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CHESTER L. MIRACLE 

1. Introduction. The Gibbs phenomenon may be described, quite 
generally, as follows. Let a sequence {fn(x)} (n = 0, 1, 2, . . . ,) converge to 
a function f{x) for x in the interval x0 < x < x0 + h. We say that {fn(x)} 
displays the Gibbs phenomenon in a right-hand neighbourhood of the point 
Xo, if 

lim fn(x) > / (x0 + 0), or lim fn(x) < /(x0 + 0). 
W-Joo n-$co 

X-ïXQ-1 0 2^2:0+0 

A similar definition holds for a left-hand neighbourhood. If {fn(x)} displays 
the Gibbs phenomenon at both sides of x0, we say simply that {fn(x)} displays 
Gibbs phenomenon at the point Xo. We define the Gibbs set of the sequence 
{fn(x)} at the point x0 to be the union of all numbers rj such that/w(x) —» rj as 
n —» 00 a n d X ^ Xo t h r o u g h a p p r o p i a t e v a l u e s . H e r e w e wi l l b e c o n c e r n e d n o t 

with the Gibbs phenomenon in general, but with the Gibbs phenomenon as 
displayed by the sequence of partial sums of a Fourier series. Further, we will 
restrict ourselves to Fourier series representing functions which satisfy the 
Dirichlet conditions. 

The following is a description of the Gibbs phenomenon for the case we 
will consider. Suppose the function f(x) satisfies the Dirichlet conditions in 
the interval — w < x < 7r, and suppose a is a discontinuity of the function 
f(x). Let {^(x)} denote the sequence of partial sums of the Fourier series for 
f{x)y then by proper choice of a sequence {tn}, which approaches a as n 
approaches infinity, we can make the sequence {sn(tn)} approach any number 
in the closed interval whose endpoints are 

(1.D / ( g - 0 ) + / ( a + 0 ) - / ( Q - 0 ) / and 
7T 

7T 

where 

/ = r ^3 , = _.28.... 
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THE GIBBS PHENOMENON FOR MEANS 661 

A proof that this conclusion follows from the above hypothesis can be found 
in Bôcher (3) or Carslaw (4). Note that for our case the Gibbs set at the 
point a is composed of all points having abscissa a and ordinates in the closed 
interval whose endpoints are given by (1.1). 

Let A = (ank) and {sn} (n, k, = 0, 1, 2, 3, . . . ,) be a matrix and a sequence 
of complex numbers, respectively. Let the members of the sequence {an} be 
denned by 

oo 

then we say {<rn\ is the A transform of {sn}. The matrix A = (ank) is called 
regular if 

lim sn = lim an, 

whenever the first limit exists. Necessary and sufficient conditions in order 
that a matrix A = (ank) be regular are the well known Silverman-Toeplitz 
conditions: 

(1.2) Ë k*l <K (t* = 0, 1,2, . . . , ) , 

oo 

(1.3) lim X) ank = 1, 
W-400 fc= 0 

(1.4) lima»* = 0 (jfe = 0 , l , 2 ), 
71-ÏCO 

where K is a constant independent of n. 
If f(x) is a function satisfying the Dirichlet conditions and {sn(x)} is the 

sequence of partial sums of the Fourier series for/(x), then it is well-known 
that for a given x the sequence {sn(x)} approaches 

/ ( * + 0 ) + / ( * - 0 ) 
2 

as n approaches infinity. If we transform the sequence \sn(x)} into the sequence 
{Rn(x)} by a regular sequence to sequence matrix A, then it follows that for 
given x the sequence {Rn{x)\ also approaches 

