}^{n} j_{k}<\sum_{1}^{n} i_{k}
$$

implies $b \propto p_{1}{ }^{j_{1}} p_{2}{ }^{j_{2}} \ldots p_{n}{ }^{j_{n}}$.
Definition 4.3. R is a weakly unique factorization ring provided that R is a factorization ring and that if

$$
p_{1}{ }^{i_{1}} p_{2}{ }^{i_{2}} \ldots p_{n}{ }^{i_{n}} \quad \text { and } \quad p_{1}{ }^{j_{1}} p_{2}{ }^{j_{2}} \ldots p_{n}^{j_{n}}
$$

are irredundant factorizations of some $b \in R$, then $i_{1}=j_{1}, i_{2}=j_{2}, \ldots, i_{n}=j_{n}$.
We note, as is customary, that an irreducible factor with zero exponent may be added or discarded as is convenient.

Theorem 4.3. Let S be a factorization ring. Then the following are equivalent:
I. Each irreducible element of S is a prime.
II. S has weakly unique factorization.
III. For every $b^{*} \in S$, if $b^{*}+\beta$ and $b^{*}+\gamma$ are irreducible, then

$$
b^{*}+\beta \sim b^{*}+\gamma
$$

Proof. I \Rightarrow II. Let $b \in S$ and let

$$
p_{1}{ }^{i_{1}} p_{2}^{i_{2}} \cdots p_{n}^{i_{n}} \text { and } p_{1}^{j_{1}} p_{2}^{j_{2}} \cdots p_{n}^{j_{n}}
$$

be two irredundant factorizations of b. Suppose $i_{1}>j_{1}$. By Lemma 4.2, $p_{1}{ }^{i_{1}} \sim p_{1}{ }^{j_{1}}$. Hence, $b \sim p_{1}{ }^{j_{1}} p_{2}{ }^{i_{2}} \ldots p_{n}{ }^{i_{n}}$, a contradiction. Therefore, $i_{1} \leqslant j_{1}$ and similarly, $j_{1} \leqslant i_{1}$. In the same way $i_{s}=j_{s}$ for $s=1,2, \ldots, n$.
$\mathrm{II} \Rightarrow \mathrm{III}$. Let $b^{*}+\beta$ and $b^{*}+\gamma$ be irreducible. For some natural number $n, b^{*} \sim\left(b^{*}+\beta\right)^{n} \sim\left(b^{*}+\gamma\right)^{n}$. By assumption II, $b^{*}+\beta \sim b^{*}+\gamma$.

III $\Rightarrow \mathrm{I}$. Let p be irreducible and let $p \mid b c$. Also, let $b=p_{1} p_{2} \ldots p_{m}$ and $c=q_{1} q_{2} \ldots q_{n}$ be factorizations of b and c into the product of irreducible elements. Then, $p^{*} \mid p_{1}{ }^{*} p_{2}{ }^{*} \ldots p_{m}{ }^{*} q_{1}{ }^{*} q_{2}{ }^{*} \ldots q_{n}{ }^{*}$ with $p^{*}, p_{i}{ }^{*}, q_{j}{ }^{*}$ necessarily co-atoms. Therefore $p^{*}=p_{s}{ }^{*}$ for some s or $p^{*}=q_{t}{ }^{*}$ for some t. Say $p^{*}=p_{1}{ }^{*}$. By hypothesis, $p \sim p_{1}$. Hence $p \mid b$ and p is a prime.

Theorem 4.4. If S is a weakly unique factorization ring, then each pair of elements in S has a greatest common divisor (necessarily unique to within associates by Lemma 4.1).

Proof. Let $b, c \in S$. If either b or c is a unit, then it is clear that b and c have a greatest common divisor. Therefore, assume that b and c are non-units and let $p_{1}{ }^{i_{1}} p_{2}{ }^{i_{2}} \ldots p_{n}{ }^{i_{n}}$ and $p_{1}{ }^{j_{1}} p_{2}^{j_{2}} \ldots p_{n}{ }^{j_{n}}$ be irredundant factorizations of b and c respectively. Let $m_{s}=\min \left\{i_{s}, j_{s}\right\}$ for $s=1,2, \ldots, n$. Clearly, if $d=p_{1}{ }^{m_{1}} p_{2}{ }^{m_{2}} \ldots p_{n}^{m_{n}}$, then d is a common divisor of b and c. Now let f be a common divisor of b and c and let q be an irreducible divisor of f. By Theorem 4.3, $q \sim p_{t}$ for some $t, 1 \leqslant t \leqslant n$. Therefore, we may let $p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} \ldots p_{n}{ }^{k_{n}}$ be an irredundant factorization of f. By Lemma 4.2, $k_{1}>i_{1}$ implies $p_{1}{ }^{k_{1}} \sim p_{1}{ }^{i_{1}}$ and thus, $f \sim p_{1}{ }^{i_{1}} p_{2}{ }^{k_{2}} \ldots p_{n}{ }^{k_{n}}$, a contradiction. Hence, $k_{1} \leqslant i_{1}$ and, similarly, $k_{1} \leqslant j_{1}$. Thus, $k_{1} \leqslant m_{1}$ and, in the same way, $k_{s} \leqslant m_{s}$ for $s=1,2, \ldots, n$. Thus $f \mid d$ and d is a greatest common divisor for b and c.

