
GRAPHS WITH MAXIMAL EVEN GIRTH 

A. GEWIRTZ 

1. Introduction. In this paper we examine the class G of simple undirected, 
connected graphs of diameter d > 1, girth 2d, and for any g G G, if a pair of 
nodes are at distance d from each other, then that pair of nodes is connected 
by t distinct paths of length d, t > 1. (The girth of g is the length of the 
smallest circuit in g.) 

We establish, in § 2, that for all g G G, g is regular. 
We establish necessary conditions for the existence of elements of G. If g G G, 

we adopt the notation g = g(d, t, v, n), where v is the valence of g and n is the 
number of nodes. I t is of course possible for g, h G G, g 9* h, and for given 
d, t, v, n to have both g(d, t, v, ri) and h(d, t, v, n). 

In particular, we show that if d = 2, t ^ 2, 4 or 6, then there is at most a 
finite number of graphs with a particular given t value. 

We show that g(2, 2, 10, 56), g(2, 6, 22, 100) (5) and g(3, 2, 4, 35) exist and 
are the only graphs with the stated parameters. We also show that g (2,4,16, 77) 
is a subgraph of g (2, 6, 22, 100). We examine the relations between these 
graphs and Balanced Incomplete Block Designs (BIBDs). A related problem 
dealing with graphs of diameter d and girth 2d + 1 was considered in (7). An 
application of these graphs to the construction of transmission networks was 
given in (1) and the same concept can be easily modified to apply to the graphs 
considered here. 

2. Regularity. We write d(i, j) = k if the distance from node i to node j is k. 
We write (i,j) if i is adjacent to j , and ( / , . . . , x, . . . , j) for a path from i to j 
containing x. 

LEMMA 2.1. Lei ibe a node of g. Then there is a nodej of g such that d(i, j) = d 
and there are precisely t distinct paths from i to j of length d. 

Proof. If d(i,j) = d, there are exactly / paths of length d from i to j , by 
hypothesis. 

Let i be given and let / be a circuit in g of length 2d. If i G /, take j G / such 
t h a t d f e j ) = d.Iii (£ I, then for all x £ l,d(i,x) ^ d by the hypothesis on the 
diameter of g. For some x G /, let d(i, x) = k. If k = d, our proof is complete. 
Otherwise, k < d and suppose that k + r — d. Let z G / be such that ^(x, z) = r. 
Then ^(/ , 2) = d. 
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916 A. GEWIRTZ 

We write vt for the valence of the node i. 

LEMMA 2.2. If d(i,j) = d — 1, then vt = ^-. 

Proof. Let 
X = {**: (xk, i) and d(xk,j) = d}, 

F = to*: (y*»i) and d(ys, i) = d} ; 
clearly, 

\X\ = * < - 1, | F | = * , - 1. 

We observe that the stated path (of length d — 1) joining i and j is unique; 
otherwise, there would be a circuit of length less than the girth. We distinguish 
the nodes of this unique path by i = iu i2, . . . , id-i = j . For each k, the path 
(xk, il, . . . , id-i) has the length d. Thus, by Lemma 2.1, there are / — 1 
additional paths from xk to id-\ = j . The node id-Cl c = 1, . . . ,d — 1, cannot be 
in such a path since if it were, we would have the circuit (xk,. . . , id-c, . . . , z, %.) 
whose length would be 2(d — c) + 1 ^ 2{d — 1) + 1 < 2d, a contradiction. 
Thus, the t — 1 paths must be of the form (xk, . . . , ys,j). Since this holds for 
all k = 1, . . . , Vi — 1, there are (/ — l)(z>* — 1) such paths. By the same 
reasoning, there are (t — 1) (VJ — 1) paths of length d of the form (ys, . . . , xkl i). 
However, each of the above numbers is the number of paths of length d — 1 
joining nodes in X with nodes in F. Thus, (t — l)(vt — 1) = (t — l)(vj — 1), 
and since t ^ 2, vt — 1 = Vj — 1, and therefore Vj = ^-. 

LEMMA 2.3. Le/ (V0, ii, . . . , i2d-i, io) be a circuit of length 2d. Then 

(a) vtj = vik, j , k = 0, 1, . . . , 2d — 1 if d is even, 

fu\ iViJ = vik, j,k = 0,2,...,2d-2l Y , . , , 
(b) ) . 0 r>j i \ y d is odd. 

Kvis = vir, s, r = 1, 3, . . . , 2d - I) 
Proof of (a). If d = 2, the result is immediate. For d > 2, we have, from 

Lemma 2.2, 

(2.1) vt0 = vid_x = . . . = vlmd_m 

However, d — 1 is relatively prime to 2d if d is even. Hence, the numbers 
m(d — l), m = 0, 1, 2, . . . , exhaust the residue classes modulo 2d. Thus, 
(a) follows from (2.1). 

Proof of (b). If d is odd, then the numbers m(d — 1), m = 0, 1, 2, . . . , 
exhaust the even residue classes modulo 2d and the numbers 1 + m(d — 1) 
exhaust the odd residue classes modulo 2d. Thus, (b) also follows from (2.1). 

THEOREM 2.1. Let g G G. Then g is regular. 

Proof. There are two cases to consider. 
(a) d is even, 
(b) d is odd. 

Proof of (a). Let (i0, . . . , i2d_i, i0) = I be a circuit of length 2d. By 
Lemma 2.3, each node in / has the same valence, say v. If / = g, our proof is 
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complete. If not, let x G g, x (? /. As in the proof of Lemma 2.1, x is contained 
in a circuit of length 2d which also contains some node of /. Therefore vx = v. 

