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Abstract
The one-dimensional transient solidification of a binary alloy undergoing shrinkage is well-known as an invaluable
benchmark for the testing of numerical codes that model macrosegregation. Here, recent work that considered the
small-time behaviour of this problem is extended until complete solidification, thereby determining the solute pro-
file across the entire solidified domain. The small-time solution is used as the initial condition for the numerical
integration of a problem having three moving boundaries. Of particular significance is the so-called inverse seg-
regation that is observed at the start of solidification, and the extreme segregation that is observed at the end; in
the case of the example presented, which is for the often-cited Al–Cu system, the macrosegregation is found to be
positive or negative, depending on whether Scheil’s equation or the lever rule is assumed at the microscale, respec-
tively. The relevance of these results for the modelling of steady-state continuous casting processes – in particular,
the phenomenon of centreline segregation – is also discussed.

1. Introduction
The one-dimensional problem for the solidification of a cooling binary alloy melt which simultaneously
undergoes solidification shrinkage is the simplest configuration in which to examine the role of convec-
tion in a binary system; as such, it can be used as a benchmark for testing higher-dimensional numerical
codes. Furthermore, the fact that there is relative motion between solid and liquid phases in the so-called
mushy zone, where the two phases coexist, leads to the possibility of severe macrosegregation [10, 13,
14, 25, 26], i.e. variations in composition that occur in alloy castings or ingots and range in scale from
several millimetres to centimetres or even metres; this is a central problem in industry, since it strongly
influences the further workability of the cast products and their mechanical properties.

The mathematical problem to be solved was recently formulated in [6]; however, only similarity solu-
tions available for short times were computed, although it was suggested that these solutions could be
used as initial conditions for solving the problem for all time, when the problem no longer has a similar-
ity solution. Thus, the purpose of this paper is to tackle the remainder of the problem, and thereby solve
it up to complete solidification; doing so would then yield the macrosegregation profile over the entire
domain. The novelty of the work is that, in so doing, we are able to shed light on earlier experimental
and theoretical results that have been obtained for close variants of this problem [10, 21, 22, 25, 29,
31, 34], in particular as regards the possibility of severe macrosegregation as complete solidification
is approached. Also, the solution to this problem, which is time-dependent in nature, turns out to be
of some relevance to the phenomenon of centreline segregation in steady-state continuous casting pro-
cesses. We will carry out our study using a moving mesh formulation, rather than the more commonly
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Figure 1. Solidification with shrinkage: (a) initial configuration at. t = 0; (b) after time t > 0.

used enthalpy method, which employs a fixed mesh. As a consequence, this avoids the need to use arbi-
trary artificial parameters to ensure numerical convergence [2, 5]. Moreover, by tracking the solidus and
liquidus interfaces explicitly, it is hoped to be able to avoid the usual issues of numerical dispersion and
diffusion that are present in the numerically simulated macrosegregation profiles reported in the litera-
ture [15]. In fact, to the best of our knowledge, a moving mesh formulation for this type of problem has
been used only once [29]; however, the mathematical details given were comparatively sparse and there
is considerable doubt about the accuracy of the results exactly in the region of complete solidification.

The layout of the paper is as follows. In Section 2, we re-cap the nondimensionalized governing
equations from [6]. In Section 3, we discuss the numerical implementation of these equations; the results
are presented in Section 4. In Section 5, the results are discussed in the context of earlier attempts to
solve similar problems and their relevance to the modelling of macrosegregation in continuous casting
processes; conclusions are then drawn in Section 6.

2. Mathematical formulation
We consider a transient one-dimensional problem, as shown in Figure 1, in which a region of binary
alloy melt of initial extent l, temperature Tcast and composition C0, is cooled by a boundary at y = 0 that
is held at temperature Tw. To fix ideas more precisely, we suppose that the alloy in question has a phase
diagram with a eutectic point, with eutectic temperature and concentration Teut and Ceut respectively, as
indeed is the case for many alloys of technological interest. Figure 2 shows the phase diagram for the Al-
Cu system, which was the one implicitly considered by [31] and the one that we will consider here, and
we will also assume that Tw ≤ Teut, which ensures that complete solidification occurs for any choice of
C0, such that 0 ≤ C0 ≤ Ceut. As indicated in Figure 1, at some time t > 0, the region that initially occupied
0 ≤ y ≤ l will shrink to occupy 0 ≤ y ≤ y∞(t), which consists of a solid region occupying 0 ≤ y ≤ ys(t),
a mushy zone occupying ys(t) ≤ y ≤ yl(t) and the melt region occupying yl(t) ≤ y ≤ y∞(t); the shrinkage
occurs as a result of phase change, as molten melt begins to solidify, with the density of the solid being
greater than that of the molten phase. In addition, it is assumed that the solid is stationary, corresponding
to the case of columnar or consolidated equiaxed dendritic solidification.

We re-cap the model equations briefly here; more complete details, including a discussion of how
the less obvious ones are motivated, are given in [6]. We have

in the solid, the conservation of energy is given by

ρscps

∂T

∂t
= Ks

∂2T

∂y2
, (2.1)
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Figure 2. Al-rich side of the linearised phase diagram for the Al–Cu system. L denotes liquid phase,
and α and θ denote two solid phases. The eutectic point in this figure, (Ceut, Teut), is at (33.2 Wt% Cu,
821 K).

where T denotes the temperature, and ρs, cps and Ks the density, specific heat capacity at constant
pressure and thermal conductivity, respectively, of the solid phase, all of which are assumed to be
constant;

in the mush, the total mass balance over solid and liquid phases in the mush, derived from summing
the phase conservation equations as in [8], is given by