/ (* + 0 ) + / ( * - 0 ) 
2 

as n approaches infinity. A question then presents itself. Does the sequence 
{Rn(x)} also display the Gibbs phenomenon at every finite discontinuity of 
/(#)? This question has been studied for Césaro means by Cramer (7) and 
Gronwall (8), for Euler means by Szasz (13), for Borel means by Lorch (12), 
for Hausdorff means by Szasz (14), and for Riesz means by Kuttner (10), 
to cite only a few cases. Our purpose is to study this question for the Taylor 
matrix and the [F} dn] matrix. 
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DEFINITION (1.1). Let f(x) denote any junction satisfying the Dirichlet 
conditions and having a discontinuity at the point a. Let {Sn(x)\ denote the sequence 
of partial sums of the Fourier series representing fix). Let {Rn(x)\ denote the A 
transform of {Sn{x)). If for every such function j\x) the sequence {Rn{x)\ displays 
the Gibbs phenomenon at the point a and has the same Gibbs set at the point a as 
does {Sn(x)\ y we say that the A transform completely preserves the Gibbs pheno­
menon for Fourier series. 

In some cases the sequence {Rn(x)) displays the Gibbs phenomenon at 
x = a, but does not have the same Gibbs set at a as does the sequence {5w(x)}. 
We use the word completely here to indicate that we are excluding such cases 
from our consideration. In such cases one might simply say that the A trans­
form preserves the Gibbs phenomenon for Fourier series. 

A short calculation shows that the first number in (1.1) can be written as 

f(a + 0) + / ( q - 0) | f{a + 0) - / ( a - 0) C i ^ l . 
Jo y 2 7T Jo y 

and the second number as 

f(a + 0) + / ( f l - 0) , fja + 0) -fia - 0) f sin y 

Since 

+ - — —~dy. 
Jo y 

j" sin y . 
—-- dy 

h y 
is a continuous function of r, it follows that any number in the interval whose 
end points are given by (1.1) can be written in the form 

( L 2 ) / ( a + 0 ) + / ( a - 0 ) { f(a + 0)-j(a-0) frsin y 
2 iv Jo y 

by proper choice of r in the interval — T < r < w. Hence we have the following 
theorem. 

THEOREM (1.1). Let fix), A, a, {Snix)}, and {Rnix)} denote the same quanti­
ties as in Definition (1.1). If for each r in — w < r < w, there is a sequence 
{tn}y with l i n v ^ tn = a and so that 

r.^oc z * Jo y 
then the A transform completely preserves the Gibbs phenomenon for Fourier 
series. 

2. Taylor and [F, dn] transforms. The elements ank of the Taylor 
matrix Tr are defined by the relation 

(2.1) n ^ - = S a-^ (I»*! < D-
U — rv) fc==0 
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It is shown by Cowling (5) that the Taylor matrix satisfies the Silverman-
Toeplitz conditions (1.2), (1.3), and (1.4), and thus is regular if and only if 
0 < r < 1. A short history of the Taylor matrix, and a list of the basic papers 
concerning it are to be found in a paper by Cowling and Piranian (6). 

The elements Pnk of the [F, dn] matrix are defined by the relation 

(2.2) P oo= 1 

e + dj 

n 
3=1 l 

, j = E Pn*f, dn > 0 (n = 1, 2, 3, . . . ,). 

This matrix was studied by Jakimovski (9), who shows that it is regular if 
and only if 

CO 

E i1 = + œ-
n=l 

The [F, dn] matrix is a generalization of the Euler and Lototsky matrices. If 
we let dn = n — 1 in the [F, dn] matrix, we get a matrix whose elements ank 

are given by 

6(6 + 1)(0 + 2) . . . (6 + n - 1) = S n\ank6\ 
k=0 

This is the matrix of Lototsky (11). It is shown by Lototsky and Agnew (2) 
that this marix is regular. If we let dn = (1 — r)/r in the [F, dn] matrix, we 
get a matrix whose elements ank are given by 

[rd+ ( l - r ) F = É *n*ek. 
fc=0 

This is the well-known Euler matrix. It is shown by Agnew (1) that this matrix 
is regular for 0 < r < 1. 

3. Preliminary theorem. We first state the following lemma. 

LEMMA (3.1). Suppose {Sn(x)} is a sequence which approaches the function 
f(x) uniformly in the interval a < x < b. Further, suppose there exists constants 
M and Mn(n = 0, 1, 2, . . . ,) such that \f(x)\ < M and \Sn(x)\ < Mn for all x 
in the interval a < x < b. If {Rn(x)} denotes the transform of the sequence 
{Sn(x)} by any regular sequence to sequence transform A, then the sequence 
\Rn(x)} approaches fix) uniformly for a < x < b. 