Proof of (b). We know from Lemma 2.3 that, if / is a circuit of length 2d, then 
there are numbers V\ and v2 such that every node of / has valence V\ or v2\ and, 
if i and j are adjacent nodes of I and vt = Vi, then Vj = z>2. We now show that 
if i and j are any adjacent nodes of g, then their respective valencies are V\ and 
v2 or v2 and z/i. Let (xi, x2), Xi, x2 6 g, and let / = (i0, . . . , Hi-i, io). 

Case 1. Xi $ /, x2 G I. Then, as in the proof of Lemma 2.1, xx and x2 are 
adjacent nodes in a circuit of length 2d which includes at least two nodes of /. 
Hence, vXl = Vi and vXi = v2 or vXl = v2 and vx^ = v±. 

Case 2. Xi, x2 g /and d(x2,1) = d — j,j = 1 , . . . ,d — 1. If j = 2, . . . , d — 1, 
then xi and x2 are adjacent nodes in a circuit of length 2d containing at least two 
nodes of /, and the result follows from Case 1. We may now assume, without loss 
of generality, that d(x2, if) = d — 1 and vÎQ = v2. Thus, (x2, x3,. . . , io, i\) is a 
path of length d, and thus part of a circuit l\ of length 2d, containing two 
adjacent nodes of /, and hence vX2 = V{Q = V2 and vZi = vti = Vi. Now, since 
(xi, x2, x3, . . . , io) is a path of length d containing at least two nodes of /i, we 
have vXi = vx% = vx. 

Case 3. xi? x2 (L I and d(xi, if) = d(x2j if) = d, j = 0, . . . , 2d — 1. Let 
(x2, x3, x4, . . . , if) be a path of length d. Then by Case 2, vXo = vXi = vt = Vi. 
Similarly, let (xi, x5, x6, . . . , if) be a path of length d. Then, again, by Case 2, 

Xl X& lQ 

We now count the nodes of g in two ways. From the fact that both ways 
count the same number, we will infer Vi = v2. We define (see 7) a hierarchy of g 
as follows. Pick a node of g which we will call the distinguished node, and 
identify it by 0. We will say that 0 is on level 0 (tier 0) of the hierarchy (still to 
be defined). The valence of 0 is v^j = 1 , 2 . Then the nodes adjacent to 0 would 
have valence vj+i, where j + 1 is an index modulo 2. These nodes are identified 
as 1 , 2 , . . . , ^ and are said to be on level 1 of the hierarchy. Each node on 
level 1 is connected to vj+i — 1 nodes other than 0, and this collection of nodes 
is said to be level 2 of the hierarchy. Clearly, in order not to violate the girth 
condition, the nodes on level i cannot be connected to each other unless i = d. 
If the arcs connecting nodes on level d to each other are removed, the residual 
graph is called a hierarchy of g. Clearly, there are at most two hierarchies, one 
with distinguished node having valence vjt the other with distinguished node 
having valence vj+i. We propose now to show that v3 = vj+i, and thus there is 
but one hierarchy (and of course g will be regular). We display the hierarchy as 
Figure 2.1. 

Let lx be the set of nodes at a distance i from the distinguished node. If we 
assume that the distinguished node has valence vjtj = 1, 2, and index j + 1 is 
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nodes . . . and so on to level d nodes 

FIGURE 2.1 

thought of modulo 2, then from our preceding discussion, 

(2.2) |/0| = 1, 

(2.3) \lt\ = Vj(Vj - l)*<*-2>(„,+1 - 1)*' if i is even, 2 S i ^ d - 1, 

(2.4) \lt\ = Vj(Vj - l)*c*-«(w i+i - l)*(*-i> if i is odd, 1 ^ i g d - 2. 

Since every node of la is a t a distance d from the distinguished node, t of the 
edges from Zd_i must go to each node of /d, and thus 

(2.5) \ld\ = vj(vj - l)*<*-«(w i+1 - l ) * " - » * - 1 . 

W e now show t h a t the sum of the cardinalities implied by (2.2)-(2.4) is the 
same regardless of whether Vj or vj+i is picked as the valence of the distinguished 
node. T o show this we need only show t h a t |/2/*-i| + \hh\, h = 1, . . . , %(d — 1), 
is the same regardless of whether the distinguished node has valence vs or Vj+i. 
Let the distinguished node have valence Vj. Then 

(2.6) \lu-i\ + \hn\ = v,(v, - l)h-l(vj+i ~ I ) ' " 1 + v^v, - l ) ^ " 1 ^ ! - 1 ) ' 

If the distinguished node has valence vj+i, then 

(2.7) |/2*_xl + \hn\ = vj+1(vj+1 - lY-'iVj ~ l)h~l + vj+1(vj+1 - l ) » - 1 ^ - l)h 

However, (2.6) and (2.7) are the same. Thus , since the left-hand sides of (2.2) 
and (2.5) add up to the number of nodes of g, we have, from (2.5), 

Thus , 
Vj = Vj+! = V. 

COROLLARY 2.1. | /0 | = 1, \lt\ = v(v - l ) ' " 1 , 1 ^ i ^ d - 1, 

\ld\ = w(» - ly-H-K 
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3. Some necessary d, t, v, n conditions. Let d and t be as in § 2 and let v be 
the valence of g and n the number of nodes. We write g = g(d, t, v, n). Clearly, 
t ^ v. The case t = v was thoroughly investigated by Singleton ; see (12; 11 ; 2). 
We define B C G to be the class studied by Singleton and R to be the com
plementary class, R = G — B. We use the symbols g(d, t, v, n), b(d, t, t, n), 
r(d, t, v, n) for elements of G, B, and R, respectively, and g(d, t, v, n) if the 
class is unspecified. Elements of G are bipartite if they belong to B} that is, 
using the language of (7), there are no re-entering arcs (arcs which connect 
nodes of ld to each other) in the graph. 