(1 − R)
∂χ

∂t
+ ∂U

∂y
= 0, (2.2)

with R = ρs/ρl and U = χv, where ρl is the density of the liquid phase, χ is the liquid fraction and
v is the liquid phase velocity. The conservation of energy is given by

cps

∂

∂t
(ρs(1 − χ) (T − Tref)) + cpl

{
∂

∂t
(ρlχ(T − Tref)) + ∂

∂y
(ρlU(T − Tref))

}

= ∂

∂y

(
K

∂T

∂y

)
− �Hf

∂

∂t
(ρlχ) , (2.3)

where cpl and Kl denote the specific heat capacity at constant pressure and thermal conductivity,
respectively, of the liquid phase, �Hf is the latent heat of fusion and K is the mixture thermal
conductivity, given by

K= χKl + (1 − χ) Ks. (2.4)

Also, Tref is a reference temperature, to which thermal energies in all phases must refer consistently;
a convenient choice for Tref is Tm, the melting point of the solvent element. The equation for the
conservation of solute, taken over solid and liquid phases, is given by

∂

∂t
(ρC) + ∂

∂y
(ρlClU) = 0, (2.5)

where the form for the mixture concentration, C, depends on the assumption made regarding solute
transport at the microscale. To take into account all possibilities, we write

ρC = χρlCl + ρs

∫ 1−χ

0

(
Cs + βχ ′ dCs

dχ ′

)
dχ ′, (2.6)

with Cl and Cs as the concentrations of the solute in the liquid and solid phases, respectively, which
are related by

Cs = k0Cl, (2.7)
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where k0 is the partition coefficient. The parameter β, where 0 ≤ β ≤ 1, determines the extent of
solute back diffusion at the microscale; thus, β = 1 corresponds to the lever rule, i.e. complete back
diffusion, whereas β = 0 corresponds to the Scheil equation, i.e. no back diffusion. Consequently,
equation (2.5) becomes

ρl

∂

∂t
(χCl) − k0ρsCl

∂χ

∂t
+ ρsβ(1 − χ) k0

∂Cl

∂t
+ ∂

∂y
(ρlClU) = 0; (2.8)

this is demonstrated in Appendix A. We also have local thermodynamic equilibrium in the mushy
region, so that, from the liquidus line in the phase diagram,

T = Tm − mCl for 0 ≤ χ ≤ 1, (2.9)

where m > 0; note here that, in view of the minus sign in equation (2.9). Note also that we have not
mentioned any equation for the conservation of momentum; this was discussed in appendix A in [6]
and reflects the fact that, in this one-dimensional flow, the velocity can be determined ahead of the
pressure.

in the melt, here, the mass balance can be written as just
∂U

∂y
= 0, (2.10)

which can be thought of as the result of setting χ = 1 in equation (2.2). The conservation of energy
is given by

ρlcpl

(
∂

∂t
(T − Tref) + ∂

∂y
(U(T − Tref))

)
= Kl

∂2T

∂y2
, (2.11)

also derived considering χ = 1 in equation (2.3), while neglecting changes in material properties
inside the melt region, whereas the conservation of solute, as in [17], is given by

∂

∂t
(ρlCl) + ∂

∂y
(ρlClU) = 0. (2.12)

For simplicity, we henceforth set cps = cpl and Ks = Kl. This is a convenient reduction, since all four
quantities vary with temperature, as well as alloy composition: for example, for Al-3.4 wt% Cu, ther-
mal conductivity decreases by around 30% and specific heat capacity increases by around 60% as the
temperature increases from 300 K to 1073 K [29]. Note also that this will imply that the mixture ther-
mal conductivity is independent of χ ; however, this is not expected to impact the qualitative features of
the resulting macrosegregation profile at leading order and is indeed a common enough assumption in
models of this type [30–33]. More importantly from the point of view of macrosegregation, however,
we keep ρs �= ρl throughout.

2.1. Boundary and interface conditions
2.1.1. Mass
The boundary conditions for U are, at y = ys(t),

U = (1 − R) χsẏs (t) (2.13)

and, at y = yl(t)

U = ẏ∞ (t) . (2.14)

2.1.2. Heat and solute
At y = 0, we have

T = Tw. (2.15)
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On the other hand, at the upper surface of the melt, which would typically be in contact with air [29],
it is reasonable to expect the continuity of heat flux, which will consist of both diffusive and convective
components. Since the temperature and the product of normal component of velocity and material den-
sity will both be continuous across this interface, and since the specific heat capacity of air is similar
to that of the melt, we will have that the convective flux will be continuous to a good approximation;
hence, the diffusive flux is continuous. However, since the thermal conductivity of air is many orders of
magnitude smaller than that of the melt, we will obtain just

∂T

∂y
= 0 at y = y∞(t) . (2.16)

Note that there is actually no need for a boundary condition on Cl at y = y∞(t), as it is governed by a
first-order hyperbolic partial differential equation (PDE). However, we show in Section 4 that it turns
out that

∂Cl

∂y
= 0 (2.17)

when there is melt at y = y∞(t); on the other hand, when there is mush, then we also arrive at (2.17), via
(2.9) and (2.16).

At y = ys(t), we have

[T]+
− = 0 at y = ys(t) , (2.18)

[
K

∂T

∂y

]+

−
= −ρl�Hfχ

dys

dt
at y = ys(t) , (2.19)

with [ ]+
− denoting the difference in the value of that function above and below y = ys(t), noting that the

value of K on the minus side in (2.19) is implicitly taken to be Ks, and{
χ = 0, T = Tm − mCl, if Cl < Ceut

T = Teut, if Cl = Ceut

at y = ys(t) . (2.20)

Furthermore, we shall henceforth write χs = χ |y=ys(t).
At y = yl(t), we have

[T]+
− = 0, (2.21)

[
K

∂T

∂y

]+

−
= 0, (2.22)

where the value of K on the plus side in (2.22) is implicitly taken to be Kl, and, analogous to the first
alternative in (2.20),

χ = 1, T = Tm − mCl. (2.23)

