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On the Invariant Factors of Class Groups in
Towers of Number Fields

FarshidHajir and Christian Maire

Abstract. For a ûnite abelian p-groupAof rank d = dimA/pA, letMA ∶= logp ∣A∣
1/d be its (logarith-

mic) mean exponent. We study the behavior of themean exponent of p-class groups in pro-p towers
L/K of number ûelds. Via a combination of results from analytic and algebraic number theory, we
construct inûnite tamely ramiûed pro-p towers in which the mean exponent of p-class groups re-
mains bounded. Several explicit examples are given with p = 2. Turning to group theory, we intro-
duce an invariantM(G) attached to a ûnitely generated pro-p groupG; whenG = Gal(L/K),where
L is the Hilbert p-class ûeld tower of a number ûeld K, M(G) measures the asymptotic behavior
of the mean exponent of p-class groups inside L/K. We compare and contrast the behavior of this
invariant in analytic versus non-analytic groups. We exploit the interplay of group-theoretical and
number-theoretical perspectives on this invariant and explore some open questions that arise as a
result, which may be of independent interest in group theory.

1 Introduction

A few hundred years a�er its deûnition, the ideal class group continues to be one
of the most mysterious objects in number theory. One early lesson, going back to
Gauss, was that it is advantageous to study the p-Sylow subgroup of the class group
of one prime p at a time. _e variation of p-class groups in pro-p towers of num-
ber ûelds is perhaps the area that has had themost success, thanks to the pioneering
work of Iwasawa. Indeed, his insights uncovered a very rich algebraic structure in
the behavior of p-class groups in layers of a Zp-extension. In particular, the growth
of the generator rank of these p-class groups is governed by the invariants µ, λ, ν,
which derive from the structure of the associated Iwasawamodule. _ese ideas have
been extended to amuch broader context of extensionswithmore general p-adic ana-
lytic groups, including non-abelian ones (see, for example,Harris [17],Venjakob [39],
Coates–Schneider–Sujatha [3], and Perbet [34]).

In this article, we consider the variation of the invariant factors of p-class groups,
focusing in particular on a notionwe call themean exponent in towers of p-extensions
of number ûelds. A recurring theme is comparing and contrasting the tame case ver-
sus the analytic case; indeed, the Fontaine–Mazur conjecture [7, Conjecture 5a] has
in�uenced andmotivated the questions we explore here.
First, let us deûne the average or mean exponent. Suppose a non-trivial ûnite

p-group A has elementary divisors pa1 , . . . , pad listed in decreasing order, in other
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words
A = Z/pa1 × ⋅ ⋅ ⋅ ×Z/pad , a1 ≥ a2 ≥ ⋅ ⋅ ⋅ ≥ ad ≥ 1,

where d is the p-rank of A. We then deûne the (logarithmic) mean exponent of A to
be

MA ∶=
a1 + a2 + ⋅ ⋅ ⋅ + ad

d
= logp ∣A∣

1/d =
logp ∣A∣
d

,

where logp(a) = log(a)/ log(p) is the base-p logarithm. _us, the mean exponent
is a normalized measure of the size of the group as compared to its rank. Note that
for a non-trivial p-group A, we always have 1 ≤ MA ≤ logp ∣A∣, the minimum value
occurring in the case where A is an elementary abelian p-group and the maximum
value occurring in the case of cyclic A. Note also that exp(A) = pa1 is the exponent
of A. _emean exponent of the trivial group is deûned to be 0.
For a number ûeld K, we denote by A(K) its p-class group, and we put

M(K, p) ∶=M(K) =MA(K)

to be the “mean exponent” of the p-class group of K.
Second, let us introduce towers with restricted ramiûcation. Let K be a number

ûeld, p a rational prime number, and S, T a disjoint pair of ûnite sets of places of K.
Inside a ûxed algebraic closure of K, consider the compositum KT

S of all ûnite Galois
extensions of K of p-power degree unramiûed outside S and in which all the places
of T split completely. We call KT

S the maximal unramiûed-outside-S and T-split p-
extension of K, and put GT

S = GT
S (K, p) = Gal(KT

S /K) for its Galois group over K. If
there are no places dividing p in S,whichwe abbreviate as (S , p) = 1 and call the tame
case, the structure of the groups GT

S is rather mysterious. In particular, it is already
diõcult to determine in any given casewhetherGT

S is ûnite or not. On the other hand,
if S contains all the primes of K dividing p (thewild case), then the knowledge of Zp-
extensions ofK,which give inûnite abelian quotients of G∅S , goes quite far in revealing
the structure of the latter group. By contrast, in the tame case, GT

S is FAb,meaning its
subgroups of ûnite index have ûnite abelianization, so, in particular, there are no sur-
jections toZp . _is is amanifestation of a broader philosophy of Fontaine andMazur
[7] that maintains that “geometric” p-adic Galois representations with inûnite image
are always wildly ramiûed. _e dichotomy of the wild and tame cases is punctuated
by the expectation that when (S , p) = 1, GT

S has no inûnite p-adic analytic quotients.
To illustrate the key ideas, let us ûx p, and consider a number ûeld K with inûnite

Hilbert p-class ûeld, i.e., G∅∅(K) is inûnite. Let us ûx an inûniteGalois extension L/K
with K ⊂ L ⊆ K∅

∅ . We are primarily interested in estimating exp(A(Kn)), for (Kn) a
nested sequence inside L, but ûnding this diõcult, we also study (M(Kn)), i.e., the
variation of themean exponent of p-class groups in the tower L/K. In particular, for
each natural number n, we deûne

Mn(L/K) = min
[K′ ∶K]=pn

M(K′),

where the minimum is taken over all extensions K′/K of degree pn with K′ ⊂ L. We
then put

M(L/K) = lim inf
n

Mn(L/K),
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whichwe call the asymptoticmean exponent of the tower. _is quantity iswell deûned,
but could a priori be∞.

Let us note right away that these asymptotic invariants can be deûned purely in a
group-theoretical context, as follows. Say G is an inûnite ûnitely generated FAb pro-p
group. For each n, we put

Mn(G) = min
[G ∶U]=pn

MUab ,

where theminimum is taken over the open subgroups of index pn . We then put

M(G) = lim inf
n

Mn(G)

for the asymptoticmean exponent of G. It is clear that if G = Gal(L/K), with L = K∅∅,
then M(G) = M(L/K). Let us also note that we immediately have the estimate 1 ≤
M(G), but a general upper bound would seem to be elusive.

Some of our results in this paper give bounds for M(L/K) for certain kinds of
tame extensions L/K. In particular,we draw upon a relationship between the number
of primes that split in L/K and the asymptoticmean exponent of the tower. _us, for
ûnitely generated inûnite FAb G that are realizable as the Galois group of the Hilbert
p-class tower of number ûelds, we can bound M(G) from above. _ese estimates
could be of interest in relation to the following question: is every ûnitely generated
FAb pro-p group realizable as Gal(K∅∅/K) for some number ûeld K? Note that Ozaki
[33] has shown that for any ûnite p-group G, there exists a number ûeld K such that
G is isomorphic to Gal(K∅∅/K)).

_e following theorem summarizes some of the key results in this paper.

_eorem 1.1 (i) Suppose S is aûnite set of primes of anumberûeldKwith (S , p) =
1 such that G = Gal(K∅S /K) is inûnite. _en there exists a constant C > 0 such that for
all open subgroups U ⊂ G,MUab ≤ C[G ∶U].

(ii) With K , S ,G as above, suppose G is mild ( for example this is the case if K , S
satisfy the condition of Labute [21,_eorem 1.6], and see also Schmidt [36]). _en for
all ε > 0, there exist a constant C′ > 0 and a nested sequence of open subgroups Ui
forming an open neighborhood of G such that MUab

i
≤ C′[G ∶Ui]/(log[G ∶Ui])2−ε .

(iii) _ere exist inûnitely many pairwise disjoint number ûelds K with inûnite p-
class ûeld tower K∅∅/K but ûnite asymptoticmean exponent, i.e.,M(Gal(K∅∅/K)) /=∞.

_e ûrst two parts of the theorem come relatively easily from standard techniques;
they are proved in Proposition 6.7 and _eorem 6.15, respectively. To illustrate the
third part, which is proved in § 3.1, consider the following concrete arithmetic exam-
ple. Namely, ûx p = 2 and let K be the following compositum of quadratic ûelds:

K = Q(
√

130356633908760178920,
√
−80285321329764931 ) .

Let L = K∅∅. _en L/K is inûnite andM(L/K) ≤ 8.858. _e details of the construction
are given in Section 4, but here, let us explain what this example means concretely.
Namely, the assertion is that there exists a tower K = K1 ⊂ K2 ⊂ ⋅ ⋅ ⋅ inside L such that
for all n, the 2-class group of Kn has mean exponent at most 8.858, so, in particular,
there is always at least one elementary divisor of size at most 28 all the way up the
tower. We should note that the construction of the tower guarantees that the rank of
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the 2-class groups tends to inûnity, so the fact that themean exponent remains below
9 entails that the number of elementary divisors of size at most 28 becomes arbitrarily
large as we climb the tower.

We would like to contrast the third part of the theorem with the generic behavior
of themean exponent of open neighborhoods in analytic pro-p groups. Namely, if G
is a uniform pro-p group of dimension d and U runs over the p-central series of G,
we haveMUab ≥ 1

d log[G ∶U], hence it tends to inûnity; see Corollary 6.5.
_e principle behind the above example and others we construct is as follows. We

use genus theory to create towers in which the p-rank grows linearly with the degree;
this is achieved by ûrst having a tower in which many primes split and then compos-
ing that tower with a degree p Galois extension the same primes ramify. _e linear
growth of the rank of the p-class group when combined with upper bounds on the
class number coming from the generalized Brauer–Siegel theorem of Tsfasman and
Vladut gives us the desired upper bound on M.

In the more classical case of Iwasawa theory, i.e., in wild towers, there is an alge-
braic theory of the invariants µ, λ, ν associated with the Iwasawamodule, and having
linear growth in the rank is tantamount to having µ > 0. It is curious that in that
context also, the phenomenon of linear rank growth appears to be related to having
a large set of primes splitting in the tower (see Iwasawa [19]). In a forthcoming work,
we will study this relationship further.

