SPACES OF CONTINUOUS VECTOR FUNCTIONS AS DUALS

BY
MICHAEL CAMBERN AND PETER GREIM

Abstract

A well known result due to Dixmier and Grothendieck for spaces of continuous scalar-valued functions $C(X), X$ compact Hausdorff, is that $C(X)$ is a Banach dual if, and only if, X is hyperstonean. Moreover, for hyperstonean X, the predual of $C(X)$ is strongly unique. Here we obtain a formulation of this result for spaces of continuous vector-valued functions. It is shown that if E is a Hilbert space and $C\left(X,\left(E, \sigma^{*}\right)\right)$ denotes the space of continuous functions on X to E when E is provided with its weak * (= weak) topology, then $C\left(X,\left(E, \sigma^{*}\right)\right)$ is a Banach dual if, and only if, X is hyperstonean. Moreover, for hyperstonean X, the predual of $C\left(X,\left(E, \sigma^{*}\right)\right)$ is strongly unique.

0 . Introduction. Throughout this article the letters E, U, V will stand for Banach spaces while X and Y will denote compact Hausdorff spaces. $C(X, E)$ denotes the space of continuous functions on X to E provided with the supremum norm. And, for a dual space E^{*}, we will denote by $C\left(X,\left(E^{*}, \sigma^{*}\right)\right)$ the Banach space of continuous functions F on X to E^{*} when the latter space is provided with its weak * topology, again normed by $\|F\|_{\infty}=\sup _{x \in X}\|F(x)\|$. If E is the one-dimensional field of scalars then we write $C(X)$ for $C(X, E)$.

The notation $U \cong V$ is used to indicate that the Banach spaces U and V are isometric. The interaction between elements of a Banach space and those of its dual is denoted by $\langle\cdot, \cdot\rangle$. If S is a subset of the Banach space E, then S^{\perp} denotes the subspace of E^{*} given by $S^{\perp}=\left\{e^{*} \in E^{*}:\left\langle e, e^{*}\right\rangle=0\right.$ all $\left.e \in S\right\}$. And if $S \subseteq E^{*}$ then we denote by ${ }^{\perp} S$ the set $\left\{e \in E:\left\langle e, e^{*}\right\rangle=0\right.$ all $\left.e^{*} \in S\right\}$. For any subset $S \subseteq E, \overline{s p}(S)$ will denote the closed linear span of S.

Given a positive measure space (Ω, Σ, μ) and $1 \leqq p \leqq \infty$, the Bochner space $L^{p}(\Omega, \Sigma, \mu, E)$ will be denoted by $L^{p}(\mu, E)$ when there is no danger of confusing the underlying measurable space involved. We refer to [6] for the definitions and properties of these spaces. Facts about vector measures used in this paper can be found in [6] and [7]. We will, in particular, rely upon I. Singer's characterization of $C(X, E)^{*}$ as the space of all regular Borel vector measures on X to E^{*} with finite variation $|m|$, [14], or [7, p. 387]. Throughout the article, scalar measures are denoted by μ while vector measures are denoted by m and n.

[^0]If X is an extremally disconnected compact Hausdorff space we will call a nonnegative, extended real-valued Borel measure μ on X a category measure if
(i) every nonempty clopen set has positive measure,
(ii) every nowhere dense Borel set has measure zero, and
(iii) every nonempty clopen set contains a nonempty clopen set with finite measure.
(In [1] and [3] measures having these properties are referred to as "perfect".) An extremally disconnected compact Hausdorff space on which a category measure is defined will be called hyperstonean. This is equivalent to the definition of hyperstonean space obtained via the use of normal measures, [13, p. 95] and [1, p. 26]. Since for hyperstonean X every Borel set B has a unique representation $B=C \Delta D$ with C clopen and D nowhere dense, [1, pp. 1-2] and [8, p. 160], it follows that the null sets for a category measure are precisely the nowhere dense Borel sets. Given a hyperstonean space X with category measure μ, property (iii), together with an application of Zorn's lemma, can be used to show that X is the Stone-Cech compactification of the disjoint union of clopen subsets $X_{\gamma}, X=\beta\left(\cup_{\gamma \in \Gamma} X_{\gamma}\right)$, with $\mu\left(X_{\gamma}\right)<\infty$ for all γ, and for all Borel subsets B of $X, \mu(B)=\sum_{\gamma \in \Gamma} \mu\left(B \cap X_{\gamma}\right)$.