2.2. Initial conditions

For y > 0,

T = Tcast, (2.24)

Cl = C0, (2.25)

as well as

yl(0) = 0, (2.26)

ys(0) = 0, (2.27)

y∞(0) = l. (2.28)
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Furthermore, these yield a further condition that describes the conservation of solute over the whole
system: ∫ y∞(t)

0

ρCdy = ρlC0l. (2.29)

2.3. Nondimensionalized governing equations

In order to nondimensionalize the equations, we set

Y = y

l
, τ = t

[t]
, θ = T − Tw

Tcast − Tw
, Û = U

l/ [t]
,


 = ρ

ρl

, Cl = Cl

C0

, Cs = Cs

C0

, Ys = ys

l
, Yl = yl

l
, Y∞ = y∞

l
, (2.30)

where [t] is a time scale, which we shall take as being given by [t] = ρlcpll2/Kl. In the solid, where
0 ≤ Y ≤ Ys(τ ),

R
∂θ

∂τ
= ∂2θ

∂Y2
. (2.31)

In the mush, where Ys(τ ) ≤ Y ≤ Yl(τ ),

∂

∂τ
(χ + (1 − χ) R) + ∂Û

∂Y
= 0, (2.32)

[χ + (1 − χ) R]
∂θ

∂τ
+ Û

∂θ

∂Y
= ∂2θ

∂Y2
− R

St

∂χ

∂τ
, (2.33)

∂

∂τ
(χCl) − k0RCl

∂χ

∂τ
+ βR(1 − χ) k0

∂Cl

∂τ
+ ∂

∂Y

(
ClÛ

)
= 0, (2.34)

θ = θm − m̃Cl, (2.35)

where St = cpl(Tcast − Tw)/�Hf and

θm = Tm − Tw

Tcast − Tw
, m̃ = mC0

Tcast − Tw
.

In the melt, where Yl(τ ) ≤ Y ≤ Y∞(τ ),

∂Û

∂Y
= 0, (2.36)

∂θ

∂τ
+ Û

∂θ

∂Y
= ∂2θ

∂Y2
, (2.37)

∂Cl

∂τ
+ ∂

∂Y

(
ClÛ

)
= 0. (2.38)

Note, incidentally, that there is no trace of any terms involving the reference temperature in equations
(2.33) and (2.37), as these vanish as a consequence of (2.32) and (2.36) and the fact that we have taken
cps = cpl.

The boundary and interfacial conditions are then, at Y = 0,

θ = 0; (2.39)
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at Y = Ys(τ ), {
χ = 0, θ = θm − m̃Cl if Cl < Ceut

θ = θeut if Cl = Ceut

, (2.40)

[
∂θ

∂Y

]+

−
= −χs

St
Ẏs(τ ), (2.41)

Û = (1 − R) χsẎs(τ ), (2.42)

where

θeut = Teut − Tw

Tcast − Tw
, Ceut = Ceut

C0

,

with θeut = θm − m̃Ceut; at Y = Yl(τ ),

θ = θm − m̃Cl, (2.43)

[
∂θ

∂Y

]+

−
= 0, (2.44)

χ = 1; (2.45)

at Y = Y∞(τ ),

∂θ

∂Y
= 0. (2.46)

As for the initial conditions, we have, for 0 < Y ≤ 1,

θ = 1, (2.47)

Cl = 1, (2.48)

as well as

Yl (0) = 0, (2.49)

Ys(0) = 0, (2.50)

Y∞(0) = 1. (2.51)

Also, we have ∫ Y∞(τ )

0


CdY = 1. (2.52)

2.4. Dimensionless parameters

Before proceeding further, it is worth noting that there are now seven dimensionless parameters left:
k0, m̃, R, St, β, θm and θeut. Note also that none of the remaining dimensionless parameters depend on the
initial domain size, l, meaning that the results will not depend on it either. Moreover, using the data in
Table 1 for the same binary alloy as in [6], i.e. Al-5 wt% Cu, we have

m̃ ≈ 0.05, R ≈ 1.06, St ≈ 0.91, θm ≈ 0.97, θeut ≈ 0.63.

Since most of these parameters, as well as k0 and β, are all of O(1), there appear to be no meaningful
simplifications to be made; for example, m̃ = 0 is merely the case of pure solvent. We can note, however,
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Table 1. Parameters for computations for Al-5 wt% Cu

Value Unit
cpl 1107 J kg−1 K−1

cps 1107 J kg−1 K−1

C0 5 wt%
Ceut 33.2 wt%
g 9.81 ms−2

Kl 100 W m−1 K−1

Ks 100 W m−1 K−1

k0 0.17 –
l 0.15 m
m 3.37 K/wt%
Tcast 943 K
Teut 821 K
Tm 933 K
Tw 621 K
ρl 2400 kg m−3

ρs 2550 kg m−3

�Hf 392,000 J kg−1

that R is typically no greater than around 1.1 even for other alloys, meaning that one might think to treat
(R − 1) as a small parameter and consider a regular perturbation expansion in this parameter. This was
indeed done in [40] for a problem similar to that described in Section 5.2 for the particular case of β = 1,
albeit with rather minimal advantage, as the algebra soon became rather lengthy; in fact, although it was
not pursued, it would have become even lengthier still for β < 1. Observe also that the equations do
become much simpler when R = 1; however, there will be no macrosegregation in this case. Moreover,
once a particular binary alloy with a particular initial composition has been chosen, then Tm, Teut, m, C0

and k0 are prescribed; in addition, if Tw and Tcast are also given, then θm, θeut, m̃, k0 and St will all be
known, leaving just β and R as parameters that can be varied. Thus, in what follows, we will focus
primarily on varying these two parameters.