From the manner in which this lemma is stated, the reader can easily 
construct the proof using the Silverman-Toeplitz conditions (1.2), (1.3), and 
(1.4). 

THEOREM (3.1). Let A = (ank) denote a regular sequence to sequence matrix. 
Define the function <j> (x) by 

(3.1) <K*)-\ x / 2 0 < X < 7 T , 

^ ( - T T ) = 0(0) = 0(TT) = 0, and <£(*) = <$>{x + 2TT). 
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Let {sn{x)} denote the sequence of partial sums of the Fourier series for </>(x). Let 
{an(x)} denote the A transform of {sn(x)\. Now, if {<rn(x)\ displays the Gibbs 
phenomenon at zero and has the same Gibbs set as {sn(x)} at zero, then the A 
transform completely preserves the Gibbs phenomenon for Fourier series. 

Proof. Let f{x) be any function with period 2ir satisfying the Dirichlet 
conditions in the interval — ir < x < w and having a discontinuity at the point 
a. Since/(a) does not effect the Fourier series for/(x), let us define/(a) by 
f(a) = J{/(a + 0) + f(a — 0)}. Since f(x) satisfies Dirichlet's conditions, it 
can be represented by a Fourier series whose sequence of partial sums will 
be denoted by {Sn(x)}. 

Define the function M>(x) by 

(3.2) *(«) = / (*) _ / ( * + 0 ) + / ( * - 0 ) _ / ( « + 0 ) - J ( a - 0 ) _ 

Since ^(x) satisfies Dirichlet's conditions, it can be represented by a Fourier 
series, whose sequence of partial sums will be denoted by {?„(#)}. 

A short computation shows that 4>(x — a) has the Fourier series expansion 

v^ M / iwi\ cos va . sin m 
> n — (—1) I sin vx cos^x . 

Let {sn(x — a)} denote the sequence of partial sums of this Fourier series. 
If we replace f(x) by its value from (3.2), compute the coefficients of its 

Fourier series expansion, and then sum from 1 to n, we get 

(3.3) Sn(x) = U*) 

+ /(a + 0 ) + / ( a ^ + | / ( a + 0 ) - / ( a ^ | ^ , ^ 

Let {Rn(x)\, {^w(x)}, and {an(x — a)} denote, respectively, the A transforms 
of the sequences {Sw(x)}, {fw(x)}, and {sn(x — a)}. Then applying the A 
transform to the sequence in both sides of (3.3), we obtain 

(3.4) Rn(x) = %(x) 

. /(a + 0)+/(a-0) f* 7 . / ( a + 0 ) - / ( a - 0 ) , , 
_l 2_, ank H (T„(x — a). 

From (3.2), ^ ( a + 0) = ^ ( a — 0) = V(a) = 0 , and so ^(x) is continuous 
at x = a. Since \£(#) satisfies the Dirichlet conditions, there exist numbers a 
and p (a < a < P) such that ^(x) is continuous for a < x < /3. From Lemma 
(3.1) it follows that {"^(x)} approaches \P"(x) uniformly for a < x < /?. Hence 
given e > 0, there exist an integer no and a number 8 such that if n > ^o and 
|x — a\ < <5, then 

(3.5) |¥„(*)| < e. 

By assumption {crw(x — a)} displays the Gibbs phenomenon at x = a and 
has the same Gibbs set at x = a as does {sn(x)}. Going back to (1.1), this 
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means that by proper choice of a sequence {tn}, such that lim n_>00 tn = a, we 
can make the sequence {an(tn — a)} approach any number in an interval whose 
endpoints are 

*(0-) + 0(0+) - 0 (0- ) f s i n y 
Jx y t / 0 

sin y 

o 3> 
d;y 

and 

•«*>- — ' • - ' P * 2 » - ! ^ » 0(0+) - 0 ( 0 - ) p s i n y ^ 

Let r ( — 7 T < r < 7 r ) and e > 0 be given. It now follows that there exists an 
integer Ni and a sequence {tn}, with lim n^m 4 = a, such that if w >JiVi,*then 

Jo y 
< 3|/(a + 0 ) - / ( a - 0 ) | 

From (3.5) there exists an integer N2 such that if n > 7V2, then 

|*«(Ol < *€. 