_e paper is organized as follows. In Section 2, we recall some background, in-
cluding the work of Tsfasman and Vladut extending the Brauer–Siegel _eorem and
some basic results from genus theory. In Section 3, we begin by giving a sketch of
our main construction for unramiûed towers, then enlarge the scope of our study by
introducing class groups that classify extensions with prescribed splitting and (tame)
ramiûcation. In Section 4, we work out a number of examples in detail, demonstrat-
ing how the exact asymptotic formula of Tsfasman andVladut can be exploited to im-
prove the bounds on themean exponent. In Section 5, we re�ect on the relationship
between linear growth for p-ranks of class groups and the existence of many primes
in the tower that split (almost) completely, togetherwith the implication of these con-
siderations for bounding the asymptotic mean exponent in inûnite tame extensions.
In Section 6, we turn from number theory to considerations of the asymptoticmean
exponent for pro-p groups in general. Finally, in Section 7, we consider a number
of questions for further study in group theory, as well as in number theory, that are
raised by the considerations of this paper.

Some Notation and Basic Notions

We ûx a prime number p. Let K be a number ûeld of degree [K ∶Q]. Assume the
following notations:
● (r1 , r2) is the signature of K, where r1 is the number of real embeddings of K and
where r2 is the number of pairs of conjugate complex embeddings; thus, [K ∶Q] =
r1 + 2r2.

● disc(K) is the discriminant of K (see [23, chapter III], [31, Chapter I]).

● RdK ∶= ∣disc(K)∣1/[K ∶Q] is the root discriminant of K.
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● g = gK = log
√

∣disc(K)∣ is the genus of K.
● RegK is the regulator of K (see [23, Chapter V], [31, Chapter I]).
● Cl(K) is the Class group of K.
● hK = ∣Cl(K)∣ is the Class number of K.
● A(K) is the p-Class group of K; it is the p-Sylow of Cl(K).
● δK = 1 if K contains the p-roots of unity, 0 otherwise.

Let us now ûx S and T , two disjoint ûnite sets of places of K.
● Let KT

S be themaximal unramiûed outside S and T-split p-extension ofK, with the
convention that for p = 2 all real places stay real (see, for example, [12, Appendix]
or [25]). Put GT

S = Gal(KT
S /K).

● It iswell known that the pro-p-group GT
S is ûnitely presented (see, for example, [20]

or [12, Appendix]): the quantities

d(GT
S ) = dimFp H

1(GT
S ,Fp) = dpH1(GT

S ,Fp),
r(GT

S ) = dimFp H
2(GT

S ,Fp) = dpH2(GT
S ,Fp)

are ûnite.
● Let AT

S ∶= GT
S
ab
, the maximal abelian quotient of GT

S , which corresponds by Class
Field _eory to the maximal abelian S-ramiûed (i.e., unramiûed outside S) and
T-split extension of K.

● For S = T = ∅, GT
S corresponds to the Galois group of the Hilbert p-Class Field

Tower of K and A = A(K) corresponds to its p-Class group.
● If S is prime to p, the pro-p-group GT

S is FAb; i.e., every open subgroup of GT
S has

ûnite abelianization (see, for example, [12, Chapter III]).
We next introduce some basic notation concerning towers of number ûelds

(see [38]).
● A sequence (Kn), n ∈ N ∪ {0}, of number ûelds, where K0 = K, is called a tower if
for all n, Kn ⊊ Kn+1, so, in particular, [Kn ∶K]→∞ with n.

● Let L/K be an inûnite extension of a number ûeld K and let (Kn) be a tower in L/K
with limit L, i.e., each Kn is a ûnite extension of K contained in L and ⋃n Kn = L.

● “Assuming GRH in L/K” means that the Generalized Riemann Hypothesis holds
along the tower (see [2]).

_en put:
● gn = gKn = log(

√
∣disc(Kn)∣);

● hn = ∣Cl(Kn)∣ the class number of Kn ;
● Regn = the regulator of Kn ;

● B(L/K) = limn
log(Regn hn)

gn
.

● We let γ = 0.5772 ⋅ ⋅ ⋅ be the Euler constant and put e = exp(1) = 2.7182 ⋅ ⋅ ⋅.
● For material on Iwasawa _eory, see [41]; for mild pro-p-groups see [8, 21]; for

analytic pro-p-groups, see [4].
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2 Background

2.1 The Brauer–Siegel and Tsfasman–Vladut Theorems

We ûrst recall some results due to Tsfasman andVladut [38] generalizing the Brauer–
Siegel theorem. _roughout this work, we will use the Tsfasman–Valdut context of
asymptotically exact extensions.

Let L/K be an inûnite extension of a number ûeldK and let (Kn) be a tower in L/K
with limit L: ⋃n Kn = L.
For every prime number ℓ and power q ∶= ℓm of ℓ, let us consider the quantity

ϕq = lim
n

Nn(q)
gn

,

where Nn(q) = #{prime ideal q ⊂ OKn , #OKn/q = q}. We also put

ϕR = lim
n

r1(Kn)
gn

and ϕC = lim
n

r2(Kn)
gn

.

As the sequence (Kn) is a tower, all the limits exist and depend only on L/K. In the
terminology of [38], the sequence (Kn) is said to be asymptotically exact. It is called
asymptotically good if ϕq > 0 for some q,where q is either a prime power or belongs to
{R,C}. In this paper, we will mostly be interested in examples where ϕC > 0. Deeply
ramiûedwild extensions (such asZp-extensions) are asymptotically bad. By contrast,
assuming G∅S (K, p) is inûnite for some ûnite S with (S , p) = 1, any tower insideK∅S /K
is asymptotically good. More generally, even if (S , p) /= 1 but (Kn) is a tower inwhich
the N-th higher ramiûcation groups all vanish for some ûxed N , then the tower is
asymptotically good (see [16]).

In [38],Tsfasman andVladut studied the behaviorof thequantity log(Regn ⋅hn)/gn
along a tower (Kn) with limit L/K. _ey conjectured that the quantity

B(L/K) = lim
n

log(Regn hn)
gn

is well deûned, and they proved the following theorem.

_eorem 2.1 (Tsfasman–Vladut [38]) (i) Assuming GRH, the limit B(L/K) ex-
ists and depends only L/K, not on the choice of tower (Kn) with limit L. Moreover, one
has the equality:

B(L/K) = 1 +∑
q

ϕq log
q

q − 1
− ϕR log 2 − ϕC log 2π.

Without assuming GRH, one has the same conclusion if the tower of number ûelds (Kn)
is Galois relative to K.

(ii) Assuming GRH, B(L/K) ≤ 1.0939 for all L/K. If K is totally imaginary, then
B(L/K) ≤ 1.0765. Without assuming GRH, one has B(L/K) ≤ 1.1589.

2.2 On the p-S-T Towers

Comprehensive references for the study of extensionswith restricted ramiûcation in-
clude Koch [20], Gras [12], and Neukirch–Schmidt–Wingberg [32]. We give only a
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quick sketch of some well-known facts, and refer the reader to those books, which
contain much more background and detail.

Let K be a number ûeld and let S and T be two ûnite sets of places of K with
S ∩ T = ∅. We assume that (S , p) = 1. We recall that the pro-p-group GT

S is FAb
and that the p-rank dpG

T
S of GT

S can be computed thanks to Class Field _eory. In
particular, one has the following propoition (see e.g., [12, Chapter I §4,_eorem4.6]).

Proposition 2.2 With notation as above, we have

dpG
T
S = dpAT

S ≥ ∣S∣ − ( r1(K) + r2(K) + ∣T ∣ − δK) .

A priori, the pro-p-group GT
S may be ûnite or not. A criterion for its inûnitude can

be obtained as a consequence of Golod–Shafarevich’s theorem; the following is their
result, in the improved version due to Gaschütz and Vinberg (see Roquette [35]).

_eorem 2.3 (Golod–Shafarevich) If a non-trivial pro-p-group G is ûnite, then its
generator and relation ranks satisfy the following inequality: r(G) > d(G)2/4.

_e following classical theorem of Shafarevich on the Euler characteristic of GT
S is

of fundamental importance in this theory (see, for example, [12]):

Proposition 2.4 Assuming as above that (S , p) = 1, we have

0 ≤ r(GT
S ) − d(GT

S ) ≤ r1 + r2 − 1 + δS + ∣T ∣,

where δS = 1 if K contains the p-roots of unity and S is empty, and 0 otherwise.

_e last two propositions together imply that if S is large in comparison to the size
of T , then GT

S is inûnite, giving rise to the so-calledGolod–Shafarevich criterion. _is
criterion can bemade eòective by using genus theory (cf. [25] or [12, Chapter IV]) to
construct number ûelds with class group of large p-rank. _e following is a standard
result from genus theory (cf. [12, Chapter IV, Example a�er Corollary 4.5.1]).

_eorem 2.5 Let K/k be a cyclic extension of degree p. _en

dpA(K) ≥ ρ − 1 − ( r1(k) + r2(k) − 1 + δk) ,

where δk = 1 if k contains the p-roots of unity, and 0 otherwise, and where ρ is the
number of ramiûed places of k in K/k (eventually archimedean places).

It is possible to obtain a T-split version of Genus _eory and then one can show
the following theorem [26].

_eorem 2.6 Let K/k be a cyclic extension of degree p. Assume that

ρ + iT ≥ 3 + r1(k) + r2(k) + ∣T(k)∣ − 1 + δk + 2
√

r1(K) + r2(K) + ∣T(K)∣ + δK ,

where ρ is the number of places ramiûed in K/k (eventually the archimedean places)
and where iT is the number of places of T inert in K/k. _en GT ∶= GT

∅ is inûnite.
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Corollary 2.7 LetK/Q be a real quadratic ûeld and let T be a ûnite set of odd primes
ofQ. Put Tdec = {ℓ ∈ T , ℓ splits in K/Q}. If

ρ ≥ 4 + ∣Tdec∣ + 2
√

3 + ∣T ∣,

where ρ is the number of primes not in T that are ramiûed in K/Q, then the group GT

is inûnite.

Proof We simply remark that a prime of T that is not split in K/Q is inert or ramiûed
and then apply _eorem 2.6.