3. Numerical considerations and implementation
A principal difficulty with solving these equations is that there is initially only molten phase; however,
in view of the isothermal boundary condition (2.39), the fully solid and mush regions begin to grow
instantaneously. To account for this, Assunção et al. [6] introduced a triple Landau transformation, and
considered the resulting PDEs in the limit as τ → 0. This gave ordinary differential equations (ODEs),
the solution of which yielded initial conditions for the Landau-transformed system of PDEs. A feature
of this system was the presence of a boundary layer of width τ 1/2 in temperature on the liquid side of
the mush-liquid region for R �= 1 in the Landau coordinates, which is precisely the case of interest for
macrosegregation; in addition, note that since it was also found that Ys, Yl ∼ τ 1/2 in the limit as τ → 0,
this implies that the aforementioned layer is of width τ in physical coordinates.

To continue the computation for τ > 0, there are two possibilities, each with its own advantages and
drawbacks. One can continue the integration in the Landau space; however, this means that it would not
be possible to extend the method to two or three dimensions, which is the ultimate goal. The alternative,
and the one we adopt here, is to use the small-time solution obtained from the Landau-based approach
to set an initial condition at τ = τ0 > 0, where τ0 is taken to be arbitrarily small, and to integrate the
equations in the physical space, using a deformed-mesh approach. What we have in mind is the Arbitrary
Lagrangian-Eulerian (ALE) formulation within the finite-element software Comsol Multiphysics, which
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(a) (b)

Figure 3. The curves in (β, C0)-space which determine whether, initially, χs = 0 or χs > 0 when
R = 1, 3 for: (a) �T = 1 K; (b) �T = 101K. Results obtained using the numerical method in [6].

was used in [37, 38] to solve the problem of solidification of a pure material in the presence of natural
convection in a two-dimensional cavity; although that problem involved only one moving boundary, it
was still demanding in its own right, since the full Navier Stokes equations had to be solved in the liquid
region.

Even so, the situation is, in some ways, more complicated than that in [37, 38]. Here, there are initially
three domains: solid, mush and melt. After some time, only solid and mush is left; after that, only solid is
left. Thus, although we start by solving equations (2.31)–(2.38), subject to (2.39)–(2.52), we transition
to solving (2.31)–(2.35), subject to (2.39)–(2.42) and (2.46), which is when only solid and mush are left.
Once the mush disappears, the macrosegregation profile is determined and there is little point in solving
any further.

One might question why, if one is going to integrate in the physical space, it was necessary to perform
the small-time analysis in the Landau space at all; after all, τ0 has to be chosen arbitrarily anyway. The
subtle reason for this is that, for a given set of parameters (β, C0, R), it is not in general obvious a priori
which of the two choices in (2.40) is the appropriate one at τ = 0. When R = 1, however, it is possible
to delineate analytically in (β, C0)-space which is the appropriate condition; this was given in Figure 4
in [6]. By way of example, Figure 3 shows the curves in (β, C0)-space which determine whether χs = 0
or χs > 0 for R = 1 and 3, for two different values of �T: = Tcast − Tliq, which is often termed as the
superheat; here, as in earlier work [31], one of the values of R is chosen to be unrealistically high in
order to demonstrate the trend for R > 1. In addition, note that the location of this curve can also be
affected by the other dimensionless parameters in the problem, i.e. m̃, St, θm; however, once a particular
binary alloy has been chosen, this can only mean a dependency on the dimensional parameters Tcast and
Tw. We also remark that, if R = 1, none of the other parameters can affect the curves in Figure 3, which
are given for this case by

C0 = Ceut(βk0)
1−k0

1−βk0 . (3.1)

From another point of view, Figure 4 shows χs as a function of β for three values of C0, R = 1, 3 and
�T = 101 K; when R = 1, we have, from [6],

χs = max

(
0,

1

1 − βk0

{(
C0

Ceut

) 1−βk0
1−k0 − βk0

})
. (3.2)

Moreover, it is perfectly possible that, as the integration in τ proceeds, the appropriate condition at
Y = Ys(τ ) changes from the first option in (2.40) to the second, i.e. from non-eutectic solidification to
eutectic solidification, although never the other way around.
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(a) (b)

Figure 4. χs at τ = 0 as a function of β for three values of C0: (a) R = 1; (b) R = 3. Results obtained
using the numerical method in [6].

(a) (b)

Figure 5. Ys, Yl and Y∞ as functions of τ for R = 1 and: (a) β = 0; (b) β = 1.

Details of the numerical implementation, as well as code verification tests, are documented in
Appendix B. Here, instead, we proceed to the results concerning solidification and macrosegregation
profiles.

4. Results
Here, we focus on results obtained using the data in Table 1. Figure 5 shows Ys, Yl and Y∞ as functions of
τ for R = 1 and β = 0, 1; this gives upper and lower bounds, with respect to β, on Ys and Yl for the case
when there is no solidification shrinkage. Figure 6 shows the corresponding solutions when R =1.3; this
was the unrealistically high value chosen in earlier work [6, 31], with a view to highlighting the effect
of solidification shrinkage. In both cases, the computation is stopped when complete solidification is
reached, at which point Yl = Y∞ = 1/R. From these, we can note that our numerical method is adequately
able to capture the fact that, first, the melt-only region disappears, i.e when Yl = Y∞, and also when the
mush region disappears, i.e. when Ys = Y∞.

Of primary metallurgical interest is the final solute profile after complete solidification, which we
will denote by Csolid; using (2.6), this is extracted from the computations by calculating Csolid, where

RCsolid = χs Cl|Y=Ys + R
∫ 1−χs

0

(
Cs + βχ ′ dCs

dχ ′

)
dχ ′, (4.1)
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(a) (b)

Figure 6. Ys, Yl and Y∞ as functions of τ for R = 1.3 and: (a) β = 0; (b) β = 1.