We will say that a Banach dual U^{*} has strongly unique predual U if, given any isometry T of U^{*} onto a Banach dual V^{*} with predual V, then the adjoint mapping T^{*} carries the canonical image $J(V)$ of V in $V^{* *}$ onto the canonical image $J_{0}(U)$ of U in $U^{* *}$. (One easily verifies that, T being a surjective isometry, it is enough to require that $T^{*} \circ J(V)$ is contained in $J_{0}(U)$ - in other words that T is $\sigma\left(U^{*}, U\right)-\sigma\left(V^{*}, V\right)$ continuous.) Now it is a well known result due to Dixmier [8] or [13, p. 95] that, when X is hyperstonean, $C(X)$ is a dual space. And Grothendieck has provided a strong converse. If $C(X)$ is a dual then X is hyperstonean; moreover, for hyperstonean X the predual of $C(X)$ is strongly unique [11] or [13, p. 96]. The goal of this article is to provide an analogue of these results for spaces of continuous vector functions.
It is a result of Cembranos [4] that if X is any infinite compact Hausdorff space and E is infinite dimensional, then $C(X, E)$ contains a complemented copy of c_{0}, and hence $C(X, E)$ is not even isomorphic to a dual space. However, when one deals with vector-valued functions, the space $C\left(X,\left(E^{*}, \sigma^{*}\right)\right)$ with hyperstonean X arises repeatedly as a Banach dual. In [2] it is shown that, if E^{*} has the Radon-Nikodym property, then for any compact Hausdorff space Y the bidual of $C(Y, E)$ is of the form $C\left(X,\left(E^{* *}, \sigma^{*}\right)\right)$ for a certain hyperstonean space X related to Y. More generally, in [3] it is shown that the space $C\left(X,\left(E^{*}, \sigma^{*}\right)\right)$ with X hyperstonean arises as the dual of a space of vector measures, and that it is always a dual space - specifically, it is the dual of $L^{1}(\mu, E)$ for μ a category measure on X. In this paper we obtain vector analogues of the Dixmier-Grothendieck results for the space $C\left(X,\left(E, \sigma^{*}\right)\right)$ when E is a Hilbert space. We wish to prove the following:

Theorem. Let X be a compact Hausdorff space and E a Hilbert space. Then (a) $C\left(X,\left(E, \sigma^{*}\right)\right)$ is a Banach dual if, and only if, X is hyperstonean. Furthermore, (b) if X is hyperstonean then the predual of $C\left(X,\left(E, \sigma^{*}\right)\right)$ is strongly unique.

1. Proof of (a). As previously mentioned, the "if" part of the assertion is known, and holds for any Banach dual E [3, Theorem 1]. We need to establish the "only if" portion. For this we will need the following:

Proposition. Let E be a Hilbert space and let m and n be finite regular Borel measures on X to E whose respective values are taken in two closed orthogonal subspaces of E. Then $\|m\|^{2}+\|n\|^{2} \leqq\|m+n\|^{2}$.

Proof. Suppose that m takes its values in M and n its values in N where M and N are closed orthogonal subspaces of E. We may clearly assume that at least one of m and n is distinct from the zero measure. Choose a sequence $\left\{F_{k}\right\} \subseteq C(X, E)$, with $\left\|F_{k}\right\|_{\infty} \leqq 1$ for all k, such that the F_{k} take their values in M and $\int F_{k} d m \rightarrow\|m\|$ as $k \rightarrow \infty$. Then choose a sequence $\left\{G_{k}\right\} \subseteq C(X, E)$ taking values in N such that $\left\|G_{k}\right\|_{\infty} \leqq 1$ for all k and $\int G_{k} d n \rightarrow\|n\|$. Define $H_{k}=\left[1 /\left(\|m\|^{2}+\|n\|^{2}\right)^{1 / 2}\right]\left(\|m\| F_{k}+\|n\| G_{k}\right)$. Then $\left\|H_{k}\right\|_{\infty} \leqq 1$ for all k and we thus have

$$
\begin{aligned}
\|m+n\| & \geqq\left|\int H_{k} d(m+n)\right| \\
& =\left[1 /\left(\|m\|^{2}+\|n\|^{2}\right)^{1 / 2}\right]\left[\|m\| \int F_{k} d m+\|n\| \int G_{k} d n\right] \\
& \rightarrow\left(\|m\|^{2}+\|n\|^{2}\right)^{1 / 2} \text { as } k \rightarrow \infty .
\end{aligned}
$$

In what follows we assume that V is a Banach space such that there exists an isometry T mapping $C\left(X,\left(E, \sigma^{*}\right)\right)$ onto $V^{*} . J$ denotes the canonical injection of V into $V^{* *}$.
We let e be an element of E with $\|e\|=1$ and let $S(e)$ denote the subspace of $C\left(X,\left(E, \sigma^{*}\right)\right)$ defined by $S(e)=\{f \cdot e: f \in C(X)\}$. If we can show that $T(S(e))$ is weak * closed in V^{*} then $T(S(e))$ is dual space [12, p. 212], and, since $C(X)$ is obviously isometric to $T(S(e))$, the fact that X is hyperstonean would thus follow from what is known about spaces of continuous scalar-valued functions.