3 Towers with Bounded Mean Exponent

3.1 The Principal Construction

In this subsection, we sketch the key idea for the construction of towers with p-class
groups of boundedmean exponent in the simpler case of unramiûed extensions, and
in particular,we prove_eorem 1.1(iii). In later subsections,wewill explore themean
exponent for more general notions of class groups.

We will need the following lemma.

Lemma 3.1 _ere is an absolute constant C0 > 0 such that for all number ûelds K,
log(hK) ≤ C0 log ∣disc(K)∣.

Proof By Brauer’s Lemma [23, Lemma 2, Chapter 16], there is an absolute positive
constant C such that for all number ûelds K, log(hK RegK) ≤ C log ∣disc(K)∣. We can
essentially suppress the contribution of the regulator thanks to Friedman’s result [9]
that for all number ûelds K we have RegK > 0.1. _us, by replacing C with a larger
constant C0, we have log(hK) ≤ C0 log ∣disc(K)∣.

Proposition 3.2 Suppose k is a number ûeld and T is a ûnite set of primes such that
kT
∅/k is inûnite. Suppose t0 ∶= ∣T ∣ − (r1(k) + r2(k) + 1) > 0, and that k admits a cyclic
degree p extension K in which all the primes in T ramify. _en the Hilbert p-class ûeld
tower of K is inûnite with bounded asymptoticmean exponent

M(Gal(K∅∅/K)) < C0

t0
logp ∣disc(K)∣,

where C0 is the constant appearing in Lemma 3.1.

Proof Consider a tower (kn) inside kT
∅/k and let Kn = Kkn . To simplify the no-

tation, let dn = d(A(Kn)) be the p-rank of the class group of Kn . By _eorem 2.5
applied to Kn/kn , we have

(3.1) dn ≥ ∣T ∣[kn ∶k] − ( r1(kn) + r2(kn) + 1) ≥ t0[Kn ∶K].

By the deûnition of themean exponent M(Kn), we have

dnM(Kn) = logp ∣A(Kn)∣ ≤ logp hn ,
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where hn is the class number of Kn . Now, if we apply Lemma 3.1, we have

(3.2) dnM(Kn) ≤ logp hn ≤ C0 logp ∣disc(Kn)∣.

But since Kn/K is unramiûed, logp ∣disc(Kn)∣ = [Kn ∶K] logp ∣disc(K)∣. Putting the
inequalities (3.1) and (3.2) together, we conclude that

t0[Kn ∶K]M(Kn) ≤ C0[Kn ∶K] logp ∣disc(K)∣,

henceM(Kn) is bounded from above by C0 logp ∣disc(K)∣/t0. We conclude that

M(K∅∅/K) ≤ C0

t0
logp ∣disc(K)∣.

Proof of_eorem 1.1(iii) Suppose {ℓ1 , ℓ2 , . . . , ℓr} is a large set of primes congruent
to 1 mod p. Let k be a cyclic degree p extension ofQ in which ℓ1 , . . . , ℓr ramify. Con-
sider primes q1 < q2 that split completely in k(ζp)/Q if p is odd and in k(ζ4)/Q if
p = 2. Let k′ be a cyclic degree p extension of Q in which q1 and q2 ramify. Let T
be the union of the primes of k lying over q1 and those lying over q2. As speciûed in
_eorem 2.6, if r is suõciently large, kT

∅/k is inûnite. Now we let K = kk′. _is puts
us in the situation of Proposition 3.2, which gives the desired outcome.

3.2 On the Mean Exponent for T-class Groups mod S

In this section, we will expand our notion of class group in two directions: we will
look at (p-parts of) ray class groups of tame conductor (i.e., a conductor that is a
ûnite product of distinct prime ideals co-prime to p), and with the underlying ring
being the T-integers.

Deûnition 3.3 Let T and S be two disjoint ûnite sets of places ofK such that (S , p) =
1. _emeanMT

S (K) of the invariant factors of the abelian groupAT
S ∶= GT

S
ab

is deûned
by

MT
S (K) ∶=MAT

S
= a1 + ⋅ ⋅ ⋅ + ad

d
= logp ∣A

T
S ∣1/d ,

where d = dpG
T
S = dpAT

S and A
T
S ≃ Z/pa1Z × ⋅ ⋅ ⋅ × Z/padZ with: 1 ≤ a1 ≤ ⋅ ⋅ ⋅ ≤ ad .

Note that MT
S (K) = 0 if ∣AT

S ∣ = 1.

Remark 3.4 Note that MT
S is well deûned because, thanks to the choice of S be-

ing away from p, the group GT
S
ab

is ûnite. Clearly, when AT
S is not trivial, we have

MT
S (K) ≥ 1.

Example 3.5 (Iwasawa _eory context) (For material for Iwasawa theory, see, for
example, [41].) Let L = L/K be a Zp-extension. Let Kn be the unique subûeld of L of
degree pn over K. Denote by XT

S the projective limit of the p-group AT
S (Kn) alongL.

_en XT
S is a Zp[[T]]-module of ûnite rank and there exist invariants µ, λ ≥ 0 such

that for n ≫ 0,
logp ∣A

T
S (Kn)∣ = µpn + λn + ν,

with ν ∈ Z. Moreover,
dpAT

S (Kn) = spn + λ + c,
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where c ≥ 0 and where s is the Fp[[T]]-rank of themodule Fp ⊗ XT
S .

Proposition 3.6 Along a Zp-extension L, one has

MT
S (Kn) ∼n→∞

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ logp[Kn ∶K] if µ = 0 and λ /= 0,
µ/s if µ /= 0,
ν/c if µ = λ = 0,

where δ = λ/(λ + c) satisûes 0 < δ ≤ 1.

Proof _e proof is a consequence of the structure theorem of Iwasawa_eory and
the fact that µ = 0 if and only if s = 0.

Remark 3.7 Note when µ = 0 and λ /= 0,MT
S (Kn) is unbounded. _is will be in

contrast to the examples of Section 4.

From now on, we want to study the quantity M(L) in some tower L when the
ramiûcation is tame. First, we have some deûnitions.

Deûnition 3.8 Let L ∶= L/K be an (inûnite) extension and let T and S be two
disjoint ûnite sets of places of K with (S , p) = 1. Put

M(L, S , T) ∶= lim sup
n

MT
S ,n and M(L, S , T) ∶= lim inf

n
MT

S ,n ,

where
MT

S ,n = min
Kn

MT
S (Kn),

theminimum being taken over all subûelds Kn in L of degree pn over K. When S =
T = ∅, we haveM(L,∅,∅) = M(L), whereM(L) was deûned in the introduction.
We also writeM(L) ∶=M(L,∅,∅).

Remark 3.9 We have lim supn min a1(Kn) ≤ M(L) and lim inf n min a1(Kn) ≤
M(L).

Deûnition 3.10 A tower (Kn) is said to be exhaustive in L if:
(i) ⋃Kn = L,
(ii) for all n, [Kn+1 ∶Kn] = p.

Proposition 3.11 For a subtower (Kn) of L, M(L, S , T) ≤ lim inf n MT
S (Kn). If,

moreover, the subtower (Kn) is exhaustive inL, thenM(L, S , T) ≤ lim supn M
T
S (Kn).

Proof _e proof follows easily from the deûnitions.

3.3 Bounds for Mean Exponents in Tamely Ramified Towers

Deûnition 3.12 For a ûnite set S of prime ideals of K satisfying (S , p) = 1, we put

disc(K, S) ∶= ∣disc(K)∣ ∏
p∈S

N(p).
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A local computation shows the following proposition.

Proposition 3.13 If S is a ûnite set of prime ideals of K satisfying (S , p) = 1, the root
discriminant remains bounded inside K∅S /K; in other words, K∅S /K is asymptotically
good. Indeed, for a tower (Kn) in K∅S /K, we have

log ∣disc(Kn)∣ ≤ [Kn ∶K] logdisc(K, S).

Proof See, for example, [15, Lemma 5].

Deûnition 3.14 For a prime p of K not dividing p, let a(p) ∶= vp(N(p) − 1) be the
p-valuation of N(p) − 1, where N(p) is the absolute norm of p.

Lemma 3.15 Let L/K be a ûnite Galois p-extension and let S be a ûnite set of places
of K prime to p.
(i) If p > 2, then

∣AT
S (L)∣ ≤ ∣A(L)∣( ∏

p∈S
pa(p))

[L ∶K]

.

(ii) For p = 2, one has

∣AT
S (L)∣ ≤ ∣A(L)∣( ∏

p∈S
pa

∗
(p))

[L ∶K]

,

where a∗(p) = a(p) if N(p) ≡ 1 mod 4 (i.e., if a(p) > 1); otherwise, N(p) =
1 + 2n, where n is odd and then a∗(p) = v2(1 + n) + 1.

Proof One has to give an upper bound of the tame part of the inertia group of a
placeP∣p in an abelian extension of L. We recall that this inertia group is a quotient
of the multiplicative group of the ûnite ûeld FP of order N(P). By multiplicativity,
one can assume that L/K is a cyclic degree p-extension. When FP = Fp, that means
that p is split or is ramiûed in L/K, then∏P∣p pa(P) divides ppa(p) (with equality if
p splits). Otherwise, [FP ∶Fp] = p, and then one note that if p is odd (or when p = 2
and N(p) ≡ 1 mod 4), then a(P) = a(p) + 1. Indeed, if Fp = Fq , then FP = Fqp . Let
us write q = 1 + pkn, with (n, p) = 1. _en F×qp is cyclic of order

qp − 1 = (q − 1)(qp−1 + ⋅ ⋅ ⋅ + q + 1)
= pk+1n( 1 + npk−1 + ⋅ ⋅ ⋅ + n(p − 1)pk−1 + pkA)

= pk+1n( 1 + 1
2
n(p − 1)pk + pkA) ,

where A ∈ Z, and then vp(qp − 1) = pk+1 for p odd (and for p = 2 if k > 1).
When p = 2 with N(p) = 1 + 2n, n odd, one has a(P) = v2(1 + n) + 1. We leave

the remaining details to the reader.

Deûnition 3.16 For p > 2, put a(S) = ∑p∈S a(p). For p = 2, put a(S) = ∑p∈S a∗(p).