Let i = 1, . . . , v. Then by ld-j(i), j = 0, . . . , d — 1, we mean the set of 
nodes on level ld-j of the hierarchy which are connected to node i of h via the 
hierarchy arcs only (see Figure 3.1). 

hW 

WD W 2 ) h- iW 

h(v) «D 
« 2 ) 

h(v) «D 
« 2 ) 

h(v) 
« 2 ) 

h(v) h(v) 

Id-I 

FIGURE 3.1 

We list some results which we will use in subsequent sections. 
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3.1. A necessary condition for the existence of g(d, t, v, n), v ^ 2, is 

/(2 - v)n = 2/ - [v2 + v(2 - t)](y - l)*-1. 

Proof. n = Zt \lt\ = 1 + v Eo"2 (» - 1) ' + v(v - îy-H'K 

3.2. Let m, n G /^-i(j) and x G ld(i). Then (m, x) and in, x) implies m = n. 

3.3. | / , _ , « | = (v - i)*-1-*, i = i , . . . , v, j = o , . . . , d - i. 

3.4. Le/ i, j = 1, . . . , v, i ^ j . Then, 
(a) |U*)n«j ) | = (/-i)(*>-D*-2 , 
(b) \id(i) u Wj)| = (2» - / - i)(v - iy-2. 

Proof. Let m G ld-i(j)- Then ^(m, i) = d (via the distinguished node). Thus, 
there must exist / — 1 other paths of length d, from m to z. Thus, m must be 
connected to (/ — 1) nodes of ld(i). \ld-i(j)\ — iy — l)rf~2, and thus by § 3.2, 
(a) follows. For (b) we have 

\i&) vh(j)\ = \i*(t)\ + Uj)\ - \k(t)r\id(j)\ 
= 2(i; - l )^ - 1 - (/ - l)(v - l)d~2. 

3.5. Let x G Pl^ / /^(i), / C {1, . . • , v), and let y G ld. Then (x, y) implies 
that y g ld (i) for all i G L 

3.6. x G ld implies that x G Pl;=i h(ij)i ij G {1, . . . , fl}. 

3.7. Le/ fe &e //££ subgraph of g whose nodes are the nodes x G ld (the arcs are the 
re-entering arcs). Then the valence of x, in h, is v — t, and if we define 

(x) = {y G ld: (x,y)}, 
then \(x)\ — v — t. 

3.8. A necessary condition for the existence of r(d, t,v, n) is v > 2/ — 1; 
see (12). 

Proof. Let x G n ' = i W^) and suppose that y G h is adjacent to x. (We know 
that y exists since our graph is in R. Observe that this argument is not valid 
for B graphs.) Then by § 3.5, y G ld(ij), j = 1, . . . , / . By § 3.6, y G ld(k), 
k G {1, . . . , v}, for / distinct values of k. Thus, v ^ J2 j + £ k = t + / = 2/. 

3.9. //" / z's a prime, then a necessary condition for the existence of r(d, t,v, n) 
is v = mt or v = mt + 1, m > 1, an integer. 

Note. If m = 1, then either v = /, which is the case for ^ graphs, or 
v = / + 1 ^ 2/ — 1, which means, from § 3.8, no graph. 

Proof. \ld\ — v(y — l)d~1t~1, and when / is prime, this expression is integral 
only if t\v or t\v — 1. 

Following the line of argument in (12; 7; 6), we establish the existence of 
certain matrix polynomials P(x) such that if A = (aif) is the n X n adjacency 
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matrix of g, then J = P(A), where J is the n X n matrix of all ones. Since (i, j) 
implies (j, i), A is symmetric, and since (/, i) does not exist, tv(A) = 0. We 
also note that if uf = (1, 1, . . . , 1), then Au = vu so that u is an eigenvector, 
and v the corresponding eigenvalue, of A. Let J = uu' be the n X n matrix of 
all ones. Let I be the identity matrix (we will sometimes write A0 = 7). 

We see that-4* = (Ap)tj, p = 0, 1, . . . , d, has the property that (Ap) tj = c 
if there are c paths, including paths in which arcs are retraced, of length p, 
from node i to node j . We observe that if d(i,j) = d, then (Ad)ij = t. This 
follows from Lemma 2.1 and the above statement. We thus have the following 
result. 

3.10. A necessary condition for the existence of g(2, t, v, n) with adjacency 
matrix A is: 

A2 + tA + (t- v)I = tJ. 

Proof. If d = 2, then for any g £ G we have an adjacency matrix A. A2 has 
the following three properties: 

(1) lîd(ij) = 2, then ( . 4 % = /; 
(2) If d(i,j) = 1, then (^2)^- = 0 (note that in this case, aiû = 1); 
(3) (A*)H = w for al i i . 

In order to consider higher diameters we define 

^ 0 4 ) = / , GM) = / , 

FM) =A, GM) =A+I, 

FM) = A2 - vl, 

Fi+M) = AFM) ~ (v - 1)F^M), i ^ 2, 

Gi+M) = AGM) ~ (v - 1)G,.M), i ^ 1. 

Observe the following result. 

3.11. GM) = Zî-o FM), i ^ 0; see (12). 

3.12. Fk(A) = (fij(k)) has the property thatj\j{k) is equal to the number of paths 
of length k from node i to node j . 

Proof. See (12). 

THEOREM 3.1.-4 necessary condition for the existence of g(d, t,v, n) is given by 

Fd(A) + tGd.M) = tJ. 