From (1.3) there exists an integer N3 such that if n > iV ,̂ then 

2e 
Z fl«fc ~ ! < 3|/(a + 0 ) + / ( a - 0 ) | ' 

Rearranging (3.4), inserting absolute values, and replacing x by tn yields 

Rn(tn) 
T 

/(fl + 0 ) + / ( q - 0 ) | 

[7(q + 0) + / ( a ~ 0) • f(a + 0) - / ( a - 0) p i n y ^ I I 
L 2 ir Jo y JI 

< |*,(OI + 

+ 

'o y 

X) un* — 1 

|/(o + 0 ) - / ( f l - 0 ) | •„(*„ - a) - I ^ 7 - ^ 
Jo y 

Jo y JI 

Let N = max (1V1, iV2, Nz), then for w > N 

Rn(Q _ [/(g + 0 ) + / ( f l - 0 ) , /(a + 0) 
2 7T Jo y 

The theorem now follows from an application of Theorem (2.1). 

4. The two main theorems. 

THEOREM (4.1). The Taylor transform completely preserves the Gibbs 
phenomenon for Fourier series. 

Proof. A short computation shows that the function <j>{x) given by (3.1) 
has the Fourier series expansion 

ys sin(2z; - l)x 
h 2v - 1 ' 
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Let {sw(x)} denote the sequence of partial sums of this series, then another 
short computation shows that 

2nt 
sn(x) = I —r 

Jo si 
. M dt. 

o sin t 

In the following discussion we consider only values of x in the interval 
0 < x < I T . The Taylor transform {<rn(x)} of the sequence }sn(x)} is given by 

(4.1) *„(*) = É f (1 - r)"+1 (*) r*-nSÂ^dt. 
k=n Jo \n/ sin r 

Since 0 < / < | x , we have 

sin 2kt . , —_ ^ ^ 

sin £ 

Hence, 

or the series (4.1) is uniformly convergent for 0 < t < T/2. Therefore, we 
may interchange the order of integration and summation in (4.1) which gives 
us 

A i — T — £ ) r*"" sin 2& <fc o sin £ fci w 

= f-^-ImlÉ (*) (1 - r^V^e2*"!*. Jo sin / I t^n \nj ) 

Using (2.1) with 6 = e2it to sum the series, we get 

J ™(I _ r)
n+1 ( e

2nit \ 

Define p and 6 by the relation 

(4.3) Pe'iB = 1 -reu\ 

From (4.3) it follows that 
(4.4a) p cos 6 = 1 — r cos 2/, 

(4.4b) ps'md = r sin 2/, 

(4.4c) p2 = 1 - 2r cos 2t + r2, 

(4.4d) 0 < d < (TT/2), and 

(4.4e) (1 - r) < p. 

Substituting the left-hand member of (4.3) for the right-hand member of (4.3) 
in (4.2), we obtain 

^ '-<*>=f0ski ( M r ^ + i ) e + 2nt] dt. 
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Using (4.4c), it follows that 

667 

-W-1 i - ' i 4 r . 2, 
1 — I ) = ~2 sin /. 

Since r < 1 and p > 0, (4.4c) implies 0 < (1 — r)/p < 1. Hence we have 
that 

( ^ ) — ( ^ ) 

2 A *2 

4r/ 
P 

(4.6) 0 < 1 
\ P / \ P 

Applying the inequalities (4.4e) and (4.6), it follows that 

»<-(^r=[-(^)]s(^)'<<«+" 4rr 
2 

P 

< 
4(w + l)rf 
~0~-7)2 

Therefore, we may write 

(4.7) 
(l - AB+1

 t (n + l)rt2 

where 0 < M < 4. Note that /* is a function of w, r, and /. Substituting the 
value of [(1 - r)/p]n+1 from (4.7) into (4.5), we get 

U*\ M r^[(n + 1)6 + 2tU] (4.8) <*(*)= J ~ dt 

p ( n + l 
•/o 

) r r sin[(w + 1)0 + 2n/] 
(1 - r ) 2sin/ <ft. 