Remark 3.17 For p = 2 observe that if the place p splits completely in L/K, then the
“local factor” a∗(p) can be taken a∗(p) = a(p).
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Proposition 3.18 Let S be a ûnite set of places of K with (S , p) = 1 such that K∅S /K is
inûnite. Let (Kn) ∶= L be a tower in K∅S /K. Let T and Σ be two other sets of places of
K; we assume that (Σ, p) = 1, but the cases Σ = ∅ and S = Σ are allowed. Recall that
hn denotes the class number of Kn , and that gn = log ∣disc(Kn)∣1/2 denotes its genus.
Let dn = d(AT

Σ(Kn)) be the p-rank of AT
Σ(Kn).

(i) We have

MAT
Σ(Kn) ≤

[Kn ∶K]
dn

( logp disc(K , S)
1/2 ⋅ log(hn)

gn
+ a(Σ)) .

(ii) With C0 denoting the constant from Lemma 3.1, we have

MAT
Σ(Kn) ≤

[Kn ∶K]
dn

(C0 logp disc(K , S) + a(Σ)) .

If, in addition, there is an ε > 0 such that dn ≥ ε[Kn ∶K] for all n, then MAT
Σ(Kn)

is bounded as n →∞.

Proof Recall that by Proposition 3.13, the genus gn = log ∣disc(Kn)∣1/2 ofKn satisûes

(3.3) gn ≤ [Kn ∶K] logdisc(K, S)1/2 .

_anks to Lemma 3.15, we have

logp ∣A
T
Σ(Kn)∣ ≤ logp ∣A(Kn)∣ + [Kn ∶K]a(Σ) ≤ logp hn + [Kn ∶K]a(Σ)

≤ gn
logp(hn)

gn
+ [Kn ∶K]a(Σ).

Now we apply (3.3) to the right-hand side to ûnd

logp ∣A
T
Σ(Kn)∣ ≤ [Kn ∶K]( logdisc(K , S)1/2

log p
⋅ log(hn)

gn
+ a(Σ)) .

It remains only to divide both sides by dn to obtain the desired inequality. For the
second claim,wemerely apply the bound from Lemma 3.1 to the bound from the ûrst
claim.

Before stating the key result of this section, we need a couple of deûnitions.

Deûnition 3.19 In a tower (Kn), and ûxing auxiliary ûnite sets Σ and T of places of
K, one says that the p-rank dn of AT

Σ(Kn) grows ε-linearly with respect to the degree
(for some ε > 0) if for n ≫ 0, dn ≥ ε[Kn ∶K].

Deûnition 3.20 Given a real number A, a number ûeld K of signature (r1 , r2), and
a ûnite set S of places of K coprime to p, let us deûne

α(A,K, S) = A log
√
disc(K, S) − r1

2
(γ + 1 + log π) − r2(γ + log 2).

_eorem 3.21 We maintain all the hypotheses and notation of Proposition 3.18. We
assume that there exists ε > 0 such that dn ≥ ε[Kn ∶K] for all n. If the conditions of
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_eorem 2.1 apply to (Kn), then

lim sup
n

MAT
Σ(Kn) ≤

1
ε
( α(B(L),K, S)

log p
+ a(Σ)) .

Consequently,

M(L, Σ, T) ≤ 1
ε
( α(B(L),K, S)

log p
+ a(Σ)) .

If,moreover, the tower (Kn) is exhaustive in L, then one can replaceM byM.

Proof We begin with the inequality of Proposition 3.18 but introduce the contribu-
tion of the regulator, as follows:

MAT
Σ(Kn) ≤

[Kn ∶K]
dn

( logdisc(K , S)1/2

log p
(
log(hn Regn)

gn
−

log(Regn)
gn

) + a(Σ)) .

By hypothesis, we have [Kn ∶K]/dn ≤ 1/ε. By _eorem 2.1, log(hn Regn)/gn tends to
B(L). _e last ingredient is a theoremof Zimmert [42] (we use the enhanced version
proved by Tsfasman and Vladut [38,_eorem 7.4]):

lim inf
n

log(Regn)/gn ≥ (log
√

πe + γ/2)ϕR + (log 2 + γ)ϕC .

Recalling the deûnition of ϕR , ϕC, and noting that r i(Kn) = [Kn ∶K]r i(K)] for i = 1, 2,
we ûnd, a�er applying Proposition 3.13, that

ϕR ≥ r1(K)
log

√
disc(K, S)

and ϕC ≥ r2(K)
log

√
disc(K, S)

.

Putting all of this together and taking lim supn MAT
Σ(Kn),we obtain the bound sought.

We will state the following immediate corollary of the theorem, since it will be the
form in which we will apply it most frequently.

Corollary 3.22 Suppose in the theorem, we have S = Σ = T = ∅. _en, assuming the
conditions of_eorem 2.1 apply to a tower L inside K∅∅/K, we have

M(G∅∅) ≤M(L,∅,∅)

≤ 1
ε log(p)(

B(L)
2

log ∣disc(K)∣ − r1
2
(γ + 1 + log π) − r2(γ + log 2)) .

Remark 3.23 _e comparison of Corollary 3.22 to Proposition 3.2 illustrates how
the Tsfasman–Vladut theorem allows us to give an improved upper bound for the
mean exponent.

4 Refined Estimates. The Tsfasman–Vladut Method

We want to illustrate the previous section with a few examples where we have op-
timized the quantity B(L/K) by employing the techniques of Tsfasman and Vladut
[38].
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4.1 Tsfasman–Vladut Machinery

Let usûx an asymptotically exact extensionL ∶= L/K. Estimating the constantB(L/K)
given by _eorem 2.1 is an interesting problem, involving certain kinds of optimiza-
tion. Indeed the quantity for which we would like to have a tight upper bound is the
sum

∑
q
bqϕq − b0ϕR − b1ϕC

satisfying the three following conditions:
(a) ϕq > 0 ;
(b) ∑m mϕℓm ≤ ϕR + 2ϕC for all ℓ;
(c) ∑q aqϕq + a0ϕR + a1ϕC ≤ 1,
where

bq = log
q

q − 1
, aq =

log q
√q − 1

,

a0 = log 2
√

2π + π/4 + γ/2, a1 = log(8π) + γ,
b0 = log 2, b1 = log 2π.

One now replaces each ϕq by a variable xq , and the problem becomes a question
of linear optimization. For convenience, we put x0 = ϕR and x1 = ϕC.

One studies the quantity∑q bqxq−b0x0−b1x1 when x0 and x1 are ûxed (i.e.,when,
for example, one has a totally real tower or a totally complex tower). Similarly, one
can exploit knowledge of any ûnite place that is totally split in L. One can also use
some information coming from the base ûeldK: typically if the base ûeld has no place
of norm ℓ, then xℓ would be ûxed and equals 0.
Denote by Σ = {q1 , . . . , qr} a set of powers of prime numbers for which one

ûxes xq i . We want to give an upper bound as small as possible of the quantity

∑
q∉Σ
bqxq ,

with the conditions
(a)′ xq > 0,
(b)′ ∑m mxqm ≤ x0 + 2x1,
(c)′ ∑q∉Σ aqxq ≤ 1 −∑q∈Σ aqxq .
As explained in [38], there are two reductions: ûrst, one can assume that xℓ∗ attains

themaximum for condition (b)′,where ℓ∗ is the smallest power of ℓ forwhich xℓ∗ /= 0;
then try to optimize inequality (c)′ for the smallest powers ℓ∗.

Now let ℓ∗0 the smallest power such that

∑
ℓ∗<ℓ∗0

(x0 + 2x1 − εℓ∗)aℓ∗ ≤ 1 − ( a0x0 + a1x1 +∑
q∈Σ
aqxq) ,

where εℓ∗ ≤ x0 + 2x1 is a constraint of ℓ related to the base ûeld.
Let α ∈ [0, 1) such that

α(x0 + 2x1 − εℓ∗0 )aℓ∗0 = 1 − a0x0 − a1x1 −∑
q∈Σ
aqxq − ∑

ℓ∗<ℓ∗0

(x0 + 2x1 − εℓ∗)aℓ∗ .
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Proposition 4.1 One has

∑
q
bqϕq ≤ ∑

q∈Σ
bqxq + ∑

ℓ∗<ℓ∗0

(x0 + 2x1 − εℓ∗)bℓ∗ + α(x0 + 2x1 − εℓ∗0 )bℓ∗0 .

4.2 Strategy for Construction of Examples

Below we will study some examples built with the following strategy. First, for p = 2,
let k/Q be a real quadratic ûeld. Suppose that for the set T of places ofQ, the 2-tower
kT
∅/k is inûnite (to achieve this,we applyCorollary 2.7). Consider thenK ∶= k(

√
−D),

where D = ∏p∈T p; put L ∶= KkT
∅. Take an exhaustive tower (kn)n of kT

∅/k; then
Kn ∶= knK is an exhaustive tower of L. Moreover, (Kn) is a subtower of KT

∅. And
then, by Corollary 3.22, one obtains bounds for M(L) andM(K∅∅/K).

4.3 Examples

In all of the examples below,we ûx p = 2, since in this case,we can employ ramiûcation
at inûnity in conjunction with the genus theory bounds.

Example 4.2 Let k = Q(
√
8 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23). _anks to Corollary 2.7, the

number ûeld k has an inûnite 2-extension kT/k (S = ∅), where T = {ℓ9} is the set
containing the only place above 3 (of norm 9). Put K = k(

√
−3). Denote by (kn)

a tower of kT ; put Kn = Kkn , L = ⋃n Kn , and L/K ∶= L. _en by Genus _eory
(cf. _eorem 2.5) along kT/k, one obtains that

dn = d2A(Kn) ≥ [Kn ∶K] − 1.

If we apply Corollary 3.22, we ûnd

M(K∅∅/K) ≤M(L) ≤ 1
22 ⋅ log 2

(B log
√

∣disc(K)∣ − (γ + log 2)) ≈ 30.683 ⋅ ⋅ ⋅ ,

where one has taken B ≈ 1.0938. But we can do better by applying the reûned results
of Tsfasman andVladut. _e base ûeldK is of degree 4 overQ. _e towerwe consider
is totally complex and by construction the prime ℓ∗ = 9 (over 3 with norm 9) splits
completely in the considered tower. Here, gK = log(

√
8 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23).