Proof. By Lemma 2.1, 

(d) = (/ iid(i,j) = d, 
Jij (0 otherwise. 

From §§3.11, 3.12, and the hypothesis for d(i,j) < d we have: 

(,_!) _ / l if/,/* = 0, 
g*j " l0 if/,/* = t. 
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The theorem follows. 

Since Ju = nu, we see that n is the eigenvalue of J which corresponds to the 
eigenvalue v of A. The other eigenvalue of J is 0, with multiplicity n — 1, and 
therefore, from Theorem 3.1, the other n — 1 roots a, of A, must satisfy 

Fd{a) + tGd-!(a) = 0; 

see (8). 
We have a2 = t2 - U + 4v, and thus 4fl = a2 - (t2 - 4/). 

THEOREM 3.2. Let d = 2 and Zetf / &£ fixed. Then there is a finite number o 
r(2, t, v, n) graphs, except, possibly, for the cases t = 2, 4, or 6. 

Proof. We have: 

,42 + ^4 + (* - v)I = */, ^2 + (t - l)v + t = tn, a2 + ta+ (t-v) = 0, 

Therefore a = [-t ± (t2 - U + 4 ^ ] 2 ~ 1 . 

LEMMA 3.1. (t2 — U + 4z/)^ = a is integral. 

Proof. Suppose the contrary. Then ( — / + a)2~1 and ( — t — a)2~1 have the 
same multiplicity x as roots of A. Since tr(A) = 0, we have 

v + ( - / + a)2-1x + ( - / - a)2~lx = 0 

giving x = vt~l. Since the total number of roots of A is n, we have 1 + x + x = n 
and by substituting for x we obtain tn = 2v + £, which implies that 

v2 + (t - 3 > = 0 

(see Theorem 3.2), which is impossible. 

Let x represent the multiplicity of ( — t + a)2~~1 as a root. Therefore, since 
there are n roots and z> has multiplicity 1, we have ( —/ — a)2~1 is a root with 
multiplicity n — x — 1. Since tr(^4) = 0, 

v + (-t + a)2~1x + {-t - a)2~1(n - 1 - x) = 0 

or 2ax = (n — l)(t + a) — 2v which by substitution yields 

3 2 t e = a5 + ta* - (2t2 - 12t + 4)a3 - (2t8 - 12t2 + I2t)a2 

+ (t4 - 12/3 + 36/2 - 160a + t2(t - 2)(t - 4)(* - 6). 

We proved, in Lemma 3.1, that a is integral. The integral solutions a must be 
the factors of t2(t — 2) (t — 4) (2 — 6), unless / = 2, 4, or 6, in which case this 
constant term is 0. If t2(t — 2) (t — 4) (/ — 6) ^ 0, then there are at most a 
finite number of factors, and the theorem follows. 

4. In this section we consider the existence of elements of G of the form 
g{2, 2, v, n). Of course, we have 6(2, 2, 2, 4), and there are no other B graphs 
with d = 2, t = 2. The existence and uniqueness of r (2, 2, 5, 16) (see Figure 4.1) 
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is shown in (12). We will show the existence and uniqueness of r(2, 2, 10, 56) 
and establish some necessary conditions for other values of v and n. 

0 

15 

FIGURE 4.1 

We have: 

(4.1) A2 + 2A + (2 -v)I = 2J, 

and thus 

(4.2) v2 + v + 2 = 2». 

Letting / = 2 in Theorem 3.1, we see that ( — l + v)* = d must be integral, 
and thus 

(4.3) v = â2 + 1 

and 

(4.4) 4x = â4 + â3 + 3â2 + â + 2. 
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Thus, x is integral except when â = 0 (4). We have previously mentioned 

(4.5) 6 (2 ,2 ,2 ,4) , 

the complete bipartite graph on four nodes and 

(4.6) r(2, 2,5, 16). 

THEOREM 4.1. r(2, 2, 10, 56) exists and is unique. 

Proof. We exhibit the hierarchy as Figure 4.2. We identify the nodes of h as 
1, 2, . . . , 9, T. From § 3 we see that the identification of the nodes of /2 is 
unique. We identify a node in l2 by the identifications of the two nodes in /i 
which connect to it. This identification is unordered, but in proving the 
theorem we will often establish order, as a convenience only. The bulk of the 
following argument will be concerned with the subgraph which consists of the 
nodes of h and the re-entering arcs. We list the main lemmas, the proofs to 
appear in (3). (We illustrate the style of proof in Lemma 4.6.) Let B be the 
submatrix of A which is the adjacency matrix of li. Let (ij) — \kl: bijtkl = 1}. 

FIGURE 4.2 

LEMMA 4.1. (ij) has the following properties: 
(a) kl G (ij) implies that k, l 9e- i,j; 
(b) kl G (ij) implies that there is an m 9e- I and an s 9^ k such that km, si G (ij); 
(c) Suppose that kl, km G (ij), I 9e m. Then for all r 9e l, m, kr (? (ij); 
(d) If x ^ i,j, then there exist m,n,m 9e- n, such that xm, xn Ç (ij). 

LEMMA 4.2. (a) / / kl Ç (ij), then there is an m such that kl G (im); 
(b) If s 5* m,j, then kl (£ (is); 
(c) Let xy G h, then for every i 9e x, y there is a j and a k such that xy G (ij), 

xy G (ik); 
(d) If k 9* j , then \(ij) n (ik)\ = 1. 
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Let ij 6 (kl), then with respect to (kl) we define 

(ij) = (v) - {M> kx> h- kx> b s (ij)}. 

LEMMA 4.3. (a) \{ij)\ = v — 5; 
(b) Let ij, im 6 (kl). Then (ij) C\ (im) = 0. 