Hence suppose, to the contrary, that $T(S(e))$ is not closed in the weak * topology of V^{*}. Then by the Krein-Smulian theorem [9, p. 429] there would be a net $\left\{f_{\alpha}\right\} \subseteq C(X)$ with $\left\|f_{\alpha}\right\|_{\infty} \leqq 1$ for all α such that $T\left(f_{\alpha} \cdot e\right)$ tends weak ${ }^{*}$ to an element $v^{*} \in V^{*}$ with $v^{*} \notin T(S(e))$. Thus $\left\langle f_{\alpha} \cdot e, T^{*} \circ J(v)\right\rangle=\left\langle v, T\left(f_{\alpha} \cdot e\right)\right\rangle$ $\rightarrow\left\langle v, v^{*}\right\rangle=\left\langle T^{-1}\left(v^{*}\right), T^{*} \circ J(v)\right\rangle$ for all $v \in V$.

Now $T^{-1}\left(v^{*}\right)$ is an element $F \in C\left(X,\left(E, \sigma^{*}\right)\right)$ with $\|F\|_{\infty} \leqq 1$ and $F \notin S(e)$ so that there exist an element $\phi \in E$ with $\|\phi\|=1$ and an element $x \in X$ such that $\langle e, \phi\rangle=0$ and $\langle F(x), \phi\rangle \neq 0$. Define the element $g \in C(X)$ by $g(x)=\langle F(x), \phi\rangle$ and let $G=F-g \cdot \phi$. Then there is a $v^{* *} \in V^{* *}$ with
$\left\|v^{* *}\right\|=1$ such that $\left|\left\langle g \cdot \phi, T^{*}\left(v^{* *}\right)\right\rangle\right|=\|g\|_{\infty}$ and $\left\langle G, T^{*}\left(v^{* *}\right)\right\rangle=0$. (Just pick any $v^{* *} \in V^{* *}$ such that $T^{*}\left(v^{* *}\right)$ is equal to the vector measure $\phi \cdot \mu_{x}$, where $x \in X$ is such that $|g(x)|=\|g\|_{\infty}$.)

Next define the positive numbers δ and ϵ by

$$
\begin{equation*}
\delta=\left(1-\|g\|_{\infty}^{2} / 4\right)^{1 / 2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon=\max \left\{\delta, \frac{3}{4}\right\} . \tag{2}
\end{equation*}
$$

Since the image under J of the unit ball in V is weak * dense in the unit ball of $V^{* *}$, we can find a $v \in V$ with $\|v\| \leqq 1$ such that

$$
\begin{equation*}
\left|\left\langle g \cdot \phi, T^{*} \circ J(v)\right\rangle\right|>\epsilon \cdot\|g\|_{\infty} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\langle G, T^{*} \circ J(v)\right\rangle\right|<\|g\|_{\infty} / 4 . \tag{4}
\end{equation*}
$$

Then

$$
\begin{align*}
\left|\left\langle F, T^{*} \circ J(v)\right\rangle\right| & \geqq\left|\left\langle g \cdot \phi, T^{*} \circ J(v)\right\rangle\right| \tag{5}\\
& -\left|\left\langle G, T^{*} \circ J(v)\right\rangle\right|>\|g\|_{\infty} / 2
\end{align*}
$$

by (3), (4) and (2).
Now as $T^{*} \circ J(v)$ is an element of $C\left(X,\left(E, \sigma^{*}\right)\right)^{*}$, its restriction to $C(X, E)$ is represented by a regular Borel vector measure m_{0} on X to E with $\left\|m_{0}\right\| \leqq$ $\left\|T^{*} \circ J(v)\right\| \leqq 1$. Let P be the orthogonal projection of E onto $\overline{s p}(\{\phi\})$ and define the vector measures m and n by $m=P m_{0}$ and $n=(I-P) m_{0}$. Then let \bar{m}_{0} denote any Hahn-Banach extension of m_{0} to an element of $C\left(X,\left(E, \sigma^{*}\right)\right)^{*}$ and let $\phi=T^{*} \circ J(v)-\bar{m}_{0}$, so that $T^{*} \circ J(v)=\bar{m}_{0}+\phi$ with $\phi \in C(X, E)^{\perp}$.

Since $\left\langle g \cdot \phi, T^{*} \circ J(v)\right\rangle=\int(g \cdot \phi) d m$, it follows from (3) that $\|m\|>\epsilon$. Hence, as $\|m+n\|=\left\|m_{0}\right\| \leqq 1$, it is a consequence of (2), (1) and the Proposition that $\|n\|<\|g\|_{\infty} / 2$. Thus for all α we have $\left\langle f_{\alpha} \cdot e, T^{*} \circ J(v)\right\rangle=$ $\int\left(f_{\alpha} \cdot e\right) d n$ which has modulus less than $\|g\|_{\infty} / 2$, whereas, by (5), $\left|\left\langle F, T^{*} \circ J(v)\right\rangle\right|>\|g\|_{\infty} / 2$. This contradicts our assumption that $\left\langle f_{\alpha} \cdot e, T^{*} \circ J(v)\right\rangle \rightarrow\left\langle F, T^{*} \circ J(v)\right\rangle$, and completes the proof that X is hyperstonean.
2. Proof of (b). The proof of part (b) will be established by means of a sequence of lemmas. Throughout, μ will denote a fixed category measure on X.