In order of increasing size of the norm, one has ideals of norm: 4, 7, 7, 9, 13, 13, 19, 19,
25, 31, 37, 43, 43, 43, 43 etc.

One ûxes the following conditions x0 = 0, x1 = r2/g = 2/g, x2 = 0, x3 = 0, x5 = 0,
x9 = 1/g = x1/2. One considers Σ = {9}. Moreover, x4 ≤ 1/g = x1/2, ε2∗ = x1 and
x25 ≤ 1/g. One has

g − 2(γ + log(8π)) − log 9√
9 − 1

− 2( log 7√
7 − 1

+ log 13√
13 − 1

+ log 19√
19 − 1

)

− ( log 4√
4 − 1

+ log 25√
25 − 1

) − 4
log 31√
31 − 1

< log 37√
37 − 1

,
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and then ℓ∗0 = 37. One obtains

B(L/K) ≤ 1 − r2
g

log 2π + 1
g
( log(4/3) + log(9/8) + log(25/24)

+ 2 log(7/6) + 2 log(13/12) + 2 log(19/18) + 4 log(31/30) + 4α log(37/36)) ,
where

4α log 43√
43 − 1

= g − 2(log 8π + γ) − log 9
2

− log 4 − log 25√
25 − 1

− 2( log 7√
7 − 1

+ log 13√
13 − 1

+ log 19√
19 − 1

+ 2
log 31√
31 − 1

) .

and then B(L/K) ≈ 0.878 ⋅ ⋅ ⋅, and

M(K∅∅/K) ≤M(L) ≤ 24.100.

Example 4.3 Let k be the real quadratic ûeld of discriminant D where D is the the
product of the elements in the set

U = {47, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103,
107, 109, 113, 127, 131, 137, 139, 149, 151}.

Let Tin = {3, 7, 29, 31, 37, 41, 43, 53} and Tdec = {2, 5, 11, 13, 17, 19, 23}; put T = Tin ∪
Tdec; ∣T ∣ = 22. _e places of Tin are inert in k/Q and the places of Tdec are totally
decomposed in k/Q. One uses Corollary 2.7: the number ûeld k has an inûnite T-
split 2-tower kT/k. Consider now the number ûeld K = k(

√
−D), where D = ∏ℓ∈T ℓ

and put L = KkT . _en for all number ûelds Kn along L/K, one has
d2A(Kn) ≥ 22[Kn ∶K] − 1.

_en
M(Kn) ≤

1
22 log 2

⋅ (B log
√

∣dK∣ − (γ + log 2)) ≈ 9.662 ⋅ ⋅ ⋅

We now use the strategy of Tsfasman and Vladut to optimize B(L/K). Each place
of T splits totally in L/K: the associated parameters ϕℓ∗ are then ûxed. More precisely,
for every ℓ ∈ Tin, we have ϕℓ = 0, ϕℓ2 = 1/g and ϕℓ i = 0 for i > 2; for ℓ ∈ Tdec, one
ûxes ϕℓ = 2/g and ϕℓ i = 0 for i > 1. Moreover, for ℓ ≤ 150, ϕℓ∗ ≤ 2/g. In fact, one can
be more precise: only the primes of R = {47, 49, 61, 103, 113, 127, 131, 139} split (and
ramify); the others are inert (with 672 the smallest norm). One remarks that the sum

A = g − 2(γ + log 8π) − 2 ∑
ℓ∈Tdec

log ℓ√
ℓ − 1

− ∑
ℓ∈Tin

log ℓ2

ℓ − 1
− 2∑

ℓ∈R

log ℓ√
ℓ − 1

≈ 103.774

is smaller than 4∑∗
ℓ≤672 log ℓ/

√
ℓ − 1 where the last sum is taken over the splitting

places in K/Q (i.e., 127 such places). One ûnds ℓ∗0 = 3877, and, to ûnish,

A− 4
∗

∑
153≤ℓ<3877

log ℓ√
ℓ − 1

≈ 0.528.

Here, α ≈ 0.980
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A�er making the computation of the default, one obtains

∑
q
bqϕq ≤ 3.348,

and then B(L/K) ≤ 1.01421 ⋅ ⋅ ⋅ and

M(K∅∅/K) ≤M(L) ≤ 1
log 2

6.306 ⋅ ⋅ ⋅ ≈ 9.098 ⋅ ⋅ ⋅ .

Example 4.4 Let

k = Q(
√
8 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 37 ⋅ 41 ⋅ 43 ⋅ 47 ⋅ 53).

Let Tin = {71, 79, 83, 97, 101} et Tdec = {59, 61, 67, 73}; T = Tin ∪ Tdec; ∣T ∣ = 13.
Put K = k(

√
−59 ⋅ 61 ⋅ 67 ⋅ 71 ⋅ 73 ⋅ 79 ⋅ 83 ⋅ 97 ⋅ 101). _e number ûeld k has an inûnite

2-tower kT ; put L = KkT . Along the extension L/K, one has
d2A(Kn) ≥ 13[Kn ∶K] − 1.

By looking at the primes ℓ ≤ 100, one sees that

x2 = x3 = x7 = x19 = x29 = x31 = x41 = x47 = x53 = 0.

Here, ℓ∗0 = 1249 and so there are 47 primes that are splitting in K/Q and with norm
less than ℓ∗0 . One ûnds that α ≈ 1.020,

∑
q
bqϕq ≤ 2.192 ⋅ ⋅ ⋅ ,

and B(L/K) ≤ 0.951 ⋅ ⋅ ⋅ . To conclude,

M(K∅∅/K) ≤M(L) ≤ 1
log 2

6.139 ⋅ ⋅ ⋅ ≈ 8.857. ⋅ ⋅ ⋅

Example 4.5 Take p = 2. Let k = Q(
√

2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 41 ⋅ 43).
Put Tdec = {59, 61} and Tin = {37, 47, 53, 67, 89}; ∣T ∣ = 9. Let us consider K =
k(

√
−37 ⋅ 47 ⋅ 53 ⋅ 59 ⋅ 61 ⋅ 67 ⋅ 89). Along the extension L/K, one has

d2A(Kn) ≥ 9[Kn ∶K] − 1.

Here,

x2 = x3 = x7 = x13 = x31 = x37 = x47 = 0, ℓ∗0 = 647, and α ≈ 0.072.

_en∑q bqϕq ≤ 1.993 ⋅ ⋅ ⋅, B(L/K) ≤ 0.9733 ⋅ ⋅ ⋅, andM(K∅∅/K) ≤M(L) ≤ 9.657 ⋅ ⋅ ⋅.

Example 4.6 Take p = 2. Let

k = Q(
√
8 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 37 ⋅ 41 ⋅ 43 ⋅ 47 ⋅ 53 ⋅ 59 ⋅ 61 ⋅ 67 ⋅ 71 ⋅ 73).

Put Tdec = {79, 83, 89, 97, 107, 109, 137} and Tin = {101, 103, 113, 127, 131, 149, 157, 173}.
Let D be the product of the elements in Tdec and Tin and let K = k(

√
D). Here,

d2A(Kn) ≥ 20[Kn ∶K] − 1. Finally, for this example, ℓ∗0 = 1069, B(L) ≤ 1.013 ⋅ ⋅ ⋅, and
thus

M(K∅∅/K) ≤M(L) ≤ 10.022 ⋅ ⋅ ⋅ .
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5 Linear Growth of the p-class Rank

5.1 The Mean M and a Question of Ihara

_e examples of the previous section show how primes that split completely can be
used to produce towers with linear growth for the p-rank of the class group, which
then places constraints on the asymptotic mean M. In particular, with the help of
Proposition 2.2, we have the following result.

Proposition 5.1 Let S and T be two sets of places of K, (S , p) = 1. For all subûelds Kn
of KT

S , one has

dpAT(Kn) ≥ [Kn ∶K]( ∣T ∣ − ( r1(K) + r2(K))) .

Note that by the Golod–Shafarevich criterion (see _eorem 2.3 and Proposition 2.4),
KT

S /K is inûnite once ∣S∣ is large as compared to ∣T ∣, and in this case

M(KT
S /K, T ,∅) ≤ 1

∣T ∣ − (r1(K) + r2(K))(
α(B(KT

S /K),K, S)
log p

+ a(T)) ,

where a(T) is given in Deûnition 3.14 and 3.16.

Proof _e proof is an application of_eorem 3.21with ε = ∣T ∣−(r1(K)+r2(K)).

At this point, let us recall a question of Ihara [18]:

Question 5.2 What can one say about the number of primes that decompose com-
pletely in an inûnite unramiûed Galois extension?

_e importance of the above question for the invariant M is illustrated in the fol-
lowing corollary.

Corollary 5.3 Suppose that in the pro-p-extension KS/K, with (S , p) = 1, the set T
of places that split completely in this tower is inûnite. _en for all ε > 0, by taking large
T ⊂ T , one obtains

1 ≤M(KS/K, T ,∅) ≤ a(T)
∣T ∣ + ε.

If,moreover, the set T contains inûnitelymany primes pwith a(p) = 1, then, by choosing
T to consist only of such primes, we can arrangeM(KS/K, T ,∅) to be as close to 1 as
desired.

5.2 Ershov’s Trick

_anks to a result of Schmidt [36], the phenomenon of Proposition 5.1, which we
derived from number theory considerations, can be obtained via a clever idea due to
Ershov [5] using pro-p-group presentations.

Let K be a number ûeld and S0 a ûnite set of places of K, (S0 , p) = 1. We assume
that δK = 0 and that AK is trivial. By [36], one can choose a ûnite set Σ of places of K
such that
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(a) (Σ, p) = 1, S0 ⊂ Σ;
(b) the natural map H2(GΣ ,Fp)

∼Ð→⊕v∈Σ H2(Gv ,Fp) is an isomorphism;
(c) the pro-p-group GΣ is of cohomological dimension 2 and

χ(GΣ) ∶= 1 − dpH1(GΣ ,Fp) + dpH2(GΣ ,Fp) = r1(K) + r2(K).
Put d = dpGΣ and k = ∣Σ∣. As AK is trivial, d ≤ k.
By (b), the relations of GΣ are all local. In fact, by following the proof of [36,_e-

orem 6.1], one can show that there exists a subset S ⊆ Σ containing S0 with the fol-
lowing property. Letting T = Σ − S and t = ∣T ∣, there exists a basis of generators (x i)
of GΣ such that for i = 1, . . . , t, every element x i is a generator of the inertia group in
KΣ/K of one place of T . (_e set S allows us to kill a certain Shafarevich group.) _e
quantities t and d can be as large as we want.