LEMMA 4.4. Let (xy) be given, ij, kl, ms Ç (xy), i,j 9^ k, I, then 
(a) \(lj)n (kl)\ = 1; 
(b)i«»;>n<*/»n<»M>| = o. 

LEMMA 4.5. A necessary condition for the existence ofr(2, 2, 10, 56) is that (xy) 
be one of the following : 

(a) {ij,jk, kl, Im, mn, np, pa, iq\; 
(b) {ijyjk, ik, Im, mn, np, pa, Iq); 
(c) {ijy jk, kl, il, mn, np, pq, mq). 

There is no loss of generality in assuming that when (ab) = (12) we have 
i'• = 3, j = 4, k = 5, / = 6, m = 7, n = 8, p = 9, q = T. 

LEMMA 4.6. (12) ^ {34, 45, 35, 67, 78, 89, 9T, 6T}. 

J>roof^he dements of h available to fill the sets (34), (45), (35), (67), (78), 
(89), (9T), (6T) are 36, 37, 38, 39, 37\ 46, 47, 48, 49, 47\ 56, 57, 58, 59, 5T, 68, 
69, 79, 7T, ST. By definition, no elements of the form lx or 2y can be in the 
sets; neither can elements of (12), otherwise there would be triangles. By 
Lemma 4.3 we know that |(34)| = |(35)| = 5. We show that to meet this 
cardinality condition must cause a contradiction to Lemma 4.1. (34) C (34). 
Thus, by Lemma 4.1, no elements of the form 3x or 4x are in (34). Furthermore, 
at most two elements of the form 5x are in (34), and thus at least three of 68, 
69, 79, IT, ST are in (34). By Lemma 4.3, this means that at most two of 
68, 69, 79, IT, 8T are in (35) and since no elements of the form Sx or 5x are in 
(35), at least three elements of the form 4x must be contradicting Lemma 4.1. 

LEMMA 4.7. (12) ^ {34, 45, 56, 67, 78, 89, 9T, 3T}. 

LEMMA 4.8. (12) = {34, 45, 56, 36, 78, 89, 92\ IT). 

In the proof of Lemma 4.8 we establish the memberships of the sets 
(lx), x = 2, . . . , T, and thus we have 260 of the 280 edges (9) in the graph. 
The twenty other edges which are not connected to any node of the form lx 
or 2y are now easily obtained and shown to be unique. We illustrate by means 
of Figure 4.3 the adjacency matrix of r(2, 2, 10, 56), where the rows and 
columns of the matrix are in the natural order. C. Sims (private correspon
dence) has, in the course of his study of primitive groups, independently 
verified the existence of r(2, 2, 10, 56). Sims' representation is the following. 
Call the distinguished node *. The nodes of h are the ten Sylow 3-subgroups 
of AQ. The nodes of h are the 45 involutions of AQ. A node of h is connected to 
a node of h if the node of h normalizes the node of l±. The re-entering arcs are 
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defined by the following rule. Let x, y Ç h. Then (x, y) if, as involutions, the 
product xy has order 4. We show in Figure 4.4 the nodes as just defined and the 
corresponding node from our presentation. One notes that applying the 
permutation (12) (79) (ST) to the graph would again yield a graph isomorphic 
to the original. (In Sims' representation, interchange the numbers 5 and 6.) 

011111111110000000000000000 000 00000000000000000000000000 
100000000001111111110000000 000 00000000000000000000000000 
1000000000010000000011 11 111 100 0000000000000000000000 0 000 
100000000000100000001000000 0111111100000000000000000 0000 
100000000000010000000100000 01000000111111000000000000000 
100000000000001000000010000 001000001000001 111 10000000000 
100000000000000100000001000 00010000010000100001111000000 
100000000000000010000000100 000 01000001000010001000111000 
100000000000000001000000010 000 0010000010000100010010 0 110 
1000000 0000000000010000000100000010000010000100010010 101 
100000000000000000010000000100 0000100000100001000100101 1 
01100000000000000000000000001010000100000100000000101101 
0101000000000000000000001 10 000 00000010001011000010000001 
01001000000000000000000010010100100000000000101001000100 
010001000000000000000000001 100 00011011000000000100100000 
01000010000000000000000001 1001010000001100000100000 0 1000 
010000010000000000000011000 01000001000100000100010000010 
010000001000000000000110000 00010010000001000011000010000 
010000000100000000001100000 000 01000001000101000001000010 
01000000 0010000000001001000 000001001000100100 001000 1000 0 
001100000000000000110000000 000 00000010100000111000100000 
001010000000000001100000000 00100001000000010000110001000 
001001000000000011000000000 000 01100010010000000001000001 
001000100000000010010000000 00100010001001001000000000100 
001000010000110000000000000 000 00010000010100010100000010 
001000001000100100000000000 000 00001101000000100001010 0 00 
001000000100001100000000000 0100010000000101000100000 0 010 
001000000010011000000000000 000 11000000100001000010010000 
00011000000100001000000000100000000000000001010101010 0 00 
00010100000001010000010100000000000000 000000000000110011 
000100100001000001000000000100 00000001010010100000000010 
000100010000000100100010000100 00000100001000000100000100 
000100001000010000010010001000 000000010001000000 1000 1000 
000100000100001001000001100 000 000001001000000000010 0 1000 
000100000010001010000100019000 0000000001010000100000 0 100 
00001100000100000001000001000001010000 0000000010100000 10 
000010100000101000001010000 000 0000000000000000000001 11 10 
000010010000001000100001010 00010100000000000010000000001 
000010001000000110001000000100 00010000000110000000000001 
000010000100000100010010100 00010001000000001000000100000 
00001000001010000 100000100 1000 01000000000100100000100000 
0 0 000110000100000010000010000000101000101000000000010000 
00000101000010000001010000100010000000100000000001000100 
00000100100010000010000100011000000000010000001000001000 
000001000100010010001000010 00010000000001000000100001000 
000001000010000101001000100 01000000001000000000010000100 
00000011000001000100 100000100000001100000001000000000001 
00000010100000100001010010001001000000000000100000000001 
000000100100100010000100000100 00100100000000010000100000 
000000100010010000100010010 01000010000000010000000100000 
000000011001001000001000000 00100000000011000000011000000 
00000001010000000101000001011100000010000100000000000000 
000000010011000100000100000 000 00110010000001100000000000 
000000001101010000000001000 000 01001010000010010000000000 
000000001010000010100000101001 10000110000000000000000000 
000000000111100000000010000 00100000001100000001100000000 