Lemma 1. Let E^{*} be any Banach dual with the Radon-Nikodym property. If $G \in C\left(X,\left(E^{*}, \sigma^{*}\right)\right)$ then there exists an open dense set $O\left(=O_{G}\right)$ of X such that G is continuous from O to E^{*} when the latter space is given its norm topology.

Proof. X is of the form $X=\beta\left(\cup_{\gamma \in \Gamma} X_{\gamma}\right)$, where the X_{γ} are pairwise disjoint clopen sets with $\mu\left(X_{\gamma}\right)<\infty$ for all γ and $\mu(B)=\sum_{\gamma \in \Gamma} \mu\left(B \cap X_{\gamma}\right)$ for all Borel sets B. We denote by μ_{γ} the restriction of μ to the Borel sets of X_{γ}, and by G_{γ} the restriction of G to X_{γ}.

As mentioned in the introduction, the dual of $L^{1}\left(\mu_{\gamma}, E\right)$ is $C\left(X_{\gamma},\left(E^{*}, \sigma^{*}\right)\right)$. Here the interaction between elements $F_{0} \in L^{1}\left(\mu_{\gamma}, E\right)$ and $G_{0} \in C\left(X_{\gamma},\left(E^{*}, \sigma^{*}\right)\right)$ is given by $\left\langle F_{0}, G_{0}\right\rangle=\int\left\langle F_{0}(x), G_{0}(x)\right\rangle d \mu_{\gamma}(x)$, [3, Theorem 1]. And it is known that there exists an isometry of $L^{\infty}\left(\mu_{\gamma}, E^{*}\right)$ into $C\left(X_{\gamma},\left(E^{*}, \sigma^{*}\right)\right),[10$, Proposition 2.4]. But since E^{*} has the Radon-Nikodym property it follows (as μ_{γ} is a finite measure) that $L^{\infty}\left(\mu_{\gamma}, E^{*}\right)$ is also the dual of $L^{1}\left(\mu_{\gamma}, E\right)$, [6, p. 98]. Thus the isometry of Proposition 2.4 in [10] is surjective. In particular, elements of $C\left(X_{\gamma},\left(E^{*}, \sigma^{*}\right)\right)$ are μ_{γ}-measurable. We note for future reference that, as a consequence, the restriction of a $G \in C\left(X,\left(E, \sigma^{*}\right)\right)$ to a σ-finite subset of X is μ-measurable.

Thus as countably valued functions are dense in $L^{\infty}\left(\mu_{\gamma}, E^{*}\right)$ [6, p. 97], for each positive integer k we can find a countably valued measurable function $G_{\gamma, k}$ on X_{γ} such that ess sup $\left\|G_{\gamma}(x)-G_{\gamma, k}(x)\right\|<1 / k$. Moreover, since every measurable subset of X_{γ} differs from a clopen set by a set of measure zero [1, p. 1] we may assume that $G_{\gamma, k}=\sum_{j=1}^{\infty} e_{\gamma, k, j} \chi_{A_{\gamma, k, j}}$, where the $A_{\gamma, j, k}$ are pairwise disjoint clopen sets with $\left(\cup_{j=1}^{\infty} A_{\gamma, k, j}\right)^{-}=X_{\gamma}$. Note that since $G_{\gamma, k}$ is norm-continuous on $\cup_{j=1}^{\infty} A_{\gamma, k, j}$ and since G_{γ} is weak * continuous, we must have $\| G_{\gamma}(x)-$ $G_{\gamma, k}(x) \| \leqq 1 / k$ for all $x \in \cup_{j=1}^{\infty} A_{\gamma, k, j}$. Also note that $C_{\gamma, k}=X_{\gamma}-\cup_{j=1}^{\infty} A_{\gamma, k, j}$ is nowhere dense, and thus $\mu\left(C_{\gamma, k}\right)=0$.

Now let $V_{k}=\cup_{\gamma \in \Gamma} \cup_{j=1}^{\infty} A_{\gamma, k, j}$ and define G_{k} on V_{k} by $G_{k}=G_{\gamma, k}$ on $\cup_{j=1}^{\infty} A_{\gamma, k, j}$. Then G_{k} is norm-continuous on V_{k} and $X-V_{k}$ is nowhere dense. It follows that the set $N=\cup_{k=1}^{\infty}\left(X-V_{k}\right)$ is nowhere dense. (Here again we use the fact that a set of first category in a hyperstonean space is nowhere dense [8, p. 160].) Thus $O=X-\bar{N}$ is an open dense subset of X on which G is the uniform limit of the norm-continuous functions $\left.G_{k}\right|_{o}$.