Hence, the group GΣ can be described by generators and relations as

⟨x1 , . . . , xd ∣ [x1 , F1]x pλ1
1 , . . . , [xt , Ft]x pλ t

t , rt+1 , . . . , rk⟩ ,
where the elements Fi are li�s of the Frobenius of the places v i ∈ S, and λ i belongs to
Zp (for p = 2, λ i ∈ 2Z2) and where we recall that k = dpH2(GΣ ,Fp) = ∣Σ∣. Note that
the relations [x i , Fi]x pλ i

i , i = 1, . . . , t are the local conditions.
_en take aminimal presentation of G ∶= GΣ as follows:

1Ð→ R Ð→ FÐ→ GÐ→ 1,

where R is the normal subgroup of F generated by the relations

⟨ [x1 , F1]x pλ1
1 , . . . , [xt , Ft]x pλ t

t , rt+1 , . . . , rk⟩ .
LetH be the normal subgroup of F generated by the elements x1 , . . . , xt , F1 , . . . , Ft .

By maximality, the subgroup HR corresponds to GT
S . Put Γ = GT

S .
Now let Γi be an open subgroup of Γ and let Fi be the normal subgroup of F con-

taining HR and satisfying F/Fi ≃ Γ/Γi ≃ G/Gi , where Gi corresponds to Fi/R. Now
by Schreier’s formula one has

dpFi − 1 = [F ∶Fi](dpG − 1),
by recalling that dpG = dpF. One then has the exact sequence

1Ð→ Fp
i [Fi , Fi]R/Fp

i [Fi , Fi]Ð→ Fi/Fp
i [Fi , Fi]Ð→ Fi/Fp

i [Fi , Fi]R Ð→ 1,

where Fi/R ≃ Gi . Now, by construction, as Fi contains H, the ûrst generators of
R are in Fp

i [Fi , Fi]. One sees very quicky that the quotient Fp
i [Fi , Fi]R/Fp

i [Fi , Fi] is
topologically generated by the elements of the form yzy−1,where y is a representative
of a class of F/Fi and z ∈ {rt+1 , . . . , rk}: indeed, R ⊂ Fi . _us,

dp(Gi) ≥ [G ∶Gi](d − 1 − k + t) + 1,

and as 1 − d + k = χ(GΣ) = r1(K) + r2(K), one obtains
dp(Gi)
[G ∶Gi]

≥ t − ( r1(K) + r2(K)) .

Here, Gi = GΣ(Ki), where Ki is the ûxed ûeld of Gi inside the tower KΣ/K.
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5.3 On Schreier’s Bound

Recall again the principle behind the construction of the examples of Section 4. Take
p = 2. Let k be a real quadratic ûeld having an inûnite 2-extension kT/k. Put t =
∣T ∣ − (r1 + r2). Let K/k be an imaginary quadratic extension in which all places of T
are ramiûed. Let (kn) be an exhaustive tower in kT/k and consider the tower (Kkn)
of K, which is evidently inside KT/K. By Genus _eory applied to each quadratic
extension Kn/kn , dpA(Kn) ≥ [Kn ∶K]t − 1. In [14], it was proved that in fact

dpA(Kn) ≥ [Kn ∶K]t + 1.

At this level, we recall that Genus _eory allows us a lower bound of the p-rank of
a subgroup of A(Kn) without taking into account the contribution of A(kn), i.e.,

dpA(Kn) ≥ [Kn ∶K]t − 1 + αn ,

with αn ≤ dpA(kn) measuring the added contribution to the rank coming from the
injection of A(kn) into A(Kn) (see [25]).

In the other direction, thanks to Schreier’s inequality, one has

dpA(Kn) ≤ (dpA(K) − 1)[Kn ∶K] + 1,

and then
t [Kn ∶K] ≤ dpA(Kn) − 1 ≤ (dpA(K) − 1)[Kn ∶K],

which naturally raises the following question, which was raised in [14].

Question 5.4 Is it possible to create an example as above having an optimal inequal-
ity, i.e., such that dpA(K) − 1 = t?

In [14], it was shown that a sequence of examples can be created with the ratio
(dpA(K)−1)/t tending to 1. In the remainder of this section,wewill make an attempt
to ûnd examples with small (dpA(K) − 1) − t by considering some ray class groups.

We take p = 2. To recall a theorem due to Gras andMunnier (see [12, section I.4,
or chapter VI] or [13]), we ûx the notation. Let F′ ∶= F(

√
E ,

√
A) be the governing

ûeld of a number ûeld F, where E is the group of units of F, where A = {a1 , . . . , ad},
Ai

2 = a iOF, (Ai)i being a system of generators of A(F)[2].

_eorem 5.5 (Gras–Munnier) Let T = {p1 , . . . , pt} be a set of places of K, with
Npi ≡ 1 mod p. _ere exists an extension L/F cyclic of degree 2, exactly and totally
ramiûed at T if and only if, for i = 1, . . . , t, there exists a i ∈ F×p , such that

t

∏
i=1

( F
′/F
Pi

)
a i
= 1 ∈ Gal(F′/F),

wherePi is an ideal of L above pi .

Now, take ℓ to be a prime with ℓ ≡ 1 mod 32. Let F be the totally real subûeld
of Q(ζℓ) of degree 16 over Q. Let {−1, ε1 , . . . , εr} be a basis of E/E2. Note that the
extension F′/Q is a Galois extension and contains F (here F′ is the governing ûeld
deûned above). By the Chebotarev Density _eorem, we can ûnd an odd prime q
that splits completely in F′/Q. Now by _eorem 5.5, for all primes qi of F above q,
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there exists a cylic 2-extension exactly {qi}-ramiûed. We conclude that the 2-rank
of the 2-class group AS(K) is at least 16, where S is the set of places of K above q.
Moreover, by the condition above q, one has that −1 is a square inQq ; that means that
q ≡ 1 mod 4. Now, again by applying the Chebotarev Density _eorem, take p1 that
splits completely in the extension FabS (

√
−1)/Q aswell as another prime p2 that splits

completely in FS/Q but which is inert in Q(
√
−1)/Q.

Let T be the set of places of F above {p1 , p2}. _en the 2-rank of GS ∶= Gal(FS/F)
and the 2-rank of GT

S ∶= Gal(FT
S /F) are the same and are at least 16. Now, r(GT

S ) ≤ 48
(see Proposition 2.4) and, by the Golod-Shafarevich _eorem (see _eorem 2.1) the
tower FT

S /F is inûnite, and then the tower QT
Σ/Q is inûnite too, where Σ = {q, ℓ}.

Put K = Q(√−p1p2). _e primes ℓ and q are split in K/Q. As p2 ≡ 3 mod 4, one
has d2AK = 1 and the 2-rank of the ray class group of K with modulus qℓ is at most
5. Now consider the compositum L ∶= QT

ΣK. _anks to Schreier’s inequality and to
Genus _eory, one has for all number ûelds Kn in L/K:

2[Kn ∶K] ≤ d2AΣ(Kn) − 1 ≤ 4[Kn ∶K].
By assuming a hypothesis,we can improve the above estimate. Indeed, the 2-group

G ∶= Gal(F/Q) acts on the elementary abelian 2-groupH ∶= Gal(F′/F). Hence, there
exists a subgroup H0 ofH of order 2 on which G acts trivially.
For the remainder of this section, suppose that H0 can be chosen such that H0 ⊈

Gal(F′/F(
√
−1)).

By the Chebotarev Density _eorem, take an odd prime q such that its Frobenius
in Gal(F′/Q) is a generator ofH0.

Lemma 5.6 Let qi /= q j be two primes of F above q. _en ((F′/F)/qi) = ((F′/F)/q j).

Proof _eprimes qi and q j are conjugate: there exists g ∈ G such that q j = q
g
i . We are

done thanks to the property of the Artin Symbol: ((F′/F)/qg
i ) = g ⋅ ((F′/F)/qi) ⋅ g−1

and the fact that G acts trivially on H0.

Now by _eorem 5.5, for all pairs of primes qi /= q j of F above q, there exists a
cylic 2-extension exactly {qi , q j}-ramiûed. _en, this implies that the 2-rank of the
2-class group AS(K) is at least 15, where S is the set of places of K above q. Moreover,
by the condition above q, one has that −1 is not a square in Qq , which means that
q ≡ 3 mod 4. We now put K = Q(√−p1p2) and proceed exactly as before; the 2-rank
of the ray class group of K with modulus qℓ is at most 4 if q is inert in K/Q or 5 if q
splits.

Lemma 5.7 Here, d2AΣ(K) ≤ 4.

Proof One has only to look at the casewhere q splits in K/Q. Let α ∈ K be the square
of the unique non-trivial class C of AK: C2 = (α). Consider themorphism

θ∶ ⟨−1, α⟩z→
F×l1
F×2
l1

×
F×l2
F×2
l2

×
F×q1

F×2
q1

×
F×q2

F×2
q2

,

where li and qi are the primes of K above qℓ and where Fqi (resp. Fli ) is the residue
ûeld of qi (resp. of li). _en one has the formula (see [26] or see [12]): d2AK,Σ =
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d2AK + ∣Σ∣− d2 Im(θ). Now as q ≡ −1 mod 4, the image of θ is at least of order 2, and
then we are done.

Now consider the compositum L ∶= QT
ΣK. _anks to Schreier’s inequality and to

Genus _eory, one has for all number ûelds Kn in L/K:

2[Kn ∶K] ≤ d2AΣ(Kn) − 1 ≤ 3[Kn ∶K].

6 Invariant Factors in Pro-p-groups

For this section the main reference is [4]. We begin with a straightforward observa-
tion.

Proposition 6.1 Let G be a torsion-free FAb pro-p-group. Let (U) be a basis of open
subgroups of G. _en the sequence of the exponents e(Uab) of Uab is not bounded.