(a) (b)

Figure 7. Csolid as a function of Y for R = 1, 1.1, 1.2, 1.3 and: (a) β = 0; (b) β = 1.

with Csolid = C0Csolid. Figure 7 shows plots of Csolid as a function of Y for β = 0 and 1, with R =
1, 1.1, 1.2, 1.3. These display a number of salient features. First of all, as expected, the profiles become
less uniform as R is increased. Moreover, the plots show the well-known phenomenon of inverse
macrosegregation, whereby the solute concentration is higher at the cooling surface at Y = 0. However,
it is perhaps surprising to see that the macrosegregation level remains fairly constant for a sizeable inter-
val in Y; moreover, this interval corresponds to the time during which there is still a melt-only region,
i.e. Yl < Y∞, as verified by cross-checking this figure against Figure 6. This is done in Figure 8, although
it is evident that the trend is much more distinct for the case when β = 0. A likely factor in this is that C l

in the melt-only region retains its initial value until this point in time, as is readily demonstrated using
the method of characteristics, as follows. From (2.36) and (2.38), we obtain, for Yl(τ ) ≤ Y ≤ Y∞(τ ),

∂Cl

∂τ
+ Û

∂Cl

∂Y
= 0, (4.2)

with Û = Û(τ ). Thence, Cl = Cl(Y − ∫ τ

0
Û(τ ′)dτ ′); applying equation (2.48) then gives Cl = 1, and hence

Cl = C0, as claimed. In turn, this gives equation (2.17). This will mean that Cl = C0 on all characteristics
that enter the mush, which makes it more likely that the values of Cl at Y = Ys(τ ) will coincide with
each other; this will mean that the values of Csolid also coincide with each other. Of course, this is not
completely guaranteed, since the value of Cl at Y = Ys(τ ) is determined by the solution to equation
(2.34), with χ and Û both varying on different characteristics. This line of argument is summarised in
Figure 9.
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(a) (b)

Figure 8. Superposition of Yl(τ ) and Csolid at Y = Ys as functions of τ for R = 1.3 and: (a) β = 0; (b)
β = 1.

Figure 9. Qualitative sketch of the characteristics (dashed curves) for equations (2.34) and (2.38).

Moreover, the more or less constant value for Csolid suggests that the similarity solution given in [31]
would give an accurate value for the macrosegregation level until this point. However, we should note
that for β = 0 and for higher values of R, if anything, the value of Csolid actually increases slightly from its
value at Y = 0. This is also seen in Figures B2 and B3; thereafter, Csolid decreases. However, what happens
after that depends on the value of β: for β = 1, we have negative segregation as complete solidification
is approached, i.e. Csolid is locally less than the initial composition, C0, but the profile for Csolid starts
to increase again for β = 0, leading to positive segregation, i.e. Csolid > C0. The differing trends may
be considered reasonable on physical grounds. β = 1 corresponds to the assumption of rapid solute
diffusion in the solid at the microscale, and this has resulted in solute depletion as full solidification is
reached; hence, Csolid decreases to ensure global solute conservation. On other hand, β = 0 corresponds
to the assumption of zero solute diffusion in the solid at the microscale; this results in the build-up
of solute in the remaining mush, which manifests itself in the increase in Csolid as full solidification is
approached.

Finally, we comment that, although the Al–Cu system is often modelled with the Scheil equation at
the microscale, i.e. β = 0, it is nevertheless instructive to produce results with the lever rule, i.e. β = 1,
in order to see what effect this assumption has on the solution. Moreover, the parameter β is merely
a way to parametrise microsegregation, with 0 and 1 being the extreme values. Since the appropriate
value of β for any given binary alloy system is not actually known, results for the extreme values of β

can serve to provide bounds on what may happen in reality; however, additional results for intermediate
values of β are given in Appendix C.
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Figure 10. Experimental points and simulated profile of copper concentration in an Al-3.4 wt % Cu
ingot, as measured and computed in [29], from which the figure has been adapted.

5. Discussion
We now discuss the above results in two contexts: earlier attempts to consider this problem; relevance
for the modelling of macrosegregation in continuous casting.

5.1. Earlier results on inverse segregation

Inverse segregation induced by solidification shrinkage has previously been considered both theoreti-
cally and experimentally on a number of occasions [10, 21, 22, 25, 29, 31, 34], although not always
resulting in a self-consistent macrosegregation profile over the entire solidified sample, in the sense of
solute conservation. One of the exceptions is [29], wherein the solidification of an Al-3.4 wt% Cu ingot,
for which R = 1.07 and β = 0, was considered theoretically and experimentally, although comparatively
few mathematical details were given; the results were recently re-capped by Dantzig and Rappaz [12, p.
582] and are, for convenience, shown in Figure 10. However, we have not attempted to reproduce these
results with our method, for a number of reasons. First of all, the effect of microporosity was consid-
ered simultaneously with solidification shrinkage, whereas we have only focused on the effect of the
latter. More significantly, however, the situation considered was not that for isothermal cooling, which
is in practice difficult to achieve experimentally anyway, but where the cooling boundary condition that
would replace (2.15) would be rather on the heat flux, −k∂T/∂y. This change would lead to qualita-
tively different behaviour for yl, ys and y∞, as compared to that shown in Figure 6; the new behaviour is
depicted in Figure 11. This time, the mushy zone will not start to form instantaneously, but only after a
delay time, during which the temperature at y = 0 decreases to Tm − mC0; prior to this time, there cannot
be any solidification shrinkage, meaning that Y∞ does not decrease from its original value, if the cooling
shrinkage is negligible. In fact, the numerical method presented here would not be able to capture this
short-time evolution, as it has been developed for the case when solid and mush form instantaneously,
and an alternative small-time asymptotic solution would be required. Next, after the temperature at y = 0
has decreased to Tm − mC0, there will be a mushy zone and a melt-only region, until the temperature at
y = 0 is low enough for only solid to form there; at this stage, the temperature there may either be Teut

or a higher temperature that lies on the solidus line in Figure 2. In view of these differences, note that a
plot corresponding to Figure 7 would be generated from results obtained only after solid starts to form
at y = 0, and we now proceed to a detailed discussion of this.

