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STABLE MODELS OF LUBIN–TATE CURVES
WITH LEVEL THREE

NAOKI IMAI and TAKAHIRO TSUSHIMA

Abstract. We construct a stable formal model of a Lubin–Tate curve with

level three, and study the action of a Weil group and a division algebra

on its stable reduction. Further, we study a structure of cohomology of the

Lubin–Tate curve. Our study is purely local and includes the case where the

characteristic of the residue field of a local field is two.

Introduction

Let K be a nonarchimedean local field with a finite residue field k of

characteristic p. Let p be the maximal ideal of the ring of integers OK of

K. Let n be a natural number. We write LT(pn) for the Lubin–Tate curve

with full level n as a deformation space of formal OK-modules by quasi-

isogenies. Let D be the central division algebra over K of invariant 1/2. Let

` be a prime number different from p. We write C for the completion of an

algebraic closure of K. Then, the groups WK , GL2(K) and D× act on

lim−→
m

H1
c (LT(pm)C,Q`),

and these actions partially realize the local Langlands correspondence and

the local Jacquet–Langlands correspondence for GL2. The realization of the

local Langlands correspondence was proved by global automorphic methods

in [Ca]. Since Lubin–Tate curves are purely local objects, it is desirable to

have a purely local proof which only makes use of the geometry of Lubin–

Tate curves.

We put

K1(pn) =

{(
a b
c d

)
∈GL2(OK)

∣∣∣∣ c≡ 0, d≡ 1 mod pn
}
.
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STABLE MODELS OF LUBIN–TATE CURVES WITH LEVEL THREE 101

Let LT1(pn) be the Lubin–Tate curve with level K1(pn) as a deformation

space of formalOK-modules by quasi-isogenies. Then, the cohomology group

H1
c (LT1(pn)C,Q`) =

(
lim−→
m

H1
c (LT(pm)C,Q`)

)K1(pn)

will give representations of WK and D× that correspond to smooth irre-

ducible representations of GL2(K) with conductor less than or equal to n.

The purpose of this paper is to study this cohomology in the case n= 3. We

note that 3 is the smallest conductor of a two-dimensional representation

of WK which cannot be written as an induction of a character. Such a

representation is called a primitive representation.

Our method is purely local and geometric. In fact, we construct a stable

model of the connected Lubin–Tate curve X1(p3) with level K1(p3) by using

the theory of semistable coverings (cf. [CM, Section 2.3]). Our study includes

the case where p= 2, and in this case, primitive Galois representations

of conductor 3 appear in the cohomology of X1(p3). It gives a geometric

understanding of a realization of the primitive Galois representations.

Our method of the calculation of the stable reduction is similar to that

in [CM]. In [CM], Coleman and McMurdy calculate the stable reduction of

the modular curve X0(p3) under the assumption p> 13. The calculation of

the stable reductions in the modular curve setting is equivalent to that in

the Lubin–Tate setting where K = Qp. As for the calculation of the stable

reduction of the modular curve X1(pn), it is given in [DR] if n= 1.

We explain the contents of this paper. In Section 1, we recall a definition of

the connected Lubin–Tate curve, and study the action of a division algebra

in a general setting. In Section 2, we study the cohomology of Lubin–Tate

curves as representations of GL2(K) by purely local methods. By this result,

we can calculate the genus of some Lubin–Tate curves. In Section 3, we

construct a stable covering of the connected Lubin–Tate curve with level

K1(p2), which is used to study a covering of X1(p3).

In Section 4, we define several affinoid subspaces Y1,2, Y2,1 and Z0
1,1 of

X1(p3), and calculate their reductions. Let kac be the residue field of C. We

put q = |k| and

S1 =

{
µ2(q2−1)(k

ac) if q is odd,

µq2−1(kac) if q is even.

The reductions of Y1,2 and Y2,1 are isomorphic to the affine curve defined

by xqy − xyq = 1. This affine curve has genus q(q − 1)/2, and is called the

https://doi.org/10.1017/nmj.2016.36 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.36


102 N. IMAI AND T. TSUSHIMA

Deligne–Lusztig curve for SL2(Fq) or the Drinfeld curve. Here, the genus of a

curve means the genus of the smooth compactification of the normalization

of the curve. The reduction Z
0
1,1 of Z0

1,1 is isomorphic to the affine curve

defined by Zq +Xq2−1 +X−(q2−1) = 0. This affine curve has genus 0 and

singularities at X ∈ S1.

Next, we analyze tubular neighborhoods {Dζ}ζ∈S1 of the singular points

of Z
0
1,1. If q is odd, Dζ is a basic wide open space with the underlying affinoid

Xζ . See [CM, 2B] for the precise definition of a basic wide open space.