Throughout the remainder of this section E will denote a Hilbert space while V, V^{*}, T and J will be as given in Section 1. J_{0} denotes the canonical injection of $L^{1}(\mu, E)$ into $C\left(X,\left(E, \sigma^{*}\right)\right)^{*}$.

Lemma 2. For $v \in V, e \in E$ and $f \in C(X)$ we have $\left\langle f \cdot e, T^{*} \circ J(v)\right\rangle=$ $\int f d \mu_{e, v}$ for some normal regular Borel measure $\mu_{e, v}$ on X.

Proof. We first note that if U is any weak * closed subspace of V^{*}, then U is isometric to $\left(V /^{\perp} U\right)^{*}$ under the linear map $A: U \rightarrow\left(V /^{\perp} U\right)^{*}$ defined by $\langle[v], A u\rangle=\langle v, u\rangle$ for $u \in U, v \in V$. (Here, for $v \in V,[v]$ denotes the equivalence class of v in $V /^{\perp} U$.) For since U is weak * closed, $U=\left({ }^{\perp} U\right)^{\perp}$ by the bipolar theorem, and our assertion is thus contained in [15, p. 227, problem 5], or [5, p. 29, Lemma 1].

We may clearly assume that $\|e\|=1$, and, as in the previous section, we let $S(e)=\{f \cdot e: f \in C(X)\}$. We have seen that $T(S(e))$ is a weak * closed subspace of V^{*}. By the first paragraph of this proof the map sending $u=T(f \cdot e)$ into $\langle[v], A u\rangle=\langle v, T(f \cdot e)\rangle$ is weak $*$ continuous on the dual space $T(S(e))$. Since this dual is the isometric image of $C(X)$ under $f \rightarrow$ $T(f \cdot e)$, and every isometry between $C(X)$ and a dual space is continuous with respect to the weak ${ }^{*}$ topologies of these spaces by Grothendieck's result, it follows that the map $f \rightarrow T(f \cdot e) \rightarrow\langle v, T(f \cdot e)\rangle$ is weak * continuous. Thus, again by Grothendieck's theorem, $\left\langle f \cdot e, T^{*} \circ J(v)\right\rangle=\int f d \mu_{e, v}$, where $\mu_{e, v}$ is a normal regular Borel measure on X.

Henceforth $\left\{e_{\alpha}: \alpha \in A\right\}$ will denote a fixed orthonormal basis for E. For simplicity of notation given $\alpha, \alpha_{j} \in A$ we will denote by $\mu_{\alpha, v}$ the normal regular Borel measure determined via Lemma 2 by $\left\langle f \cdot e_{\alpha}, T^{*} \circ J(v)\right\rangle, f \in C(X)$, and by $\mu_{j, v}$ the measure determined by $\left\langle f \cdot e_{\alpha_{j}}, T^{*} \circ J(v)\right\rangle$.

Lemma 3. (a) Given $v \in V$ then $\mu_{\alpha, v}=0$ except for those α belonging to a countable subset K_{v} of A.
(b) If $K_{v}=\left\{e_{\alpha_{j}}: j=1,2, \ldots\right\}$ then the vector measures m_{N} defined by $m_{N}=\sum_{j=1}^{N} e_{\alpha_{j}} \cdot \mu_{j, v}$ constitute a Cauchy sequence in $C(X, E)^{*}$ and thus converge to an $m_{v} \in C(X, E)^{*}$ with $m_{v} \ll \mu$.

Proof. (a): Let k be any fixed positive integer and suppose that there are n indices $\alpha_{1}, \ldots, \alpha_{n} \in A$ with $\left\|\mu_{j, v}\right\|>1 / k, 1 \leqq j \leqq n$. For each such j choose $f_{j} \in C(X)$ with $\left\|f_{j}\right\|_{\infty}=1$ and $\int f_{j} d \mu_{j, v}$ a real number greater than $1 / k$. Then $\left\|\left(f_{1} \cdot e_{\alpha_{1}}+\ldots+f_{n} \cdot e_{\alpha_{n}}\right) / \sqrt{n}\right\|_{\infty} \leqq 1$ so that
$\|v\|=\left\|T^{*} \circ J(v)\right\| \geqq\left\langle\left(f_{1} e_{\alpha_{1}}+\ldots+f_{n} e_{\alpha_{n}}\right) / \sqrt{n}, T^{*} \circ J(v)\right\rangle>\sqrt{n} / k$
and hence $n<\|\nu\|^{2} \cdot k^{2}$ from which (a) follows.
(b): Suppose, to the contrary, that $\left\{m_{N}: N=1,2, \ldots\right\}$ is not a Cauchy sequence. Then there is an $\epsilon>0$ such that for each positive integer M there exists N greater than M with $\left\|m_{N}-m_{M}\right\|>2 \epsilon$. Choose $N_{1}>0$ such that $\left\|m_{N_{1}}\right\|>\epsilon$ and suppose that $N_{2}<N_{3}<\ldots<N_{p}$ have been chosen with $\left\|m_{N_{k}}-m_{N_{k}-1}\right\|>\epsilon$ for $k=2, \ldots, p$. For simplicity of notation we write e_{j} for $e_{\alpha_{j}}$ and set $N_{0}=0$. Then for each $k, 0 \leqq k \leqq p-1$ take $H_{k+1} \in C(X, E)$ such that the range of H_{k+1} lies in $\overline{s p}\left(\left\{e_{N_{k}+1}, \ldots, e_{N_{k+1}}\right\}\right),\left\|H_{k+1}\right\|_{\infty} \leqq 1$, and such that $\left\langle H_{1}, m_{N_{1}}\right\rangle$ and $\left\langle H_{k}, m_{N_{k}}-m_{N_{k-1}}\right\rangle, 2 \leqq k \leqq p$, are each real numbers greater than ϵ. Thus