Proof Suppose that there exists an integer k such that for all open subgroups U,
e(Uab) ≤ k. Take 1 /= x ∈ G. _en ⟨xk⟩U ⊂ [U,U]; that means,

⟨xk⟩ = ⋂
U
⟨xk⟩U ⊂ ⋂

U
[U,U] = {1}.

In other words, xk = 1 and, as G is torsion-free, x = 1, which is a contradiction.

Our work in the previous sections on exponents of p-class groups leads us now to
deûning the following invariant for ûnitely generated FAb pro-p groups.

Deûnition 6.2 Let G be a FAb pro-p-group of ûnite type. For any open subgroup
U of G, since Uab is ûnite,MUab is well deûned. For n ≥ 1, we put

Mn(G) ∶= min
[G ∶U]=pn

MUab ,

and then deûne the asymptoticmean exponent of G to be

M(G) ∶= lim inf
n

Mn(G).

In the remainder of this section,wewill show how to estimate the asymptoticmean
exponent in two special cases.

6.1 In Analytic Pro-p-groups

As noted by Gärtner [11], the exponents of open subgroups of an inûnite p-adic ana-
lytic pro-p-group tend to inûnity. To bemore precise, letG be an analytic pro-p-group
of dimension d. _en G has an open uniform subgroup U (of rank d). Put U1 = U

and consider for i ≥ 1, Ui+1 = U
p
i [Ui ,U] the p-central descending series of U. (For

p = 2, take Ui+1 = U4
i [Ui ,U].)

Deûnition 6.3 A pro-p-group U is uniform if
(i) U/Up is abelian and
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(ii) for all i ≥ 1, themap

Ui/Ui+1 Ð→ Ui+1/Ui+2
x z→ x p

is an isomorphism.

Proposition 6.4 Let p be an odd prime, and let U be a uniform pro-p-group. _en
for each n, Uab

n has rank d andmaps onto (Z/pnZ)d .

Proof Take n > 1. Let x ∈ Un be an element of a minimal family of generators of
Un : the element x is not trivial in the quotient Un/Up

n[Un ,U]. As U is uniform, one
has Up

n[Un ,U] = Un+1 and then x is not trivial in Un/Un+1. Suppose now that the
order pk of x in Un/Un+1 is smaller than pn−1, i.e., x pk ∈ [Un ,U] with k < n. _en
as [Un ,U] ⊂ U2n , one has x pk ∈ U2n . But as U is uniform, for all m the following
isomorphism holds:

Un/Un+1
x↦x pm

ÐÐÐÐ→ Un+m/Un+m+1 .

_e integer k being supposed smaller than n,we ûnd x pn−1 = 1 inU2n−1/U2n and then
x = 1 inUn/Un+1, which is a contradiction. Hence, every element of a generator basis
of Un is of order at least pn .

Corollary 6.5 Let G be a uniform analytic pro-p-group of dimension d. Consider
the sequenceMGab

n
of mean exponents for the abelianizations of terms of the p-central

series. We have

MGab
n
≥ n = 1

d
logp[G ∶Gn].

Proof _is follows immediately from the previous Proposition.

Remark 6.6 ([4, Chapter 13]) Let us replace Zp by the complete local regular Noe-
therien ring R = Zp[[T1 , . . . , Tk]] with residue ûeld Fp and dimension k + 1; herem =
(p, T1 , . . . , Tk) is themaximal ideal of R. Let Grad(R) =⊕i≥0m

i/mi+1 be the graded
algebra; put c i = dimFp m

i/mi+1. Following the terminology of [4], consider G an R
standard and perfect group of dimension d. For example Sl1n(R) ∶= ker(Sln(R) →
Sln(Fp)) is such a group for p > 2. In particular, G = md as an analytic variety on
which there is a formal group law F. Let us consider the ûltration of G: Gn ≃ (mn)d ,
n ≥ 1. _en, for all integers m, n ≥ 1, [Gm ,Gn] = Gm+n (G is perfect) and there is
an isomorphism of groups Gabn ≃ (mn/m2n)d , where the formal law on the quotient
mn/m2n becomes the addition. As the quotients mi/mi+1 are p-elementary, one has

vp([G ∶Gn]) = logp[R ∶m
n] = c1 + c2 + ⋅ ⋅ ⋅ + cn−1 .
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By using the Hilbert–Samuel–Serre polynomial H = CXk+1 + ⋅ ⋅ ⋅ of Grad(R), C > 0
(i.e., deg(H) = k + 1), we have

vp([G ∶Gn]) ∼n dH(n − 1) ∼n Cdnk+1 ,

vp( ∣Gabn ∣) = vp([Gn ∶G2n]) ∼n d(H(2n − 1) −H(n − 1))
∼n cd(k + 1)nk+1(2k+1 − 1).

(For material for the Hilbert–Samuel–Serre polynomial; see, for example, [28].) To
ûnish, we want to bound the p-rank dpGn of Gn : dpGn = d ⋅ dp(mn/(pmn +m2n)).
First, we have the exact sequence

0Ð→ (pn−1m + ⋅ ⋅ ⋅ + pmn−1)/pmn Ð→ mn/(pmn +m2n)Ð→ mn/m2n Ð→ 0,

wherem is themaximal ideal of Fp[[T1 , . . . , Tk]]. Now the natural homomorphism

m/m2 × ⋅ ⋅ ⋅ ×mn−1/mn Ð→ pn−1m + ⋅ ⋅ ⋅ + pmn−1 mod pmn

(x 1 , . . . , xn−1) z→ pn−1x1 + ⋅ ⋅ ⋅ pxn−1 mod pmn

allows us to obtain
dpGn ≤ a1 + ⋅ ⋅ ⋅ + a2n−1 ,

where a i = dpm
i−1/mi . _e local ring Fp[[T1 , . . . , Tk]] is of dimension k, and then,

if H = C′Xk + ⋅ ⋅ ⋅ is the Hilbert-Samuel of the graded algebra Fp[[T1 , . . . , Tk]] with
C′ > 0, we have for n ≫ 0:

dpGn ≪ nk .
Finally, one obtains

MGab
n
≫ n ≫ ( logp[G ∶Gn])

1/(k+1)
.

6.2 Bounding M(GT
S ) for Tame S

First, thanks to Proposition 3.18, for the Galois group G = GT
S of a tame tower KT

S /K,
we have

M(G) ≤ c(K, S , T) lim sup
U

[G ∶U]
d(U) ,

where c(K, S , T) is a quantity that depends only on K, S , T . So, we must consider
the rate of growth of the generator rank of open subgroups of G with respect to their
index. Recall that the rank gradient of G (see, for example, [5]) is deûned to be

ρ(G) = lim inf
H

d(H) − 1
[G ∶H] ,

where the inûmum is taken over all open subgroups H ⊂ G. Note that when U ⊂ V,
Schreier’s formula gives the inequality

d(U) − 1
[G ∶U] ≤ d(V) − 1

[G ∶V]
showing that the sequence [G ∶Ui]/d(Ui) is increasing for a nested sequence (Ui)
of open subgroups. For groups with positive rank gradient ε, the p-rank of open
subgroups grows ε-linearly with the index (compare Deûnition 3.19).
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In the general case, lacking any knowledge of the behavior of d(U),we nonetheless
have the following result (_eorem 1.1(i)).

Proposition 6.7 Suppose S is a ûnite set of primes of a number ûeldKwith (S , p) = 1.
Let G = GT

S . _ere is a constant C > 0 such that for any open subgroup U of G, we have
MUab ≤ C[G ∶U].

Proof We simply apply Proposition 3.18,merely noting that d(U) ≥ 1.

Question 6.8 Is the conclusion of Proposition 6.7 true for every FAb pro-p-group
of ûnite type?

In themain result of this section, for certain special subgroupsU ofG,we give lower
bounds for d(U), which allows us to estimateMUab . _e main references are[4, §11
and §12].
First of all, a key result is a theorem of Jennings, which asserts that for any group

G there exists a connection between the enveloping algebra associated with a certain
graduated algebraGrad(G) ofG and the restricted enveloping algebra ofFp[G] graded
by the powers of the augmentation ideal I. Here, Grad(G) ∶= ⊕i≥0D i/D i+1, where
D i = (1 + I i) ∩ G; put b i ∶= dpD i/D i+1. _e ûltration (Dn) is called the Zassenhaus
ûltration of G; this ûltration satisûes thesemains properties:

D1 = G, Dn = Dp
n∗ ∏

i+ j=n
[D i ,D j], Dp

n ⊂ Dnp , and [Dn ,Dm] ⊂ Dn+m ,

where n∗ = ⌈n/p⌉. Hence, D i/D i+1 ≃ (Z/pZ)b i .
_e relationship between these two associative algebras gives a link between the b i

and the c j ∶= dpI j/I j+1. More precisely, if U(T) ∶= ∑n≥0 cnTn is theHilbert Poincaré
series of the graded algebra Fp[[G]], then

U(T) =∏
i≥1

( T pi − 1
T i − 1

)
b i
.

In particular, when G is analytic, the p-rank of its open subgroups is bounded and
then, the integers b i should o�en vanish. In fact, one has the spectacular result that
b i = 0 for a single integer i if and only if the pro-p-group is analytic. _e following
beautiful lemma is a consequence of all of this.

Lemma 6.9 Suppose ε > 0. If G is not analytic, then there exist inûnitelymany n such
that

dpD2n ≥ (1 − ε) logp[G ∶D2n ],
where D2n runs in the Zassenhaus ûltration (Dk) of G.

Proof _is is [4, lemma 11.8].

Deûnition 6.10 A ûnitely generated pro-p group G is said to be of Golod–Shafare-
vich type if all the relations are of degree 2 and d2 ≥ 4r where d , r are the generator
rank and relation rank of G, respectively, (cf. _eorem 2.3).
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Remark 6.11 A pro-p-group of Golod–Shafarevich type with relation rank r > 1
is not analytic, (cf. [24, 37]). If a pro-p group is mild with respect to the Zassenhaus
ûltration, and all its relations are of degree 2, then it is ofGolod–Shafarevich type (and
of cohomological dimension 2); see [21].

Proposition 6.12 Suppose that the conditions of_eorem 2.6 hold for a number ûeld
K, so that G = GT

∅ is inûnite. _en there exists a constant C and inûnitely many n such
that

MDab
2n
≤ C [G ∶D2n ]

logp[G ∶D2n ]
,

where D2n runs in the Zassenhaus ûltration (Dk) of G.