Roughly speaking, it is a smooth geometrically connected one-dimensional

rigid space which contains an affinoid such that the reduction of the affinoid

is irreducible and has at worst ordinary double points as singularities, and

the complement of the affinoid is a disjoint union of open annuli. The

reduction of Xζ is isomorphic to the Artin–Schreier affine curve of degree 2

defined by zq − z = w2. This affine curve has genus (q − 1)/2.

On the other hand, if q is even, it is harder to analyze Dζ , because the

space Dζ is not a basic wide open space. First, we find an affinoid P0
ζ . The

reduction P
0
ζ of P0

ζ has genus 0 and singular points parametrized by ζ ′ ∈ k×.

Second, we analyze the tubular neighborhoods of singular points of P
0
ζ . As

a result, we find an affinoid Xζ,ζ′ , whose reduction Xζ,ζ′ is isomorphic to

the affine curve defined by z2 + z = w3. The smooth compactification of this

curve is the unique supersingular elliptic curve over kac, whose j-invariant

is 0, and its cohomology gives a primitive Galois representation. By using

these affinoid spaces, we construct a covering C1(p3) of X1(p3).

In Section 5, we calculate the action of O×D on the reductions of the

affinoid spaces in X1(p3), where OD is the ring of integers of D. In Section 6,

we calculate an action of a Weil group on the reductions. In the case

where q is even, we construct an SL2(F3)-Galois extension of Kur, and

show that the Weil action on Xζ,ζ′ up to translations factors through the

Weil group of the constructed extension. For such a Galois extension, see

also [Weil, 31].

In Section 7, we show that the covering C1(p3) is semistable. To show

this, we calculate the summation of the genera of the reductions of the

affinoid spaces in X1(p3), and compare it with the genus of X1(p3). Using

the constructed semistable model, we study a structure of cohomology

of X1(p3).
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The dual graph of the semistable reduction of X1(p3) in the case where

q is even is the following:

◦
Y

c
1,2

◦
Z

0,c
1,1 ◦

Y
c
2,1

◦P
0,c
ζ1 · · ·· · ·· · ·· · ·

◦
X

c
ζ1,ζ′1

◦· · ·
X

c
ζ1,ζ′q−1

◦ P
0,c
ζq2−1

◦
X

c
ζq2−1,ζ

′
1

◦· · ·
X

c
ζq2−1,ζ

′
q−1

where µq2−1(kac) = {ζ1, . . . , ζq2−1}, k× = {ζ ′1, . . . , ζ ′q−1} andXc denotes the

smooth compactification of the normalization of X for a curve X over

kac. The constructed semistable model is in fact stable, except in the case

where q = 2. If q = 2, we get the stable model by blowing down some P1-

components.

The realization of the local Jacquet–Langlands correspondence in coho-

mology of Lubin–Tate curves was proved in [Mi] by a purely local method.

Therefore, the remaining essential part of the study of the realization of

the local Langlands correspondence is to study actions of Weil groups and

division algebras. In the paper [IT3], we give a purely local proof of the

realization of the local Langlands correspondence for representations of

conductor three using the result of this paper.

Finally, we mention some recent progress on related topics according

to a suggestion of a referee. In [Wein], Weinstein constructs semistable

models of Lubin–Tate curves for arbitrary level in the case where the

residue characteristic is not equal to two using Lubin–Tate perfectoid spaces.

In [IT4] and [IT5], some of our results in this paper are generalized to

arbitrary dimensional cases for Lubin–Tate perfectoid spaces. In [IT6], we

construct an affinoid in the two-dimensional Lubin–Tate space such that

the cohomology of the reduction of the affinoid realizes representations that

are a bit more ramified than the epipelagic representations.

Notation

In this paper, we use the following notation. Let K be a nonarchimedean

local field. Let OK denote the ring of integers of K, and let k denote the

residue field of K. Let p be the characteristic of k. We fix a uniformizer $ of

K. Let q = |k|. We fix an algebraic closure Kac of K. For any finite extension

F of K in Kac, let GF denote the absolute Galois group of F , let WF denote
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104 N. IMAI AND T. TSUSHIMA

the Weil group of F , and let IF denote the inertia subgroup of WF . The

completion of Kac is denoted by C. Let OC be the ring of integers of C, and

let kac be the residue field of C. For an element a ∈ OC, we write ā for the

image of a by the reduction map OC→ kac. Let v(·) denote the valuation

of C such that v($) = 1. Let Kur denote the maximal unramified extension

of K in Kac. The completion of Kur is denoted by K̂ur. For a, b ∈C and a

rational number α ∈Q>0, we write a≡ b (mod α) if we have v(a− b) > α,

and a≡ b (mod α+) if we have v(a− b)> α. For a curve X over kac, we

denote by Xc the smooth compactification of the normalization of X, and

the genus of X means the genus of Xc. For an affinoid X, we write X for its

reduction. The category of sets is denoted by Set. For a representation τ

of a group, the dual representation of τ is denoted by τ∗. We take rational

powers of $ compatibly as needed.