$$
\begin{aligned}
&\left\|(1 / \sqrt{p}) \sum_{k=1}^{P} H_{k}\right\|_{\infty} \leqq \leqq \text { but }\left\langle(1 / \sqrt{p}) \sum_{k=1}^{P} H_{k}, T^{*} \circ J(v)\right\rangle \\
&=(1 / \sqrt{p})\left[\left\langle H_{1}, m_{N_{1}}\right\rangle+\left\langle H_{2}, m_{N_{2}}-m_{N_{1}}\right\rangle+\ldots\right. \\
&\left.\ldots+\left\langle H_{p}, m_{N_{p}}-m_{N_{p-1}}\right\rangle\right]>\sqrt{p} \cdot \epsilon
\end{aligned}
$$

which, for sufficiently large p, will be greater than $\left\|T^{*} \circ J(v)\right\|=\|v\|$. This contradiction shows that the m_{N} do indeed form a Cauchy sequence in $C(X, E)^{*}$ and hence converge to an $m_{v} \in C(X, E)^{*}$. Since m_{N} is absolutely continuous with respect to μ for each N, so then is m_{v}. This completes the proof.

Now given $v \in V$ the restriction of $T^{*} \circ J(v)$ to $C(X, E)$ is represented by a regular Borel vector measure n_{v} on X to E with $\left\|n_{v}\right\| \leqq\left\|T^{*} \circ J(v)\right\|=\|v\|$. Moreover, for all $e \in E$ and $f \in C(X)$ it is clear that

$$
\left\langle f \cdot e, n_{v}\right\rangle=\left\langle f \cdot e, T^{*} \circ J(v)\right\rangle=\left\langle f \cdot e, m_{v}\right\rangle
$$

It thus follows that n_{v} and m_{v} agree on $C(X) \otimes E$ which is dense in $C(X, E)$ [7, p. 375], and so $n_{v}=m_{v}$. The elements of $C\left(X,\left(E, \sigma^{*}\right)\right)$ are integrable with respect to m_{ν}, for they are μ-measurable on μ - σ-finite sets as mentioned in the proof of Lemma 1 , and as $\left|m_{v}\right|$ is finite, the μ-continuous measure m_{v} has μ - σ-finite support. Therefore $F \rightarrow \int F d m_{v}$ defines a continuous linear functional on $C\left(X,\left(E, \sigma^{*}\right)\right)$. Then $\phi_{v}=T^{*} \circ J(v)-m_{v} \in C\left(X,\left(E, \sigma^{*}\right)\right)^{*}$ with $\phi_{v} \in C(X, E)^{\perp}$ and we have $T^{*} \circ J(v)=m_{v}+\phi_{v}$. Whenever we write, for $v \in V, T^{*} \circ J(v)=m_{v}+\phi_{v}$ it will be understood that m_{v} is the vector measure which is determined by Lemma 3 and is the restriction of $T^{*} \circ J(v)$ to $C(X, E)$, and that $\phi_{v} \in C(X, E)^{\perp}$.

Lemma 4. For $v \in V$ we have $T^{*} \circ J(v)=G_{v} d \mu$ for some $G_{v} \in L^{1}(\mu, E)$ with $\left\|G_{v}\right\|_{1}=\|v\|$. Consequently $V \cong L^{1}(\mu, E)$ under the mapping $J_{0}^{-1} \circ T^{*} \circ J$.