Earlier work by Flemings and Nereo [18, Figure 6, p. 1455] suggested that the profile for Csolid would
consist of a central plateau at which Csolid = C0, surrounded by a region of inverse segregation near
Y = 0, where Csolid > C0, and a region of negative segregation where Csolid < C0, corresponding to the
last part of the sample to solidify. Dantzig and Rappaz [12, p. 582] comment that the plateau obtained,
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Figure 11. Qualitative schematic for Yl, Ys and Y∞ as functions of τ when a heat flux condition is
applied at the cooling boundary.

both experimentally and theoretically, by Rousset et al. [29] is slightly higher than that of the nominal
composition, as seen in Figure 10; note, however, that the curve for initial composition was plotted in
[12, 29] as being much higher than the actual value of 3.4 wt% Cu, and we have therefore corrected
this in Figure 10. Of relevance to this discussion are also the results of Voller [31], mentioned earlier,
which were for a semi-infinite sample, but which qualitatively agree better with our own findings, at
least as far as the region near Y = 0 is concerned, in that the plateau is considerably higher than the
nominal composition, C0. Moreover, as regards the last part to solidify, Rousset et al. [29] find that
the theoretically obtained profile for Csolid decreases rapidly, whereas the experimental results show a
decrease, followed by an increase; this resembles the results that we have obtained for a variety of values
of R for β = 1, but not for β = 0, although we should once again emphasise that our computations were
for a different cooling boundary condition at Y = 0. Moreover, we point out that we have been very
thorough in verifying our numerical method, as seen in Appendix B.

To summarise the discussion, we show in Figure 12, in as far as it is possible, a qualitative schematic
of how we expect the profiles for Csolid to differ when fixed-temperature and fixed-flux conditions are
used; plot (a) is for when β is close to zero, where plot (b) is for when β is close to 1. Needless to say,
these plots would vary depending on the numerical values of the model parameters, but it is nevertheless
possible to make some quite definitive qualitative predictions and observations:

1. In both cases, Csolid > C0 at Y = 0, since inverse segregation occurs regardless of the thermal
boundary condition.

2. In the region immediately adjacent to Y = 0, Csolid will be more or less constant for the fixed-
temperature condition, but will decrease from its value at Y = 0 for the fixed-flux case.

3. As Y increases further, Csolid will decrease from its more or less constant value in the case of the fixed-
temperature condition. For the fixed-flux condition, Csolid may either plateau out or still continue to
decrease.

4. Thereafter, it becomes harder to draw conclusions. In both cases, solute must be conserved. For
the fixed-temperature condition, Csolid has hitherto had a value greater than C0, which means that it
has to decrease below this value; this is seen in both plots in Figure 7, although the values of Csolid

become so low for β = 0 that the profile has to compensate so that Csolid > C0 near Y = 1/R in order
to achieve solute conservation, all the more so for higher values of R. For the fixed-flux condition,
one would not expect as dramatic a difference in the behaviour of Csolid near Y = 1/R for different
values of β, since Csolid has not strayed from C0 for as large an interval in Y as was the case for
the fixed-temperature condition. Note, for example, that there is negative segregation near Y = 1/R
even for β = 0 in Figure 10, which is a fixed-flux case, whereas we obtained this kind of negative
segregation for a fixed-temperature case for β = 1.
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(a) (b)

Figure 12. Qualitative schematic for Csolid as a function of Y when fixed-temperature and fixed-flux
boundary conditions are used, with: (a) β ≈ 0; (b) β ≈ 1. Note that Csolid at Y = 0 is intentionally greater
in (b). Moreover, Csolid at Y = 0 need not in practice be the same for the two types of cooling conditions.

5.2. Relevance to continuous casting

An important question is whether this model can be used to predict what happens as regards centreline
segregation in steady-state continuous casting processes, in particular those for steel [20, 28]; this is
a severe form of positive segregation near the axis of symmetry of the solidified casting. A simplified
schematic for the continuous casting process is given in Figure 13. Typically, molten steel enters a cool-
ing mould region of width 2W at z = 0, solidifies and is withdrawn with a constant casting speed Vcast.
Whereas W is of order of tens of centimetres, the distance from the top of the cooling mould to the end of
solidification at the centreline can be as great as 20 m; consequently, the geometry for continuous cast-
ing can be considered as slender. One reason to suppose that the two situations might be related is that,
because the geometry for continuous casting is slender, the governing equations for a two-dimensional
(2D) steady-state model for the process have a great number of similarities with those analysed in this
paper [39, 40]; in particular, the coordinate in the casting direction, z, acts as a time-like variable via the
relation z = Vcastt. Furthermore, the fact that y = W is an axis of symmetry means that only the left-half
of the geometry need be considered and that the boundary conditions there for T and Cl will be the same
as those given in (2.16) and (2.17), respectively. Moreover, the region near the centreline in continuous
casting is always the last to solidify and, as seen from Figure 7, the region that solidifies last tends to
undergo the greatest changes in solute concentration. Indeed, the analogy between the two situations is
appropriate, but only as regards the equation for the conservation of heat, (2.3), and when R = 1. On the
other hand, there are significant differences:

• the extent of the spatial domain in y is fixed in the 2D model for continuous casting;
• in the latter, there are two components of velocity, i.e. in the y- and z-directions, whereas there is

only one component in the one-dimensional (1D) model;
• Darcy’s law for flow in the mushy zone is a key part of the 2D continuous casting problem, and the

pressure cannot be solved for a posteriori. In particular, this means that the expression used for the
mush permeability will affect the solution, and hence the macrosegregation, which was not the case
for the time-dependent 1D model.
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Figure 13. A schematic of a continuous casting process for an alloy.