§1. Preliminaries

1.1 The universal deformation

Let Σ denote a formal OK-module of dimension 1 and height 2 over kac,

which is unique up to isomorphism. Let n be a natural number. We define

K1(pn) as in the introduction. In the following, we define the connected

Lubin–Tate curve X1(pn) with level K1(pn).

Let C be the category of Noetherian complete local O
K̂ur-algebras with

residue field kac. For A ∈ C, a formal OK-module F = Spf A[[X]] over A and

an A-valued point P of F , the corresponding element of the maximal ideal

of A is denoted by x(P ). We consider the functor

A1(pn) : C → Set; A 7→ [(F , ι, P )],

whereF is a formalOK-module overAwith an isomorphism ι : Σ'F ⊗A kac

and P is a $n-torsion point of F such that∏
a∈OK/$nOK

(
X − x([a]F (P ))

) ∣∣∣∣ [$n]F (X)

in A[[X]]. This functor is represented by a regular local ring R1(pn) by [Dr,

Section 4.B) Lemma]. We write X1(pn) for Spf R1(pn). Its generic fiber is

denoted by X1(pn), which we call the connected Lubin–Tate curve with

level K1(pn). The space X1(pn) is a rigid analytic curve over K̂ur. We can

define the Lubin–Tate curve LT1(pn) with level n by changing C to be the

category of O
K̂ur-algebras where $ is nilpotent, and ι to be a quasi-isogeny
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STABLE MODELS OF LUBIN–TATE CURVES WITH LEVEL THREE 105

Σ⊗kac A/$A→F ⊗A A/$A. We consider LT1(pn) as a rigid analytic curve

over K̂ur.

The ring R1(1) is isomorphic to the ring of formal power series O
K̂ur [[u]].

We simply write B(1) for Spf O
K̂ur [[u]]. Let B(1) denote an open unit ball

such that B(1)(C) = {u ∈C | v(u)> 0}. The generic fiber of B(1) is equal

to B(1). Then, the space X1(1) is identified with B(1). Let Funiv denote

the universal formal OK-module over X1(1).

In this subsection, we choose a parametrization of X1(1)' B(1) such that

the universal formal OK-module has a simple form. Let F be a formal OK-

module of dimension 1 over a flat OK-algebra R. For a nontrivial invariant

differential ω on F , a logarithm of F means a unique isomorphism F : F ∼→
Ga over R⊗K with dF = ω (cf. [GH, 3]). In the following, we always take

an invariant differential ω on F so that a logarithm F has the following

form:

F (X) =X +
∑
i>1

fiX
qi with fi ∈R⊗K.

Let F (X) =
∑

i>0 fiX
qi ∈K[[u, X]] be the universal logarithm over

OK [[u]]. By [GH, (5.5), (12.3), Proposition 12.10], the coefficients {fi}i>0

satisfy f0 = 1 and $fi =
∑

06j6i−1 fjv
qj

i−j for i> 1, where v1 = u, v2 = 1 and

vi = 0 for i> 3. Hence, we have the following:

(1.1)

f0 = 1, f1 =
u

$
, f2 =

1

$

(
1 +

uq+1

$

)
,

f3 =
1

$2

(
u+ uq

2
+
uq

2+q+1

$

)
, · · · .

By [GH, Proposition 5.7] or [Ha, 21.5], if we set

(1.2) Funiv(X, Y ) = F−1(F (X) + F (Y )), [a]Funiv(X) = F−1(aF (X))

for a ∈ OK , it is known that these power series have coefficients in

OK [[u]] and define the universal formal OK-module Funiv over O
K̂ur [[u]]

of dimension 1 and height 2 with logarithm F (X). We have the following

approximation formula for [$]u(X).

Lemma 1.1. We have the following congruence:

[$]Funiv(X) ≡ $X + uXq +Xq2 − u

$
{(uXq +Xq2)q − uqXq2 −Xq3}

mod($2Xq, u$Xq, $Xq2 , Xq3+1).
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106 N. IMAI AND T. TSUSHIMA

Proof. This follows from a direct computation using the relation

F ([$]Funiv(X)) =$F (X) and (1.1).

In the following, Funiv means the universal formal OK-module with the

identification X1(1)' B(1) given by (1.2), and we simply write [a]u for

[a]Funiv . The reduction of (1.2) gives a simple model of Σ such that

(1.3)

X +Σ Y =X + Y, [ζ]Σ(X) = ζ̄X for ζ ∈ µq−1(OK), [$]Σ(X) =Xq2.

We put

An =O
K̂ur [[u, Xn]]/

(
[$n]u(Xn)/[$n−1]u(Xn)

)
.