^ / + /'. 
Making use of the well-known inequality 0 < x — sin x < x3, valid for 

x > 0, we obtain the inequality 

\p6 - 2r/| < p(0 - sin 0) + r(2/ - sin 2/) < P03 + 8r/3. 

It follows from (4.6) that (p + r - 1) < (4r£2/p). Hence 

| (1 — r) — 2r/| < |p(9 - 2r^| + (r + P - 1) B < P03 + 8r/3 + (4rt2d/p). 

From (4.4b) and (4.4d), it follows that 

6 < (7rf/2p) sin 2t < (irr*/p). 

Therefore, 
3 3 , 3 

TV T t A 2 / 3 

1(1 — r) — 2r*| < - - - 2 - + Srt* + ---W-
P P 

Using (4.4e), this inequality becomes 

2rt 
6 -

1 - r 
< 

3 3,3 
7T r £ 

+ 
8rf 

+ 
A 2 . 3 

(1 - r)d 1 - r (1 - r)" ' 
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Hence we have that 

(4.9) e = T-2-- + A;3 

1 — r 
where 

7T r , 8r , 47rr ^ 54 
M < 71 1X3 + -, + T, ^3 < (1 - r)6 ' 1 - r ' (1 - r)6 ^ (1 - r) 3 • 

Note that X is a function of r and L Upon replacing 0 by the right-hand member 
of (4.9), the integral / in (4.8) becomes 

T — f*sin Lnrt cos[{n + 1)X£3] , Cxco§ Lnrt$\n[(n + l)Xt ] , 
Jo sin / Jo sin t ' 

where 

Lnr = (n + 1) ( y ~ ) + 2n. 

Putting this value of / into (4.8) and adding 

— I C1 sin Lnrt dt 

to both sides of (4.8), we get 

(4.10) <rn(x) - rsm^nrtdt = 
«/o J 

r(n + 1) Çx ^ 2 s in[ (^+ l)6 + 2nt] ^ 
Jo ~*~ J (1 — r) Jo sin 2 

. r*cos Lnrt sin[(n + 1)X£3] , 
Jo sin / 

cos[(w + 1)X*3] 
JoS i n L^V . dt 

sin t 

= ri + r2 + r8. 
Since sin £ > (2t/ir) for 0 < / < |7r, we have that 

1̂ 1 < "(T^T)3 J0 ~2T dt < ~Q~^77~ 
and 

, 3 n / i -i \ 3 

After expanding sin £ and t cos [{n + 1)X/3] in series, it follows from a well-
known theorem for convergent alternating series that 

|sin / - t cos \{n + 1)A^]| < tz + (n + l ) 2 X2 /7. 
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Applying this inequality, we get 

r T[IZ + (« + D2xV] 
t / 0 r, < 2r (1 - r) 

Inserting absolute values on both sides of (4.10) and using the above inequali­
ties for ITil, |7"2|, and IT^I, we have 

(4.11) 
/ x f xsin LnTt 

dt 

< 
rirjn + l)x2 , 9TT(W + l)x3 , __2 , 243X(K + 1 ) V 

(1 - rY + ( l - , ) 3 +X + (1 - r)b 

Let r such that 0 < r < 7r be given, and define the sequence {tn} by 
tn = r/Lnri then for n > 1 we have 4 < 7r/2. Therefore, if n > 1, we may 
replace x by tn in (4.11). This gives 

T"fe)-J„ ~T" rf< 

rTr(w + 1 ) T 97T(W 4- l ) r 243 x p + 1) V 
<"(l'-'rhi;+ (l-rnfr

 + Ll+ (1-rfLl ' 

where r(0 < r < 1) is fixed. Upon setting y = Z,rer t, it follows that given 
e > 0 there exists an integer N (N > 1) such that if n > iV, then 

t/o y 
< e. 