6. Conclusions
In this paper, we have extended our earlier work for the one-dimensional solidification of a binary alloy
undergoing shrinkage [6]. Whereas the earlier work considered the small-time similarity solution to
this problem, here we have used that solution as the initial condition for the full problem, which we
compute numerically until complete solidification. This starts as a triple moving-boundary problem,
which turns into a dual moving-boundary problem when the melt-only phase depletes. Of particular
interest is the final macrosegregation profile that is obtained. Near the cooled surface, there is an ele-
vated solute concentration, corresponding to the expected phenomenon of inverse macrosegregation.
Thereafter, this elevated level is maintained until the melt-only phase depletes; thereafter, the solute
concentration decreases appreciably, resulting in a region of negative segregation, i.e. where the local
concentration is lower than the starting concentration, C0. What happens after that depends on the value
of the microsegregation parameter, β: greater values of β, with β = 1 corresponding to the lever rule,
result in continued negative segregation, whereas lower values of β, with β = 0 corresponding to the
Scheil equation, result in positive segregation, i.e. the local concentration is higher than C0, as complete
solidification is approached, particularly for higher values of the shrinkage parameter, R.

The formulation presented in this paper can serve as a starting point for extension in several directions.
Perhaps the most obvious would be the implementation of a convective (Robin) boundary condition for
the temperature, instead of the Dirichlet condition used in equation (2.15), as this is more likely the case
in practice. Furthermore, our formulation can be useful in informing on the development of a model
for macrosegregation in continuous casting processes. Also of significance is that our approach gives
a framework for studying macrosegregation in ingot casting using a moving mesh formulation, rather
than the more commonly used enthalpy method. As a consequence, this avoids the need to use arbitrary
artificial parameters to ensure numerical convergence [2, 5]; indeed, the only arbitrary parameter that
we have had to introduce was τ0, which is related to the time after the start of solidification.

Another direction for future work would be to use the current formulation to shed further light on
the formation of channel segregates in casting processes, i.e. freckles, A-segregates, V-segregates [41];
whereas the first two are believed to form as a consequence of the enrichment of the interdendritic melt
with light solute elements, leading to a decrease in the local melt density and the onset of thermosolutal
convection [7], a mechanism for the third has still to be determined. Although the formation of chan-
nel segregates is a comparatively old problem [3, 16, 19, 24, 43], there is still considerable doubt as to
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whether existing numerical simulations are able to compute them correctly [35, 36], as regards mesh
independence; this refers primarily to their width, their length and the spacing between them. In par-
ticular, the approach adopted here could elucidate when and exactly where in the mushy zone they are
initiated; a precursor to this is believed to be when remelting first occurs, i.e. where ∂χ/∂t > 0 locally.
Although solidification shrinkage is not responsible for this, it may nevertheless act to moderate it, by
delaying the onset of thermosolutal convection, if not preventing it completely [27].
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Appendix A: derivation of equation (2.8)
First, note that the two extremes for solute transport at the microscale are the lever rule and the Scheil
equation [30, 34], where

ρC = χρlCl +
{

ρs(1 − χ) Cs, lever rule

ρs

∫ 1−χ

0
Csdχ ′, Scheil equation

, (A1)

with Cl and Cs as the concentrations of the solute in the liquid and solid phases, respectively, which are
related by

Cs = k0Cl, (A2)

where k0 is the partition coefficient; moreover, the lever rule assumes thermodynamic equilibrium
between the phases, whereas the Scheil equation assumes no solute diffusion in the solid and perfect mix-
ing in the liquid [1]. For the purposes of generalisation, it is possible to introduce a parameter β, where
0 ≤ β ≤ 1,that allows for a back-diffusion treatment, i.e. partial solute diffusion into the solid, that lies
between the limits of zero back diffusion (β = 0, the Scheil assumption) and complete back diffusion
(β = 1, the lever rule); as indicated in [30], this treatment of back diffusion is equivalent to using the
Clyne and Kurz correction [11] of the well-known back diffusion model of Brody and Flemings [9].
Following [30] in first setting ∫ 1−χ

0

∂Cs

∂t
dχ ′ = β(1 − χ) k0

∂Cl

∂t
, (A3)

wherein equation (A2) has been used to eliminate Cs, equation (2.5) becomes (2.8); furthermore, we
note that (A1) can now be generalised for 0 ≤ β ≤ 1 to equation (2.6).
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Appendix B: code verification
Equations (2.31)–(2.38), subject to (2.39)–(2.52), were solved using the transient solver in the finite
element-based software, Comsol Multiphysics, which has the inbuilt infrastructure to cope with this
system of parabolic and hyperbolic PDEs. Quadratic Lagrangian elements were used to discretize the
domain, in combination with the software’s deformed mesh mode, whereby an arbitrary Lagrangian–
Eulerian (ALE) formulation is employed in order to solve free or moving boundary problems. As
explained in Section 3, different equations are solved at different times of the computation, and the
calculation is stopped when the mush disappears, as the final macrosegregation profile is known by that
stage. Numerically, this evolution means that mesh-folding occurs, as first the melt region disappears,
and then later so does the mush. Denoting the syntax of the software with typewriter font below, the
specification of these models requires the use of customised equations, available through three General
Form PDE interfaces, to solve the second-order PDEs (2.31), (2.33) and (2.37), and 5 Weak Form PDE
interfaces, to solve first-order PDEs and algebraic equations (2.32), (2.34)–(2.36) and (2.38). In addition,
two Global ODEs and DAEs interfaces, where DAE denotes differential-algebraic equation, are used to
determine the time-dependent position of interfaces Y = Ys(τ ) and Y = Yl(τ ), by solving equations (2.41)
and (2.44). Note also that Y∞(τ ) is determined indirectly from (2.14), which gives Ẏ∞(τ ). The remaining
initial, boundary and interfacial conditions are passed directly through the three General Form PDE
interfaces. As regards the geometry deformation caused by the moving boundaries at Y = Ys(τ ), Yl(τ )
and Y∞(τ ), this is handled using a Moving Mesh interface. For this, Comsol Multiphysics offers the
options of Laplace smoothing or Winslow smoothing [42]; however, it is well-established that the latter
is more effective [23], and that was our experience also, in the sense that solutions could be obtained
until the melt and mush regions were practically extinct, as seen from the results in Figures 5-7.