Then, there is a natural identification

(1.4) X1(pn)' Spf An

that is compatible with the identification X1(1)' B(1). The Lubin–Tate

curve X1(pn) is identified with the generic fiber of the right-hand side of

(1.4). We set Xi = [$n−i]u(Xn) for 1 6 i6 n− 1. We write X(1) for X1(1).

1.2 Action of a division algebra on X1(pn)

Let D be the central division algebra over K of invariant 1/2. We write

OD for the ring of integers of D. In this subsection, we recall the left action

of O×D on the space X1(pn).

Let K2 be the unramified quadratic extension of K. Let k2 be the residue

field of K2, and let σ ∈Gal(K2/K) be the nontrivial element. The ring OD
has the following description: OD =OK2 ⊕ ϕOK2 , with ϕ2 =$ and aϕ=

ϕaσ for a ∈ OK2 . We define an action of OD on Σ by ζ(X) = ζ̄X for ζ ∈
µq2−1(OK2) and ϕ(X) =Xq. Then, this gives an isomorphism OD ' End(Σ)

by [GH, Proposition 13.10].

Let d= d1 + ϕd2 ∈ O×D, where d1 ∈ O×K2
and d2 ∈ OK2 . By the definition

of the action of OD on Σ, we have

(1.5) d(X)≡ d̄1X + (d̄2X)q mod (Xq2).

We take a lifting d̃(X) ∈ OK2 [[X]] of d(X) ∈ k2[[X]]. Let Fd̃ be the formal

OK-module defined by

Fd̃(X, Y ) = d̃
(
Funiv(d̃−1(X), d̃−1(Y ))

)
, [a]Fd̃(X) = d̃

(
[a]u(d̃−1(X))

)
for a ∈ OK . Then, we have an isomorphism

d̃ : Funiv ∼−→Fd̃; (u, X) 7→ (u, d̃(X)).
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By [GH, Proposition 14.7], the formal OK-module Fd̃ with

Σ
d−1

−→ Σ
ι−→Funiv ⊗ kac d̃⊗kac−−−−→Fd̃ ⊗ k

ac

gives an isomorphism

(1.6) d : X(1)→ X(1),

which is independent of the choice of a lifting d̃, such that there is the unique

isomorphism

j : d∗Funiv ∼−→Fd̃; (u, X) 7→ (u, j(X))

satisfying j(X)≡X mod ($, u), where d∗Funiv denotes the pullback of

Funiv over X(1) by the map (1.6). Hence, we have

(1.7) [$]d∗Funiv(j−1(X)) = j−1([$]Fd̃(X)).

On the other hand, we have the following isomorphism:

d∗Funiv ∼→Funiv; (u, X ′) 7→ (d(u), X ′).

Furthermore, we consider the following isomorphism under the identifica-

tion (1.4):

(1.8) ψd : X1(pn)−→ X1(pn); (u, Xn) 7→
(
d(u), j−1(d̃(Xn))

)
,

which depends only on d as in [GH, Proposition 14.7]. We put

d∗(X) = j−1(d̃(X)).

We define a left action of d on X1(pn) by

[(F , ι, P )] 7→ [(F , ι ◦ d−1, P )].

Then, this action coincides with ψd by the definition.

By (1.5), we have

(1.9) d̃−1(X) = d−1
1 X − d−(q+1)

1 dq2X
q mod ($, Xq2)

in OK2 [[X]]. We use the following lemma later to compute the O×D-action

on the stable reduction of X1(p3).
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108 N. IMAI AND T. TSUSHIMA

Lemma 1.2. We assume v(u) = 1/(2q). Let d= d1 + ϕd2 ∈ O×D. We set

u′ = d(u). We change variables as u=$1/(2q)ũ and u′ =$1/(2q)ũ′. Then,

we have the following:

u′ ≡ d
−(q−1)
1 u(1 + d−q1 d2u) mod ($, u3),(1.10)

j−1(X) ≡ X + d−q1 d2uX mod ($, u2X, uX2).(1.11)

Proof. We set d−1 = d′1 + ϕd′2. Then,

d′1 ≡ d−1
1 , d′2 ≡−d

−(q+1)
1 d2 (mod 1) .

First, we prove (1.10). If v(u) = 1/(2q), the function w(u) in [GH, (25.11)]

is well approximated by a function $u($ + uq+1)−1. By [GH, (25.13)], we

have

$u′

$ + u′q+1
≡ d′q1 $u($ + uq+1)−1 +$d′q2

d′2$u($ + uq+1)−1 + d′1

≡ $u(d1 − dq2uq)
dq1($ + uq+1)− d2$u

(mod 1+) .