FIGURE 4.3 
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(125) (346) 
(126) (345) 
(156) (234) 
(124) (356) 
(134) (256) 
(123) (456) 
(145) (236) 
(135) (246) 
(146) (235) 
(136) (245) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
T 

f(12)(34) 12 
(15) (34) 13 
(12) (36) 14 
(25) (34) 15 
(12) (46) 16 
(15) (36) 17 
(15) (46) 18 
(25) (46) 19 
(25) (36) IT 
(16) (34) 23 
(12)(35) 24 

2 \ (26) (34) 25 
| (12) (45) 26 
! (26) (45) 27 
(26)(35) 28 

j (16) (35) 29 
(16) (45) 2T 
(24) (56) 34 
(34)(56) 35 
(23)(56) 36 
(15) (23) 37 
(15) (24) 38 

Fie 
1(16) (23) 

;URE 4.4 
39 

(16)(24) 3T 
(14)(56) 45 
(12)(56) 46 
(14)(36) 47 
(24) (35) 48 
(14) (35) 49 
(24) (36) 4r 
(13)(56) 56 
(14)(26) 57 
(13)(26) 58 
(14)(25) 59 
(13) (25) 5T 
(23) (45) 67 
(13) (46) 68 
(23)(46) 69 
(13) (45) 6T 
(15) (26) 78 
(14) (23) 79 
(36) (45) 7T 
(35) (46) 89 
(13) (24) 8T 
(16) (25) 9T 

5. In this section we establish some possible parameters for 
r(2, 3 g t ^ 10, », w) graphs. 

Higman and Sims (5) have shown the existence of r(2, 6, 22, 100) which has as 
a subgraph r(2, 4, 16, 77). In the next section we show the uniqueness of 
r(2, 6, 22, 100). For parameters not listed in this section, r (2, 3 ^ t S 10, v,n) 
cannot exist. We note, in particular, that for t = 3, 5 or 8, r(2, 3, 21, 162), 
r(2, 5, 55, 650) and r(2, 8, 136, 2432) are the only open cases. For other values 
of t there is more than one undecided case. For t = 3 we go through the proof 
and for 4 g t S 10 we list the results. We also examine g(d ^ 3, t, v, n) graphs 
and exhibit the unique graph r(3, 2, 4, 35). 

THEOREM 5.1. r(2, 3, 21, 162) is the only possible r(2, 3, v, n) graph. 

Proof. We have: 

^ 2 + SA + (3 - v)I = 3 / , 

v2 + 2v + 2 = 3», 

a2 + S = 4iv 

a5 + 3a4 + 14a3 + 18a2 + 33a + 27. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 96ax 

The values of a for which integral x are possible are the factors of 27, namely 
1, 3, 9, 27. From (5.3), if a = 1, then v = 1 which does not give a graph. If 
a = 3, (x = 4), then v = 3 and n = 6 which we know is 6(2, 3, 3, 6). When 
a = 9 (x = 105), we have v = 21 and n = 162. If a = 27, then x = £(18788) 
which is not integral, and therefore a = 27 cannot be used. 
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THEOREM 5.2. For 4 ^ t ^ 10, necessary parameters for the existence of 
r(2, 4 ^ / ^ 10, v, w) graphs are: 

(a) For * = 4, 

(5.5) u = a2, a > 1, 

(5.6) v2 + 3v + 4 = 4rc; 

(b) For * = 6, 

(5.7) v = a2 - 3, a ^ 3, a f£ 0,4, 8 (12) 

(5.8) v2 + 5z> + 6 = 6w; 

(c) For t = 5, 7, 8, 9, 10 we to /fee possible graphs: 

.5.9) r(2, 5, 55, 650), 

5.10) r (2, 7, 105, 1666), 

5.11) r(2, 7, 301, 12202), 

5.12) r(2, 7, 2646, 1002457), 

5.13) r(2, 8, 136,2432), 

5.14) r(2, 9, 45, 266), 

5.15) r(2, 9, 99, 1178), 

5.16) r(2, 9, 171,3402), 

5.17) r(2, 9, 495, 27666), 

5.18) r(2,9,981, 107802), 

5.19) r(2, 9, 2745, 839666), 

5.20) r(2, 9, 8919, 8846658), 

5.21) r(2, 9, 24795, 68134018), 

5.22) r(2, 10, 21, 64), 

5.23) r(2, 10,85,800), 

5.24) r(2, 10, 385, 15170), 

5.25) r(2, 10, 885, 74720), 

5.26) r(2, 10, 3585, 1288450). 

We observe in passing that when t = 11 there are ten possible r graphs and 
when / = 12 there are six possibilities. 

We have 

(5.27) FM) + tGM) = tJ. 
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Therefore 

(5.28) Az + tA2 + (t - 2v + 1)A + (t - to)I = / / , 

and thus 

(5.29) v3 + (t - 2)v2 + v + t = tn. 