Let e > 0 and r such that — -K < r < 0 be given. Since — r is in the interval 
0 < — r < 7T, we have just shown the existence of a sequence {—tn}, with 
— tn = —Tr/Lnr, and an integer A7 such that if n > N, then 

<rn( — tn) r^dy 
Jo y 

< e. 

It follows from (4.1) that crn(x) = — an(x). Substituting —o-n(tn) for <rn( — tn) 
and —y for y, this inequality becomes 

7n{tn) - ~rdy 
«/o _y 

< e. 

Since 

0 ( 0 + ) + 0 ( 0 - ) = 0 a n d 0 (0+) - 0 ( 0 - ) = ^ 
2 7T 

it now follows from (1.2) that {<rn(x)} displays the Gibbs phenomenon at 
x = 0. Note we have also shown that {o-n(x)} has the same Gibbs set at zero 
as does the sequence {sn(x)}. Theorem (4.1) now follows from an application 
of Theorem (3.1). 
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THEOREM (4.2). The [F, dn] transform completely preserves the Gibbs 
phenomenon for Fourier series. 

Proof. Let \sn{x)) denote the sequence of partial sums of the Fourier 
series representing the function <j>(x) as given by (3.1). As in Theorem (4.1), 

f \ P s i n 

Jo si: 
2ntdt. 

sin t 

In the following discussion we consider only values of x in the interval 
0 < x < 7r/4. Let {<rn(x)} denote that [F, dn] transform of {sn(x)}y then 

(4.12) an(x) = £ Pnk f 
Jfc=0 * / 0 

sin 2kt 7, —:——at 
sin t 

~r~z 12 Pnk sin 2kt dt, 
o sin t $To 

where the numbers Pnk are defined by (2.2). Using (2.2), we can write the 
last sum in (4.12) as 

± p„Ime~ . m{g P„«»"} . im{n (Çtf)}. 
Replacing the sum in the last member of (4.12) by this product, we have 

Let us define pj and dj (j = 1, 2, 3, . . . ,) by 

(4.14) P ; V ^ = e2U + dj. 

From (4.14) it follows that 

(4.15a) pj cos dj = cos 2£ + dj} 

(4.15b) pj sin 0̂  = sin 2t, 

(4.15c) p • = 1 + 2dj cos 2t + d), 

(4.15d) p, < 1 + dJf 

(4.15e) 0 < dj <2t < TT/2. 

Substituting the left-hand side of (4.14) for the right-hand side of (4.14) in 
(4.13), we get 

^ *•<*> - Isih n (rft)sin(Ê *,)*. 
From (4.15c) and (4.15d), it follows that 

u < i Vi + dj) * l Vr+ dj " a +"^)2 < (i"+ djf < i +~d; ' 

https://doi.org/10.4153/CJM-1960-059-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-059-2


T H E GIBBS P H E N O M E N O N FOR MEANS 671 

or that 

( 4 - 1 7 ) l - , d i , ^ 1 + dl-

Hence in view of (4.15d), we have 

[l+lj*! 
±e 

0 < 1 U Vl +dj 

= ( ! _ —a-) + _ e i _ (i p±^\ 
\ 1 + dj ^ 1 + di. \ 1 + dj 

• , P i P2 P « - l / , Pn__) 

"•"•••"f" 1 + d 1 ' l + d , - - ' H - d 1 _ 1 \ 1 + 4 / 
71 ( \ n 4 / 2 

S V1 ~ ï + dj< S 1+dj-< 

Therefore, we are able to write 

U \f+W (4.i8) i - n yTf-d-j = x/tf, 
where 0 < X < 4 and iJw = X)̂ =i (1 + ^j)_1- Note that X is a function of w 
and t. Substituting in (4.16) the value of 

0i \l+dj 
as given in (4.18), we get 

(4.19) an(x) = I csc/sin( ^ 6 A dt — Hn I \t2 esc / sin( ^ dA dt 
Jo \ j=l / Jo \ j=l / 

= / + r. 
Since 0̂  < 7r/2, the inequality (20j/ir) < sin 0y holds. This plus the well-

known inequality sin x < x, valid for x > 0, applied to (4.15b) yields the 
inequality 

0, < (irt/pj) (j= 1,2,3, . . . , ) . 