Hence, we acquire the following by u=$1/(2q)ũ and u′ =$1/(2q)ũ′:

ũ′

ũ′q+1 +$(q−1)/(2q)
≡ ũ(d1 −$1/2dq2ũ

q)

dq1ũ
q+1 +$(q−1)/(2q)dq1 −$1/2d2ũ

(
mod

1

2
+

)
.

(1.12)

By taking an inverse of the congruence (1.12), we obtain

(ũ′ − d−(q−1)
1 ũ)q ≡ $(q−1)/(2q)

(
ũ′ − d−(q−1)

1 ũ

d
−(q−1)
1 ũũ′

)
+$1/2(dq−2

1 dq2ũ
2q − d−1

1 d2)

(
mod

1

2
+

)
.(1.13)

Now, we set ũ′ − d−(q−1)
1 ũ=$1/(2q)x. By substituting this into (1.13) and

dividing it by $1/2, we obtain

(x− d1−2q
1 d2ũ

2)q ≡ d2q−2
1 ũ−2(x− d1−2q

1 d2ũ
2) (mod 0+) .

Since x is an analytic function of ũ, a congruence x≡ d1−2q
1 d2ũ

2 (mod 0+)

must hold. Hence, we have

ũ′ ≡ d−(q−1)
1 ũ(1 +$1/(2q)d−q1 d2ũ)

(
mod

1

2q
+

)
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using ũ′ − dq−1
1 ũ=$1/(2q)x. This implies (1.10), because u′ is an analytic

function of u.

By Lemma 1.1, (1.7) and (1.9), we have

u′j−1(X)q ≡ j−1(ud
−(q−1)
1 Xq) mod ($, Xq2).

Hence, the assertion (1.11) follows from (1.10) and j−1(X)≡X mod ($, u).

§2. Cohomology of Lubin–Tate curve

Let ` be a prime number different from p. We take an algebraic closure

Q` of Q`. Let LT(pn) be the Lubin–Tate curve with full level n over K̂ur

(cf. [Da, 3.2]). We put

H i
LT,$ = lim−→

n

H i
c

(
(LT(pn)/$Z)C,Q`

)
for any nonnegative integer i, where LT(pn)/$Z denotes the quotient of

LT(pn) by the action of $Z ⊂D×. Then, we can define an action of

GL2(K)×D× ×WK onH i
LT,$ for a nonnegative integer i (cf. [Da, 3.2, 3.3]).

We write Irr(D×,Q`) for the set of isomorphism classes of irreducible

smooth representations of D× over Q`, and Disc(GL2(K),Q`) for the set of

isomorphism classes of irreducible discrete series representations of GL2(K)

over Q`. Let

JL : Irr(D×,Q`)→Disc(GL2(K),Q`)

be the local Jacquet–Langlands correspondence. We denote by LJ the

inverse of JL. For an irreducible smooth representation π of GL2(K),

let ωπ denote the central character of π. We write St for the Steinberg

representation of GL2(K).

The following fact is well known as a corollary of the Deligne–Carayol

conjecture. Here, we give a purely local proof of this fact.

Proposition 2.1. We have isomorphisms

H1
LT,$ '

⊕
π

π⊕2 dim LJ(π) ⊕
⊕
χ

(St⊗ (χ ◦ det)),

H2
LT,$ '

⊕
χ

(χ ◦ det)

as representations of GL2(K), where π runs through irreducible cuspidal rep-

resentations of GL2(K) such that ωπ($) = 1, and χ runs through characters

of K× satisfying χ($2) = 1.
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110 N. IMAI AND T. TSUSHIMA

Proof. First, we show the second isomorphism. Let X(pn) be the

connected Lubin–Tate curve with full level n over K̂ur (cf. [St2, 2.1]). We

put

H2
X = lim−→

n

H2
c

(
X(pn)C,Q`

)
,

GL2(K)0 = {g ∈GL2(K) | det g ∈ O×K}.

Then, GL2(K)0 acts on H2
X. By [St2, Theorem 4.4(i)], we have

(2.1) H2
X '

⊕
χ

(χ ◦ det)

as representations of GL2(OK), where χ runs through characters of O×K .

Let H be the kernel of GL2(K)0→Aut(H2
X). Then, H = SL2(K), because a

normal subgroup of GL2(K)0 containing SL2(OK) is SL2(K) by [De, Lemme

2.2.5(iii)]. Hence, we see that (2.1) is an isomorphism as representations of

GL2(K)0. The second isomorphism follows from this, because we have

H2
LT,$ ' c-Ind

GL2(K)/$Z

GL2(K)0
H2

X.

Next, we show the first isomorphism. By [Mi, Definition 6.2 and Theorem

6.6], the cuspidal part of H1
LT,$ is⊕

π

π⊕2 dim LJ(π).