Proof. We have established that for $v \in V$ one has $T^{*} \circ J(v)=m_{v}+\phi_{v}$, and we want to show that $\phi_{v}=0$. For if this is established we would have $T^{*} \circ J(v)=m_{v}$, and, since E has the Radon-Nikodym property, [6, p. 218], this latter element is of the form $G_{v} d \mu$ for some $G_{v} \in L^{1}(\mu, E)$ with $\left\|G_{v}\right\|_{1}=$ $\left\|m_{v}\right\|=\|v\|$. We would thus have established that $T^{*} \circ J$ embeds V isometrically into $J_{0}\left(L^{1}(\mu, E)\right)$, which, as previously noted, shows that $T^{*} \circ J$ maps V onto $J_{0}\left(L^{1}(\mu, E)\right)$.
Thus, to show that $\phi_{v}=0$ for each $v \in V$, take any $F \in C\left(X,\left(E, \sigma^{*}\right)\right)$ and define $v_{F}^{*} \in V^{*}$ by $\left\langle v, v_{F}^{*}\right\rangle=\left\langle F, m_{v}\right\rangle, v \in V$. Then since v_{F}^{*} is a continuous linear functional on V there exists an $H_{F} \in C\left(X,\left(E, \sigma^{*}\right)\right)$ with $\left\|H_{F}\right\|_{\infty}=$ $\left\|v_{F}^{*}\right\| \leqq\|F\|_{\infty}$ and $\left\langle v, v_{F}^{*}\right\rangle=\left\langle v, T\left(H_{F}\right)\right\rangle$. If we can show that $F=H_{F}$ we would have, for $v \in V$,

$$
\begin{aligned}
\left\langle F, m_{v}\right\rangle & =\left\langle v, v_{F}^{*}\right\rangle=\left\langle v, T\left(H_{F}\right)\right\rangle=\langle v, T(F)\rangle \\
& =\left\langle F, T^{*} \circ J(v)\right\rangle=\left\langle F, m_{v}\right\rangle+\left\langle F, \phi_{v}\right\rangle
\end{aligned}
$$

so that $\left\langle F, \phi_{v}\right\rangle=0$. Since this would be true for all $F \in C\left(X,\left(E, \sigma^{*}\right)\right)$, it would follow that $\phi_{v}=0$.

Thus suppose, to the contrary, that $F \neq H_{F}$ and let $\delta=\left\|F-H_{F}\right\|_{\infty}$. Then choose $\epsilon>0$ such that

$$
\begin{equation*}
\delta(1-\epsilon)>\delta / 2 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
5 \epsilon \cdot\|F\|_{\infty}<\delta / 2 \tag{7}
\end{equation*}
$$

We know that $F-H_{F}$ is norm-continuous on an open dense subset O_{1} of X and we have $\sup _{x \in O_{1}}\left\|F(x)-H_{F}(x)\right\|>\delta(1-\epsilon)$. (Note that $\|F(\cdot)\|$ is lower semicontinuous on X.) Take a clopen subset C of O_{1} such that $\sup _{x \in C} \| F(x)-$ $H_{F}(x) \|>\delta(1-\epsilon)$. Then $\chi_{C}\left(F-H_{F}\right) \in C(X, E)$ and $\left\|\chi_{C}\left(F-H_{F}\right)\right\|_{\infty}>$ $\delta(1-\epsilon)$.

Choose $v \in V$ with $\|v\| \leqq 1$ such that $\left|\left\langle v, T\left(\chi_{C}\left(F-H_{F}\right)\right)\right\rangle\right|=\mid\left\langle\chi_{C}\left(F-H_{F}\right)\right.$, $\left.T^{*} \circ J(v)\right\rangle \mid>\delta(1-\epsilon)$. If $T^{*} \circ J(v)=m_{v}+\phi_{v}$ then $\left\langle\chi_{C}\left(F-H_{F}\right), \phi_{v}\right\rangle=0$ and $\left|m_{v}\right|(C)>1-\epsilon$, hence $\left|m_{v}\right|(X-C)<\epsilon$. We would next like to show that $\left\|\phi_{\nu}\right\|$ is small.

To this end take $G \in C\left(X,\left(E, \sigma^{*}\right)\right)$ with $\|G\|_{\infty} \leqq 1$ such that $\left\langle G, \phi_{v}\right\rangle>\left\|\phi_{v}\right\|$ $-\epsilon$. Now G is norm-continuous on an open dense subset $O_{2} \subseteq X$ and since $\left|m_{v}\right|\left(X-O_{2}\right)=0$, we can find a clopen set $D \subseteq O_{2}$ with $\left|m_{v}\right|(D)>1-\epsilon$, hence $\left|m_{v}\right|(X-D)<\epsilon$. Thus we can take an $F_{0} \in C(X, E)$ such that the support of F_{0} is contained in $D,\left\|F_{0}\right\|_{\infty} \leqq 1$, and $\left\langle F_{0}, m_{v}\right\rangle$ is real and greater than $1-\epsilon$. Then $F_{0}+G-\chi_{D} G \in C\left(X,\left(E, \sigma^{*}\right)\right)$ with $\left\|F_{0}+G-\chi_{D} G\right\|_{\infty} \leqq 1$. Hence, (noting that $\left\langle\chi_{D} G, \phi_{v}\right\rangle=0$ as $\chi_{D} G$ is norm-continuous), we have

$$
\begin{aligned}
1 & \geqq\left|\left\langle F_{0}+G-\chi_{D} G, T^{*} \circ J(v)\right\rangle\right|=\left|\left\langle F_{0}+G-\chi_{D} G, m_{v}+\phi_{v}\right\rangle\right| \\
& \geqq\left\langle F_{0}, m_{v}\right\rangle+\left\langle G, \phi_{v}\right\rangle-\left|\left\langle G-\chi_{D} G, m_{v}\right\rangle\right| \\
& >1-\epsilon+\left\|\phi_{v}\right\|-\epsilon-\left|m_{v}\right|(X-D)>1+\left\|\phi_{v}\right\|-3 \epsilon .
\end{aligned}
$$