Proof _e conditions of_eorem 2.6 entail thatG is ofGolod–Shafarevich type, and
hence is not analytic. _e desired conclusion is therefore a consequence of Lemma 6.9
and Proposition 3.18.

To ûnish, let us improve the lower bound of Lemma 6.9. To simplify, assume that
p > 2.

Let
1Ð→ R Ð→ F Ð→ GÐ→ 1,

be aminimal presentation ofG: the pro-p-group F is free and generated by d elements
x1 , . . . , xd . We assume thatG isûnitelypresented: the dimension overFp ofH2(G,Fp)
is ûnite. Let ρ1 , . . . , ρr ∈ F be a system of generators of R/Rp[F , R]. For i = 1, . . . , r,
let a i be the degree of ρ i following the Zassenhaus ûltration of F.

Deûnition 6.13 For two formal series with real coeõcients, we say that∑n αnTn ≥
∑n α′nTn if for all n, αn ≥ α′n .

Proposition 6.14 Let G be a ûnitely presented pro-p-group. Let U(t) be the Hilbert
Poincaré series of the graded algebra Fp[[G]]. _en

U(T) ≥ 1
1 − dT +∑r

i=1 T a i
,

with equality if G is of cohomological dimension at most 2.

Proof _e proof is essentially a result of Brumer [1]. First let us consider the natural
short exact sequence

0Ð→ I(G)Ð→ Fp[[G]]Ð→ Fp Ð→ 0,

where I(G) is the augmentation ideal of the complete algebraFp[[G]]. _e topological
generators of G are in I(G) and therefore all of degree 1. For aminimal presentation

1Ð→ R Ð→ F Ð→ GÐ→ 1,

of G, Brumer (see [1, (5.2.1)]) shows that there is a short exact sequence

0Ð→ R/Rp[R, R] fÐ→ I(F)/I(F)I(R) gÐ→ I(G)Ð→ 0,
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where f (r) = r − 1 mod I(F)I(R). Now, the quotient I(F)/I(F)I(R) is a free
Fp[[G]]-module on the generators x1 − 1, . . . , xd − 1, and then we have the following
relation on theHilbert Poincaré series:

P(T) − dTU(T) +U(T) − 1 = 0,

where P(T) is the series of R/Rp[R, R] and where U(T) is the series of Fp[[G]]. As

Fp[[G]] ⋅ ρ1 ⊕ ⋅ ⋅ ⋅ ⊕ Fp[[G]] ⋅ ρr
φ↠ R/Rp[R, R],

and since the elements ρ i are of degree a i , one has

P(T) ≤ (
r

∑
i=1

T a i)U(T).

Now, the equality comes from the fact that the pro-p-group G is of cohomological
dimension at most 2 if and only if the map φ is an isomorphism (see [1, Proposi-
tion 5.3]).

_eorem 6.15 Let L/K be a tamely ramiûed pro-p-extension with Galois group G.
Suppose that G is of Golod–Shafarevich type and of cohomological dimension 2. _en
for every ε > 0, there exists a constant C and inûnitely many n such that

MDab
2n
≤ C [G ∶D2n ]

(logp[G ∶D2n ])2−ε ,

where D2n runs in the Zassenhaus ûltration (Dk) of G.

Remark 6.16 In the inequality of the previous theorem, the constant depends on ε
and on the set of primes ramifying in L/K. We note that Labute ([21, _eorem 1.6])
was the ûrst to give a suõcient condition for mildness of GT

S ; thanks to the work of
Schmidt [36], for any K, by choosing S large enough, one can arrange that the group
GT

S is of cohomological dimension 2 and mild, and hence meets the conditions of
the _eorem 6.15. (See also the work of Labute [21], Labute and Mináč [22], Forré
[8], Gärtner [10], Vogel [40], etc.) We wish to highlight the fact that the preceding
theorem combines some results from analytic number theory (Brauer–Siegel), arith-
metic (the results of Schmidt and the fact that the root discriminant is bounded), and
group theory! In fact, better bounds for the growth of p-rank of open subgroups of
Golod–Shafarevich pro-p groups can be found in the literature [5,6], but the interest
of_eorem 6.15 is the arithmetic �avor of the proof.

Proof We want to give a lower bound of dpD2n . First, as [D2n ,D2n ] ⊂ D2n+1 , we
should have in mind the fact that dpD2n ≥ dpD2n/D2n+1 .

Now by hypothesis,

∏
i≥1

( T pi − 1
T i − 1

)
b i
= 1

1 − dT + rT2 = 1
(1 − αT)(1 − βT) ,

with α ≥ β, α ≥ 2, and β > 1. Indeed, as Gab is ûnite, r ≥ d.
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By taking logarithms, one obtains

∑
i≥1
b i ∑

k≥1

1
k
(T ki − T pki) =∑

i≥1

1
i
(α i + β i)T i .

Take m with (m, p) = 1. _en by looking the coeõcients at Tm ,

αm + βm =∑
i∣m

ib i .

_is equality at m = 2n and at m = 2n−1 allows us to give

b2n = 2−n(α2n −
√
α2n + β2n −

√
β2n , )

and then there is a constant C > 1 such that for all large enough n, we have

b2n ≥ C
α2n

2n .

Let us conserve the notation of [4] and put in = logp[G ∶D2n ]. As

dpD2n ≥ dpD2n/D2n+1 = logp ∣D2n/D2n+1 ∣,

one has the inequality in+1 ≤ dn + in , where dn = dpD2n . Now, for n ≫ 0,

in+1 = logp[G ∶D2n+1] = logp[G ∶D2n ] + logp[D2n ∶D2n+1] + logp[D2n+1 ∶D2n+1]

≥ b2n ≥ C
α2n

2n .

Let n0 be an integer. Suppose that for all n ≥ n0, dn ≤ i2−εn . _en in+1 ≤ 2i2−εn and by
induction,

in+1 ≤ 21+(2−ε)+⋅⋅⋅+(2−ε)n−n0 i(2−ε)
n+1−n0

n0 .
Hence, for n ≫ n0,

C α
2n

2n ≤ in+1 ≤ 2
(2−ε)n+1−n0−1

1−ε i(2−ε)
n+1−n0

n0 ,

which is a contradiction for large n.
Hence, there exist inûnitely many n such that dpD2n ≥ (logp[G ∶D2n ])2−ε and if G

is the Galois group of a tamely ramiûed tower,

MDab
2n
≪ [G ∶D2n ]

(logp[G ∶D2n ])2−ε .

Remark 6.17 Calculations of the above type with Poincaré series can be found, for
example, in [29,30].

7 Final Remarks

7.1 On a Question of Structure

Wehave been looking for towers inwhich the p-rankof class groupshas linear growth.
In the Iwasawa context, abelian aswell as non-abelian (for the latter, see, for example,
[34]), there is an underlying algebraic structure thanks to which the linear growth
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of the rank corresponds exactly to having positive µ-invariant. Can we detect any
evidence of a similar algebraic structure in the tame case?

In this paper we produce our examples as follows. First, we consider an inû-
nite extension kT

S /k with T non-trivial, and then take its compositum with a ûnite
p-extension K/k inside kT . In this manner, one obtains a subextension L ∶= KkT

S of
k∅
{S∪T}

. It is in the extension L/K thatwe can force linear growth of the p-class groups
(An)n . Put G = Gal(kT

S /k) ≃ Gal(L/K). By a result of Schmidt [36], by choosing
S large enough, one can assume that the group G is of cohomological dimension 2
and mild. Let Λ ∶= Fp[[G]] be the Iwasawa algebra associated with G. As G is mild,
the ring Λ is without zero divisor, but note that it is probably not Noetherian. Let
X ∶= lim←n An be the projective limit of the studied arithmetic object An . _e limit X
is a ûnitely generated Λ-module ([27]).

Question 7.1 Is the linear growth ofAn produced by thismethod related to a natural
algebraic structure of “Iwasawamodule” X ?

7.2 How Small Can the Mean Exponent be in Tame Towers?

We have shown that there exist asymptotically good inûnite towers inwhich themean
exponent is bounded above. On one hand, it is natural to ask the following question.

Question 7.2 Can we ûnd asymptotically good pro-p towers L for which M(L) is
arbitrarily close to 1?

On the other hand, our constructions are rather special, so we have the following
question.

Question 7.3 Are there asymptotically good inûnite pro-p towers in which the
mean exponent of p-class groups is not bounded?

As a start on Question 7.2, we note that in Section 4, we have developed some
examples of the following type:

K = Q(√p1 ⋅ ⋅ ⋅ pt ,
√−pt+1 ⋅ ⋅ ⋅ pt+s).

Here, kT/k is inûnite where k = Q(√p1 ⋅ ⋅ ⋅ pt) and T = {pt+1 , . . . , pt+s}. _ese
examples give s-linear growth for p-class groups where the base ûeld K has genus
g ≈ log(p1 ⋅ ⋅ ⋅ pt pt+1 ⋅ ⋅ ⋅ pt+s). Letting n = t + s, we note that as n becomes large, one
has g ≲ pn ,where pn is, in the optimal case, the n-th prime number, i.e., g ∼ n log(n).
But on the other side, to force the inûnitude of kT/k, which we need, wemust apply
Corollary 2.7, which requires s ∼ n. _us, the best we can expect via this method for
bounding M(K∅∅/K) is onlyM(K∅∅/K) ≲ log(n).

Question 7.4 What is the biquadratic ûeld (following the abovemethod) with the
smallest upper bound on the value ofM(K∅∅/K)?
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7.3 Concluding Summary

In this paper, we have introduced the logarithmic mean exponent of a ûnite abelian
p-group as an invariant that balances the cardinality of the group against its rank,
and studied its behavior in the context of p-class groups of number ûelds varying in
towerswith restricted ramiûcation. By amixture of results from algebraic and analytic
number theory, we have constructed tame towers for which the mean exponent is
bounded, and shown that, by contrast, themean exponent for some open subgroups
of p-adic analytic groups tend to inûnity. We hope that further study of the mean
exponent will shed light on properties that distinguish Galois groups of tame versus
wild extensions.
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