If t = 2, using the techniques of previous sections, we obtain the following 
result. 

LEMMA 5.1. Necessary conditions for the existence of g (3, 2, v, n) are 

(5.30) v* + v + 2 = 2n, 

(5.31) gv = a2 + 7, a = 1,3, 5, 7 (8). 

THEOREM 5.3. r(3, 2, 4, 35) exw/s awd is unique. We define the hierarchy in the 
following manner: 

The distinguished node is 0; 
The nodes of h are named 1, 2, 3, 4; 
The nodes of hii) are named il, i2, i3, i = 1, . . . , 4; 
The nodes of Z3 are named as follows. We observe that each element of Z3 is 

connected to two elements of Z2. If the two elements of l2 are ia, jb,i,j=l,...,4:, 
a, b = 1, . . . , 3, then the element of k is given by kia, mjb, k, m = 1 , . . . , 3. We 
display the hierarchy, and the re-entering arc subgraph {note that this subgraph is 
bipartite and consists of three disjoint circuits of length the girth) in Figure 5.1. 

That the adjacencies between Z2 and h are correct is given by the results of 
§ 3. That they are unique is clear, if we note that, given the adjacencies of the 
nodes 11, 21 £ Z2 in /3, if 22 was adjacent to any node of Z3 of the form 112abc 
or llZxyz, then there would be three paths of length 3 from 2 to 11. That the 
adjacencies using the re-entering arcs are the bipartite ones shown in Figure 5.1 
is the result of § 3. 

From (5.29), if t = 3 we have that a necessary condition for the existence of 
g(3, 3,v, n) is 

(5.32) vd + v2 + v + 3 = 3n 

which implies that v = 0, 1 (3). From § 3.8, we deduce that 

(5.33) r(3, 3, 4, 29) $ R 

(even though the parameters satisfy (5.32)). 
For d > 3, we know (12; 2) that B graphs exist for d = 4 and d = 6 and for 

no other values of d, provided that t > 2. Of course, for t = 2, we know that 
b(d, 2, 2, 2d) always exists. For d = 4 we have, by § 3.1, that a necessary 
condition for the existence of r(4, t, v, n) is that 

(5.34) v± + (t - 3)v* + (3 - t)v2 + {t - l)v + / = tn. 

Thus, if t = 2, a necessary condition for the existence of r(4, 2, v, n) is that 

(5.35) vA - vs + v2 + v + 2 = 2n. 
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However, by (3.8) we have 

(5.36) r(4, 2, 3, 34) g R. 

Similarly, a necessary condition for r(4, 3, v, n) to exist is that 

(5.37) v* + 2v + 3 = 3», 

and thus y = 0, 1 (3). 
Similar necessary conditions can be written for any d and t. Further, study of 

the polynomials of the graphs is indicated as being a way to impose stiffer 
necessary conditions. 

6. BIBDs. In this section we examine the relationship that exists between 
the nodes of ld and BIBDs. A BIBD can be thought of as a collection of b sets 
(blocks) with k elements (varieties) in each set, the varieties to be picked from 
a set with v elements, each variety to appear in exactly r blocks, and each pair 
of varieties to appear together in exactly X blocks. v,b, k,r,\ are called the 
parameters of the BIBD. It is well known, (10), that the parameters of a 
BIBD satisfy 

(6.1) vr = bk, 

(6.2) r(k - 1) = \(v - 1). 

Hanani (3) proved that (6.1) and (6.2) are sufficient for k = 3 or 4 and any X, 
and also for k = 5 and X = 4. We view x £ ld as a block of a BIBD, whose 
varieties are the / nodes ij of § 3.6. By Corollary 2.1, and the results of § 3 we 
have the following lemma. 

LEMMA 6.1. Thenodesx 6 ld are the blocks of a BIBD with parameters b, k, v, r 
and X, where 

(1) v = v, the valence of g, 
(2) b = \id\ = v(v - iy-n-\ 
(3) k = /, 
(4) r = \ld(i)\ = (v - l)«-\ 
(5) x = (t- i)(v - iy-2. 
COROLLARY 6.1. If d = 2, the nodes of fa are the blocks of a BIBD with 

parameters given by 

(6.3) ' », r = v - 1, k = t, X = k - 1, b = v(v - l)t~K 

If the nodes of some given ld give rise to a BIBD, then the BIBD will be 
called an associated design of ld. Many associated designs of ld can exist, for a 
given ld. If a design is an associated design of ld, we will write BIBD(ld). 

We now proceed to show that the existence of a BIBD (ld) and the suggestion 
of possible parameters by the eigenvalue argument are not sufficient for the 
existence of r graphs. 

THEOREM 6.1. r(2, 4, 9, 28) g R; see (5.5) and (5.6). 

Proof. The BIBD parameters are v = 9, b = 18, k = 4, r = 8, and X = 3. 
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Let (abed) be an arbitrary node of /2. We have: 

(6.4) |/2| = 18, 

(6.5) \h(a) \Jh(b)\ = 13, 

(6.6) |Z2(c)| = 8, 

(6.7) \l2(c) C\ l2(i)\ = 3 for all i * c, 

and in particular, (6.7) holds if i — a or b. One of the nodes in the intersection 
h(c) C\ l2(a) is (abed), and thus there are exactly two other nodes in this 
intersection, say a and £. Similarly, (abed) Ç l2(c) Pi l2(b), and thus there are 
exactly two other nodes in this intersection, (possibly a and 0), call them ô 
and 7. In any case, there are at most five nodes in l2(c) that have the letters 
a or b in their identification namely (abed), a, 0, ô, and 7. Thus, there are at least, 
by (6.6), three nodes of l2(c) which do not have a or b in their identification. 
This fact, together with (6.5), yields 

(6.8) \[l2(a) U/ 2 (6) ] UZ2(c)| ^ 16. 

