Quantifying secular evolution through structural decomposition

Lee Kelvin^{1,2,3}

¹School of Physics & Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK ²ICRAR, The University of Western Australia, 35 Stirling Hwy, WA 6009, Australia ³Inst für Astro- u Teilchenphysik, Universität Innsbruck, Techstr 25, 6020 Innsbruck, Austria email: lee.kelvin@uibk.ac.at

Abstract. Structure within a galaxy is not random, instead emerging as a direct function of its evolutionary path. It is thought that secular evolutionary processes leave behind distinct structural tracers in the form of bars, pseudo-bulges and rings. We have developed a robust automated structural analysis pipeline (Kelvin *et al.*, 2012) able to accurately map structure across a range of ground and space-based datasets. Using reprocessed SDSS and UKIDSS data from the GAMA survey: an imaging and spectroscopic survey with over 300,000 redshifts across 300 square degrees (Driver *et al.*, 2009); we measure the relative abundance and stellar mass locked up within these structures in the local (z < 0.06) Universe. Future robust calculations of the stellar mass budget within bulges, bars, disks and pseudo-bulges should allow us to measure the relative importance of secular evolution against other mechanisms across cosmic time.

Keywords. galaxies: evolution, galaxies: structure, techniques: image processing, astronomical data bases: miscellaneous, galaxies: bulges, galaxies: spiral, galaxies: fundamental parameters

Figure 1. The breakdown of galaxy stellar mass in the local Universe by (top to bottom): morphological type; morphological class; galaxy structure, and; evolutionary processes. Percentages represent the fraction of mass within that division, with 2σ errors shown below for reference.

References

Driver. S. P. et al., 2009, Astron. Geophys. 50, 050000 Kelvin, L. S. et al., 2012, MNRAS 421, 1007