Here, we note that the characteristic of a local field is assumed to be zero

in [Mi], but the same proof works in the equal characteristic case. By [Far2,

Théorème 4.3] and the Faltings–Fargues isomorphism (cf. [Fal] and [FGL]),

we see that the noncuspidal part of H1
LT,$ is the Zelevinsky dual of H2

LT,$.

Therefore, we have the first isomorphism.

§3. Stable covering of Lubin–Tate curve with level two

In this section, we construct a stable covering of X1(p2). Let (u, X2) be

the parameter of X1(p2) given by the identification (1.4).

Let Y1,1, W0, Wk× , W∞,1, W∞,2 and W∞,3 be the subspaces of X1(p2)

defined by the following conditions.

Y1,1 : v(u) =
1

q + 1
, v(X1) =

q

q2 − 1
, v(X2) =

1

q(q2 − 1)
.
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W0 : 0< v(u)<
1

q + 1
, v(X1) =

1− v(u)

q − 1
, v(X2) =

1− qv(u)

q(q − 1)
.

Wk× : 0< v(u)<
1

q + 1
, v(X1) =

1− v(u)

q − 1
, v(X2) =

v(u)

q(q − 1)
.

W∞,1 : 0< v(u)<
q

q + 1
, v(X1) =

v(u)

q(q − 1)
, v(X2) =

v(u)

q3(q − 1)
.

W∞,2 : v(u) >
q

q + 1
, v(X1) =

1

q2 − 1
, v(X2) =

1

q2(q2 − 1)
.

W∞,3 :
1

q + 1
< v(u)<

q

q + 1
, v(X1) =

1− v(u)

q − 1
, v(X2) =

1− v(u)

q2(q − 1)
.

We put

W∞ = W∞,1 ∪W∞,2 ∪W∞,3.

Note that we have

X1(p2) = Y1,1 ∪W0 ∪W1
k× ∪W∞.

Proposition 3.1. The Lubin–Tate curve X1(p2) is a basic wide open

space with underlying affinoid Y1,1. Further, W0 and W∞ are open annuli,

and Wk× is a disjoint union of q − 1 open annuli.

Proof. This is proved in [IT1] by direct calculations without cohomolog-

ical arguments. Here, we sketch another proof based on arguments in this

paper.

First, we note that X1(1) is a good formal model of X1(1). Then, we

can show that X1(p) is isomorphic to an open annulus by a cohomological

argument as in the proof of Theorem 7.14 using the natural level-lowering

map X1(p)→X1(1).

Next, we can see that the reduction of Y1,1 is isomorphic to the

affine curve defined by xqy − xyq = 1 by a calculation as in the proof of

Proposition 4.2 (cf. [IT1, Section 3.1]). Then, we can prove the claim by

a similar argument to that above using the natural level-lowering map

X1(p2)→X1(p).

§4. Reductions of affinoid spaces in X1(p3)

4.1 Definitions of several subspaces in X1(p3)

In this subsection, we define several subspaces of X1(p3). Let (u, X3) be

the parameter of X1(p3) given by the identification (1.4).
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Let Y1,2, Y2,1 and Z0
1,1 be the subspaces of X1(p3) defined by the

following conditions.

Y1,2 : v(u) =
1

q + 1
, v(X1) =

q

q2 − 1
, v(X2) =

1

q(q2 − 1)
,

v(X3) =
1

q3(q2 − 1)
.

Y2,1 : v(u) =
1

q(q + 1)
, v(X1) =

q2 + q − 1

q(q2 − 1)
, v(X2) =

1

q2 − 1
,

v(X3) =
1

q2(q2 − 1)
.

Z0
1,1 : v(u) =

1

2q
, v(X1) =

2q − 1

2q(q − 1)
, v(X2) =

1

2q(q − 1)
,

v(X3) =
1

2q3(q − 1)
.

We write down the following possible cases for (u, X1, X2):

(1) 0< v(u)<
1

q + 1
, v(X1) =

1− v(u)

q − 1
, v(X2) =

1− qv(u)

q(q − 1)
;

(2) 0< v(u)<
1

q + 1
, v(X1) =

1− v(u)

q − 1
, v(X2) =

v(u)

q(q − 1)
;

(3) v(u) =
1

q + 1
, v(X1) =

q

q2 − 1
, v(X2) =

1

q(q2 − 1)
;

(4) 0< v(u)<
q

q + 1
, v(X1) =

v(u)

q(q − 1)
, v(X2) =

v(u)

q3(q − 1)
;

(5) v(u) >
q

q + 1
, v(X1) =

1

q2 − 1
, v(X2) =

1

q2(q2 − 1)
;

(6)
1

q + 1
< v(u)<

q

q + 1
, v(X1) =

1− v(u)

q − 1
, v(X2) =

1− v(u)

q2(q − 1)
.