Therefore, from (6.4) the number of nodes in /2 of the form (efgh), where 
£>/> g, h ^ a,b, c is 0, 1 or 2. We have: 

(6.9) \(abcd)\ = 5. 

(efgh) € (abed) implies that e,/, g, h 9e a, b, c, d, and since there are at most 
two such nodes, (6.9) cannot be satisfied. 

COROLLARY 6.2. r(2, 10, 21, 64) g R. 

Given the parameters v = 16, r = 15, k = 4, X = 3, and b = 60, we know 
that a BIBD exists. In fact, in (3), Hanani gives a construction technique. 
Using this method, one obtains a design with the following property. Dis
tinguish a variety 1 and let the other varieties be b, c, d, e, . . . , p. Then the 
blocks (lbcd), (lefg), (lhij), (lklm), (Inop) are each repeated three times. 
Using such a design, it is trivial to show that r(2, 4, 16, 77) (? R even though 
the eigenvalue argument ((5.5) and (5.6)) suggests their use as parameters. In 
fact, we have the following result. 

THEOREM 6.2. / / any two blocks have three varieties the same (i.e., if 
(abcd)(abce) Ç Z2), then r(2, 4, 16, 77) g R. 

Proof. As in Theorem 6.1, we can construct a design but it will not affect the 
proof. 

Using the techniques of Theorem 6.1, we have 

(6.10) \(abci)\ = 12 (in particular, for i = d, e), 

(6.11) \h(a) \Jh(b)\ = 27, 

(6.12) |/2| = 60, 

(6.13) |/2(i)| = 15, 

(6.14) |[(/2(a) \J l2(b)) U h(c)] U l2(i)\ ^ 46 for i = d or e. 

From (6.14) and (6.12), we have that the number of nodes that can belong to 
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(abed) is no more than 14. Suppose t h a t the twelve nodes required for (abed) 
by (6.10) have been selected from the fourteen available and now let us 
examine the set (abce). Again, from (6.14) and (6.12), there are a t most 
fourteen nodes t h a t can belong to (abce). 

T h e number of paths , of length 2, from (abed) to (abce), via the hierarchy 
nodes, is three (via a, b, and c). Thus , there must be another pa th of length 2 
between these nodes, and thus there is a t most one node of Z2 adjacent to (abed) 
and (abce). (None, if d = e.) This node, say a, is certainly in (abed). There are, 
in (abed), exactly four nodes of the form (exyz). T h e other seven (or eight) 
nodes of (abed) do not have e in their identification, and thus were counted in 
the fourteen nodes t h a t were potentially members of (abce). However, since 
they are nodes in (abed) and we already have a as the only node in both (abed) 
and (abce), we see t h a t there are only seven (or six) other possible nodes for 
(abce), which implies t ha t \(abce)\ ^ 8, contradicting (6.10). 

If v = 25, r = 24, k = 4, X = 3, and b = 150, Hanani ' s construction criteria 
again forces the distinguishing of a var iety 1 and the repeating of each block 
containing this 1, three times, as above. T h a t is, if the other varieties are 
a, b, c, d, . . . , x, then the blocks which are repeated three times are (labc), 
(Idef), (Ighi), (Ijkl), (Imno), (lpqr), (lvwx). W e will now designate any 
B I B D with sets of repeated blocks as shown, as a design of Hanani- type . W e 
then have the following result. 

T H E O R E M 6.3. A necessary condition for the possible existence ofr(2, 4, 25, 176) 
is that the nodes of h not be blocks of a Hanani-type design. 

Proof. Once again note t ha t (7.5) and (7.6) suggest the possible existence of 
this graph. 

T o prove the theorem one need only observe t h a t the three distinct nodes 
each labeled (labc) can have no common adjacencies (other than in the 
hierarchy) since they are connected to each other by four pa ths of length 2 via 
the hierarchy nodes 1, a, b, and c. Thus , for instance, the three distinct sets 
(1234), (1234), (1234) contain 63 distinct nodes. There are 87 nodes with 
1, 2, 3, or 4 in their identifications, and thus there is no choice in picking the 
63 nodes. Similarly, if we examine (1567), (1567), (1567) we see t h a t there is 
no choice; however, using the methods of Theorems 6.1 and 6.2 we see t h a t 
some of the 63 possible nodes are in a (1234) set and cannot be used for a 
(1567) set. 

One might note t ha t the full s trength of the hypothesis was not used. T h e 
hypothesis could have been weakened to include all B I B D s which have (labc) 
and (ldef) repeated three times, each as blocks. 

T H E O R E M 6.4. r(2, 6, 22, 100) is unique. 

Proof. In (5) , the existence of such an r is shown. In (13), W i t t proved the 
uniqueness of the BIBD( / 2 ) which has no three varieties appearing together in 
any two distinct blocks. By Corollary 6.2, r(2, 6, 22, 100) is thus unique. 
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THEOREM 6.5. There exists an r(2, 4, 16, 77) which is a subgraph of 
r(2, 6, 22, 100). 

Proof. The nodes of r(2, 4, 16, 77) can be taken to be the nodes of h 
of r(2, 6,22, 100). 

Two nodes are connected if and only if they have no varieties in common 
(each variety is disjoint from sixteen others). 

COROLLARY 6.3. There exists a block design with parameters v = 16, b = 60, 
k = 4, r = 15, X = 3 such that no two blocks have three varieties in common. 

Proof. See Theorem 6.2. 
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