For all cases, the same convergence criterion at each time step was used, namely,(
1

Ndof

Ndof∑
i=1

( |Ei|
A +R|Ui|

)2
) 1

2

< 1, (B1)

where Ei is the solver’s estimate of the absolute error in the latest approximation to the ith component of
the scaled solution vector, Ui, at each time step, A is the absolute tolerance,R is the relative tolerance and
Ndof is the number of degrees of freedom (DOF); for simplicity, we take R= A, and denote this common
value by ε. Note also that Ndof is related to the number of elements, N, that are used to discretize the
computational domain for values of time when solid, mush and melt are all present; thus, in the course
of a computation, the values of N and Ndof decrease, as first the melt and then the mush disappear.

Before performing batch runs, there were a number of issues to resolve:

1. what values of τ0 are permissible?
2. how many elements are required for mesh-independent results?
3. what values of ε should be used?
4. how well is solute conserved in the final macrosegregation profile?

To some extent, the issues are interlinked, but as a starting point for numerical experiments, we began
with

τ0 = 10−2, N = 100, ε = 10−2,

which is a combination that gives least accuracy, but also requires least computing time; this value of N
corresponds to Ndof = 1511.

We start by considering the effect of τ0. Since Yl, Ys ∼ τ 1/2 for small τ , it is clear that even if we
take τ0 = 10−2 � 1, then of the order of 10%, or much more if R > 1, of the macrosegregation profile
will be poorly computed. Figure B1 shows Yl and Ys as functions of τ for different values of τ0; these
results were obtained for β = 0 and R = 1.3, with ε = 10−2. Moreover, although Figure B1 may suggest
that the choice of τ0 does not particularly affect the profiles of Yl and Ys, it is nevertheless advisable to
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(a) (b)

Figure B1. Ys and Yl as functions of τ for R = 1.3, β = 0, ε = 10−2, N = 100 for τ0 = 10−4, 10−3, 10−2:
(a) Ys; (b) Yl.

Figure B2. Csolid as a function of Y for five different meshes, with R = 1.3,β = 0, τ0 = 10−4, ε = 10−3.

use the lowest value possible of τ0, in view of the need to compute Csolid correctly; thus, all subsequent
computations were carried out with τ0 = 10−4.

Moving onto the issue of mesh independence, Figure B2 shows Csolid as a function of Y for β = 0
and R = 1.3, and five different meshes; for these runs, τ0 = 10−4, ε = 10−3. At this lower value of ε, the
profiles appear to be more or less on top of each other, indicating that N = 100 is large enough.

Figure B3 shows Csolid as a function of Y for β = 0 and R = 1.3, and three different values of ε; for
these runs, τ0 = 10−4 and N = 1600, which corresponds to Ndof = 24011. Here also, the profiles are more
or less on top of each other, indicating that ε = 10−2 is small enough, albeit at such elevated values for
N; however, lower values N did not lead to such good agreement.

Lastly, we consider how well solute is conserved numerically by the end of the computation.
Defining

Ctotal(Y) = R−1

∫ Y

0

CsoliddY ′, (B2)

https://doi.org/10.1017/S0956792523000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000050


60 M. Assunção and M. Vynnycky

Figure B3. Csolid as a function of Y for ε = 10−4, 10−3, 10−2, with R = 1.3, β = 0, τ0 = 10−4, N = 1600.

Figure B4. Ctotal as a function of Y for τ0 = 10−4, N = 100, ε = 10−2, with R = 1.3, β = 0.

we note that we should expect from (2.52) that Ctotal(R−1) = C0. Figure B4 shows Ctotal for different values
of R, using τ0 = 10−4, N = 100, ε = 10−2; Ctotal has been calculated using (4.1). From Figure B4, we thus
find that solute is conserved adequately enough, even though the values of N and ε are relatively small
and large, respectively; we surmise that this is because Ctotal is a global quantity, and would therefore not
be as subject to local discrepancies as Csolid.

Lastly, we note that computations for which τ0 = 10−4, N = 100, ε = 10−2 were found to require less
than 300 s on a laptop with an Intel Core i7-9750HQ CPU 2.60 GHz processor and 16 GB RAM. More
details are given in [4].
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Appendix C: results for intermediate values of β

To complement the results of Figure 7, which were for β = 0 and 1, Figure C1 shows Csolid as a function
of Y for R = 1, 1.1, 1.2, 1.3 for the intermediate value of β = 1/2. Over the two figures, it is evident how,
as the value of β is increases, the value of Csolid in the plateau region extending from Y = 0 decreases; in
addition, the profiles transition from displaying negative segregation in the interior and positive segre-
gation at far right towards just negative segregation at far right. These trends persist for all three values
of R > 1. Note, however, that the degree of positive segregation at far right is higher for β = 1/2 than for
β = 0; one might have expected it to have been lower in the transition towards negative segregation for
β = 1. The explanation for this seems to come from the fact that the negative segregation in the central
portion, in relation to the positive (inverse) segregation near Y = 0, is much greater for β = 1/2 than
for β = 0; thus, a greater positive segregation is necessary at far right in order to ensure global solute
conservation.

Figure C1. Csolid as a function of Y for R = 1, 1.1, 1.2, 1.3 and β = 1/2.
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