Therefore $\left\|\phi_{\nu}\right\|<3 \epsilon$.
We thus have

$$
\begin{aligned}
\int \chi_{C} F d m_{v}+\int_{X-C} F d m_{v} & =\left\langle F, m_{v}\right\rangle \\
& =\left\langle v, v_{F}^{*}\right\rangle=\left\langle v, T\left(H_{F}\right)\right\rangle=\left\langle H_{F}, T^{*} \circ J(v)\right\rangle \\
& =\int \chi_{C} H_{F} d m_{v}+\int_{X-C} H_{F} d m_{v}+\left\langle H_{F}, \phi_{v}\right\rangle
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\langle\chi_{C}\left(F-H_{F}\right), T^{*} \circ J(v)\right\rangle & =\left\langle\chi_{C}\left(F-H_{F}\right), m_{v}\right\rangle=\int \chi_{C}\left(F-H_{F}\right) d m_{v} \\
& =\int_{X-C} H_{F} d m_{v}+\left\langle H_{F}, \phi_{v}\right\rangle-\int_{X-C} F d m_{v}
\end{aligned}
$$

But the modulus of the quantity on the left is greater than $\delta(1-\epsilon)>\delta / 2$ by
(6), whereas the modulus of the quantity on the right is less than $5 \epsilon \cdot\|F\|_{\infty}<$ $\delta / 2$ by (7). This contradiction completes the proof.
3. Remarks and Problems. Obviously our theorem is false if we attempt to replace $C\left(X,\left(E, \sigma^{*}\right)\right)$ by $C\left(X,\left(E^{*}, \sigma^{*}\right)\right)$ for an arbitrary (even separable) Banach dual E^{*}. For if X is a one-point space then $C\left(X,\left(E^{*}, \sigma^{*}\right)\right) \cong E^{*}$. Thus if E^{*} fails to have a unique predual, e.g. if $E^{*}=\ell^{l}$, then the same may be true of $C\left(X,\left(E^{*}, \sigma^{*}\right)\right)$. However one may ask whether we can replace Hilbert space $1 E$ in our theorem by a suitable class of Banach duals E^{*} properly containing Hilbert space. Ideally, can one characterize the class of Banach duals E^{*} for which our theorem holds with E replaced by E^{*} ? In particular, if E^{*} has the Radon-Nikodym property and strongly unique predual then, for X hyperstonean, is the predual of $C\left(X,\left(E^{*}, \sigma^{*}\right)\right)$ also strongly unique?

References

1. E. Behrends, et al., L^{P}-structure in real Banach spaces, Lecture Notes in Mathematics 613, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
2. M. Cambern and P. Greim, The bidual of $C(X, E)$, Proc. Amer. Math. Soc. 85 (1982), pp. 53-58.
3. M. Cambern and P. Greim, The dual of a space of vector measures, Math. Z. $\mathbf{1 8 0}$ (1982), pp. 373-378.
4. P. Cembranos, $C(K, E)$ contains a complemented copy of c_{0}, Proc. Amer. Math. Soc. 91 (1984), pp. 556-558.
5. M. M. Day, Normed linear spaces, 3rd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1973.
6. J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
7. N. Dinculeanu, Vector measures, Pergamon Press, New York, 1967.
8. J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. 2 (1951), pp. 151-182.
9. N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
10. P. Greim, Banach spaces with the L^{1}-Banach-Stone property, Trans. Amer. Math. Soc. 287 (1985), pp. 819-828.
11. A. Grothendieck, Une caractérisation vectorielle métrique des espaces L^{1}, Canadian J. Math. 7 (1955), pp. 552-561.
12. R. B. Holmes, Geometric functional analysis and its applications, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
13. H. E. Lacey, The isometrical theory of classical Banach spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
14. I. Singer, Linear functionals on the space of continuous mappings of a compact space into a Banach space, Rev. Roumaine Math. Pures Appl. 2 (1957), pp. 301-315. (Russian)
15. A. E. Taylor, Introduction to functional analysis, John Wiley and Sons, New York, 1958.

Department of Mathematics
University of California
Santa Barbara, CA 93106
Department of Mathematics
The Citadel
Charleston, SC 29409

[^0]: Received by the editors May 1, 1986, and, in revised form, January 14, 1987. AMS Subject Classification (1980): Primary 46E40; Secondary 46E15, 46G10.
 (c) Canadian Mathematical Society 1986.