Making use of the well-known inequality 0 < x — sin x < x3, valid for 
x > 0, and the inequality (4.17), we have 

2t 
l~+d~ 

< r + ^ ( ^ - s i n ^ + r ^ ( 2 ^ s i n 2 ^ 

+ 

1+ dj ' 1+ dj ' 1 + dj 

V 1 + d,/ 
< P l î + 8<3

 + 4*2fl, _ 
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Since we have jus t shown dj < (irt/pj), it follows t h a t 

% 3,3 8T 
+ 

4n-r 
l+dj ' 1 + d, ' 1 + ds ' l+d,\ 

for from (4.15c) pj > 1. Consequently, we may write 
^3 

(4.20) e< 
2t 

+ 
(ijt 

(j= 1 , 2 , 3 , . . . , ) , ' 1 + dj ' 1 + dy 

where |/x;| < 7r3 + 8 + 47r < 54. Note t h a t Hj is a function of dj and 2. 
Summing both sides of (4.20) over j , we get 

f ) 0, = 2tfZ-n + U.H»)*8, where M J = £ y - ^ - r - and | ( / i ^ ) | < 54ffn. 

Subst i tu t ing for X^=iw ôj m the integral / in (4.19), and adding 

- I r1 sin 2Hntdt 
Jo 

to both sides of (4.19), we have 

(4.21) <rn(x) - f ^ ^ d t = - f \ i j / c s c * s i n ( £ ) M * 
J o t Jo \ j=l / 

r . 3 
4- I esc t sm(fjinHn)t cos 2Hnt dt 

Jo 

faMl- COS (HnHn)ï 

sin t dt = Ti + T2 + Tz. 

Since t < 7r/4, CSC t < 7r/2/. Hence 

|T i | < (ir/2)Hn \ \tdt < irHnx\ 
Jo 

and 

| r 2 | < (TT/2 ) f {ixnHn)fdt < 9irHnx\ 
Jo 

After expanding sin t and £ cos (/jinHn)t
d in series, it follows from a well-known 

theorem for convergent a l ternat ing series t h a t 

|sin t — t cos (fjinHn)t\ < /3 + (/jinHn)H
7. 

Applying this inequali ty and the inequali ty (2t/w) < sin t < /, valid for 
0 < J < TT/4, we get 

| r 3 | < (TT/2) H * + (nnHn)
2f] dt<x2 + 24ZirHlx\ 

Jo 

Now inserting absolute values on both sides of (4.21) and making use of the 
above inequalities for \Ti\, \T%\y and |2"3|, we have t h a t 

(4.22) 
Jo 

sin 2Hnt,^ 
- dt 

t 
< Hn ivx + 9 irHnx + x + 243 7ri7w x . 
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Let T such that 0 < r < w be given. Since X)w=i°° dn~
l = + <», it follows 

that Hn —> co as n —» » . Define the sequence {£w} by /n = r/2Hnj then for w 
greater than or equal to some fixed integer n0 the numbers tn are in the interval 
0 < tn < Jx. Replacing x by tn in (4.22), we have for n > fto that 

Jo 
, sin 2i7w* 

<Wn) — I at 
I T , 9 l T , T , 243 7TT 

< 4 ^ + ~8#I + 4 ^ + "64flT 

Upon setting 3/ = 2iï"n£, it follows that given e > 0 there exists an integer 
N(N > n0) such that if n > 2V, then 

T » ( 0 - -z;-dy Jo y 
< €. 

The remainder of the proof of this theorem follows almost exactly the last 
two paragraphs in the proof of Theorem (4.1). 
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