(4.1)

Next, we consider the following possible cases for (X2, X3):

(1′) v(Xq2

3 ) = v(X2)< v(uXq
3), (2′) v(uXq

3) = v(X2)< v(Xq2

3 ),

(3′) v(X2)> v(Xq2

3 ) = v(uXq
3), (4′) v(X2) = v(Xq2

3 ) = v(uXq
3).

(4.2)
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Lemma 4.1. For 2 6 i6 6 in (4.1) and 2′ 6 j′ 6 4′ in (4.2), the case i

and j′ does not happen.

Proof. This is an easy exercise.

Let Wi,j′ be the subspace of X1(p3) defined by the conditions 1 6 i6 6 in

(4.1) and 1′ 6 j′ 6 4′ in (4.2). We note that W3,1′ = Y1,2 and W1,4′ = Y2,1.

Let W+
1,1′ and W−

1,1′ be the subspaces of W1,1′ defined by 1/(2q)< v(u)<

1/(q + 1) and 1/(q(q + 1))< v(u)< 1/(2q) respectively.

4.2 Reductions of the affinoid spaces Y1,2 and Y2,1

In this subsection, we compute the reductions of the affinoid spaces Y1,2

and Y2,1. The reductions of Y2,1 and Y1,2 are isomorphic to the affine curve

defined by xqy − xyq = 1. These curves have genus q(q − 1)/2.

Proposition 4.2. The reduction of Y1,2 is isomorphic to the affine

curve defined by xqy − xyq = 1.

Proof. We change variables as u=$1/(q+1)ũ, X1 =$q/(q2−1)x1, X2 =

$1/(q(q2−1))x2 and X3 =$1/(q3(q2−1))x3. By Lemma 1.1, we have

(4.3) ũ≡−x−(q−1)
1 , x1 ≡ ũxq2 + xq

2

2 , x2 ≡ xq
2

3 (mod 0+) .

Then, we have ũ=−x−(q−1)
1 + F0(ũ, x1) for some function F0(ũ, x1)

satisfying v(F0(ũ, x1))> v(ũ). Substituting ũ=−x−(q−1)
1 + F0(ũ, x1) into

F0(ũ, x1) and repeating it, we see that ũ is written as a function of x1.

Similarly, by x2 ≡ xq
2

3 (mod 0+), we can see that x2 is written as a function

of x1 and x3. By (4.3), we acquire

(4.4) 1≡ xq
4

3

x1
− xq

3

3

xq1
(mod 0+) .

By setting 1 + x−1
1 xq

2

3 = xq
3

3 t
−1
1 and substituting this into (4.4), we obtain

tq1 ≡ x1 (mod 0+) and hence (1 + xq3t
−1
1 )q ≡ xq

3

3 t
−1
1 (mod 0+). By setting

1 + xq3t
−1
1 = xq

2

3 t
−1
2 , we obtain tq2 ≡ t1 (mod 0+). Hence,

(1 + x3t
−1
2 )q ≡ xq

2

3 t
−1
2 (mod 0+) .

Finally, by setting x= x3 and 1 + x3t
−1
2 = xq3y, we acquire yq ≡ t−1

2

(mod 0+). Hence, we have xqy − xyq ≡ 1 (mod 0+). Note that

(4.5) x= x3, y =
x1(1 + x

q(q2−1)
3 + x

(q+1)(q2−1)
3 ) + xq

2

3

x1x
q3+q2−1
3

,
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which we will use later.

We put

γi =$(q−1)/(2qi)

for 1 6 i6 4. We choose an element c0 such that cq0 − γ2
1c0 + 1 = 0. Note

that we have c0 ≡−1 (mod 0+). Further, we choose a qth root c
1/q
0 of c0.

Proposition 4.3. The reduction of the space Y2,1 is isomorphic to the

affine curve defined by xqy − xyq = 1.

Proof. We change variables as

u=$1/(q(q+1))ũ, X1 =$(q2+q−1)/(q(q2−1))x1, X2 =$1/(q2−1)x2

and X3 =$1/(q2(q2−1))x3.

By Lemma 1.1, we have

ũ ≡ −x−(q−1)
1

(
mod

q2 − 1

q2
+

)
,(4.6)

x1 ≡ ũxq2 + γ2
1(xq

2

2 + x2)

(
mod

q2 − 1

q2
+

)
,(4.7)

x2 ≡ xq
2

3 + ũxq3

(
mod

q − 1

q2
+

)
.(4.8)

By (4.6) and (4.8), we can see that ũ is written as a function of x1, and that

x2 is written as a function of x1 and x3. We define a parameter t by

(4.9)
x2

x1
= c0 + γ2

2

xq2
t
.

We note that v(t) = 0. By considering x−1
1 × (4.7), we have

(4.10)

(
x2

x1

)q
+ 1− γ2

1

x2

x1
≡ γ2

1

xq
2

2

x1

(
mod

q2 − 1

q2
+

)
.