Unlike the situation with integral domains, the converse of Theorem 4.4 is false as the following example shows. Let $R=K[x, y]$ where K is a field and let $A=\left(x^{2}, x y, y^{2}\right)$. Then R / A is a π-regular factorization ring in which each pair of elements has a greatest common divisor but R / A does not have weakly unique factorization.

Lemma 4.3. Let S be a weakly unique factorization ring and let $S=S_{1}+S_{2}$. Then S_{1} is a π-regular weakly unique factorization ring.

Proof. That S_{1} is π-regular is clear. Let $b \in S_{1}$ with b a non-unit. Since S is a factorization ring, let $p_{1} p_{2} \ldots p_{n}$ be a factorization of b into irreducible elements in S. If h is the natural homomorphism of S onto S_{1}, then

$$
b=b h=\left(p_{1} h\right)\left(p_{2} h\right) \ldots\left(p_{n} h\right)
$$

where $p_{i} h$ is either a unit in S_{1} or an irreducible element in S_{1} for

$$
i=1,2, \ldots, n
$$

Hence, S_{1} is a factorization ring. Now let $q_{1} \in S_{1}$ with q_{1} irreducible in S_{1} and let e_{2} be the identity in S_{2}. Then $q_{1}+e_{2}$ is irreducible in S and, by Theorem 4.3, $\left(q_{1}+e_{2}\right) S$ is a prime ideal in S. Since $\left(q_{1}+e_{2}\right) S \supseteq S_{2}(=$ kernel $h)$ and $\left(q_{1}+e_{2}\right) S h=q_{1} S_{1}$, it follows that q_{1} is a prime in S_{1}. Hence, S_{1} has weakly unique factorization.

Lemma 4.4. Let S be a weakly unique factorization ring. If J is the set of idempotents in $S=\{0,1\}$, then S is a principal ideal ring.

Proof. Since 0 is the only co-atom in J, by Theorem 4.3, there is only one irreducible element p (to within associates) in S. Hence, if $b \in S$, then $b \sim p^{k}$ for some k. Let A be an ideal in S and let n be the smallest non-negative integer such that $p^{n} \in A$. Clearly, $A=p^{n} S$.

Theorem 4.5. S is a weakly unique factorization ring if and only if S is a principal ideal ring.

Proof. If S is a principal ideal ring, then S satisfies the ascending chain condition for ideals. Also, each irreducible element in S is a prime. By Theorems 4.1 and $4.3, S$ is a weakly unique factorization ring.

Conversely, let S have weakly unique factorization. By Theorem 4.2, there are only a finite number of idempotents in S, and we may let

$$
S=S_{1} \dot{+} S_{2} \dot{+} \ldots \dot{+} S_{n}
$$

where S_{i} has only two idempotents for $i=1,2, \ldots, n$. By Lemmas 4.3 and 4.4, S_{i} is a principal ideal ring for $i=1,2, \ldots, n$. Hence, S is a principal ideal ring.

We conclude with a structure theorem that is an easy consequence of a structure theorem of G. Pollak (4). The proof is omitted.

Theorem 4.6. R is a π-regular principal ideal ring if and only if R is the direct sum of a finite number of completely primary rings in which the unique prime ideal is principal.

References

1. A. L. Foster, The theory of Boolean-like rings, Trans. Amer. Math. Soc., 59 (1946), 166-187.
2. - The idempotent elements of a commutative ring form a Boolean algebra, Duke Math.J., 12 (1945), 143-152.
3. N. H. McCoy, Generalized regular rings, Bull. Amer. Math. Soc., 45 (1939), 175-178.
4. G. Pollak, Ueber die Struktur kommutativer Hauptidealringe, Acta Scient. Math., 22 (1961), 62-74.
5. B. I. van der Waerden, Moderne Algebra, 2nd ed., vol. I (New York, 1940), p. 63.

University of New Mexico,
Albuquerque, New Mexico