By substituting (4.9) into the left-hand side of the congruence (4.10), and

dividing it by γ2
1x

q2

2 , we acquire

(4.11) x1 ≡ tq
(

1− γ2
2

tq−1

x
q(q−1)
2

)−1 (
mod

q − 1

q2
+

)
.
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By this congruence, we can see that x1 is written as a function of t and x3.

By considering x−1
1 × (4.8), we acquire

(4.12) c0 + γ2
2

xq2
t
≡ xq

2

3

x1
−
(
x3

x1

)q (
mod

q − 1

q2
+

)
by (4.9). Substituting (4.11) into (4.12), we have

(4.13)

(
c

1/q
0 − xq3

t
+
x3

x1

)q
≡−γ2

2

(x2 + x3)q
2

tx
q(q−1)
2

(
mod

q − 1

q2
+

)
.

By (4.9) and c0 ≡−1 (mod 0+), we have x2 ≡−x1 (mod 0+). Therefore, we

acquire

(x2 + x3)q ≡ xq−1
2 xq

2

3 (mod 0+)

by (4.6) and (4.8). In particular, we obtain v(x2 + x3) = 0. We introduce a

new parameter t1 as

(4.14) c
1/q
0 − xq3

t
+
x3

x1
=−γq3

(x2 + x3)q

t1x
q−1
2

.

Substituting this into the left-hand side of the congruence (4.13), and

dividing it by −γ2
2x
−q(q−1)
2 (x2 + x3)q

2
, we acquire t≡ tq1 (mod 0+). By this

congruence, we can see that t is written as a function of t1 and x3. By (4.14),

we obtain

x3 ≡ tq
2

1 (1 + x3t
−1
1 )q (mod 0+)

using t≡ tq1 (mod 0+) and x1 ≡ tq (mod 0+). Hence, by setting x= t−1
1 and

y = tq1(1 + x3t
−1
1 ), we acquire xqy − yxq ≡ 1 (mod 0+).

4.3 Reduction of the affinoid space Z0
1,1

In this subsection, we calculate the reduction of the affinoid space Z0
1,1.

We define S1 as in the introduction. The reduction Z
0
1,1 is isomorphic to

the affine curve defined by Zq + xq
2−1

3 + x
−(q2−1)
3 = 0. This affine curve has

genus 0 and singularities at x3 ∈ S1.

We put

ωi =$1/(2qi(q−1)), εi =
1

2qi

for 1 6 i6 4. We change variables as u= ωq−1
1 ũ, X1 = ω2q−1

1 x1, X2 = ω1x2

and X3 = ω3x3. By Lemma 1.1, we have

ũ ≡ −x−(q−1)
1

(
mod 1

2+
)
,(4.15)
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x1 ≡ ũxq2 + γ1x
q2

2 + γ2
1x2

(
mod 1

2+
)
,(4.16)

x2 ≡ xq
2

3 + γ2ũx
q
3 (mod ε1+) .(4.17)

Note that we have v(γ2
1)> 1/2 if q 6= 2. By (4.15) and (4.17), we can see

that ũ is written as a function of x1, and that x2 is written as a function of

x1 and x3. We define a parameter t by

(4.18)
x2

x1
=−1 + γ2

xq2
t
.

By considering x−1
1 × (4.16), we acquire

(4.19)

(
x2

x1
+ 1

)q
≡ γ1

xq
2

2

x1

(
1 +

γ1

xq
2−1

2

) (
mod

1

2
+

)

by (4.15). Substituting (4.18) into (4.19), and dividing it by γ1x
q2

2 , we obtain

(4.20) x1 ≡ tq
(

1 +
γ1

xq
2−1

2

)
(mod ε1+) .

Therefore, we have v(t) = 0. By considering x−1
1 × (4.17), we acquire

(4.21)

(
1 +

xq3
t

)q
− γ1

xq
2

3

tqxq
2−1

2

≡ γ2

(
xq2
t

+

(
x3

x1

)q)
(mod ε1+)

by (4.15), (4.18) and (4.20). We define a parameter Z0 by

(4.22) 1 +
xq3
t

= γ3Z0.

We note that v(Z0) > 0. Substituting this into (4.21), and dividing it by γ2,

we obtain

(4.23) Zq0 ≡
xq2
t

+

(
x3

x1

)q
+ γq−1

2

xq
2

3

tqxq
2−1

2

(mod ε2+) .

By (4.22) and (4.23), we acquire

(4.24)

(
Z0 +

x2

x3
− x3

x1

)q
≡ γ3

(
x2

x3

)q
Z0 + γq−1

2

xq
2

3

tqxq
2−1

2

(mod ε2+) .
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We introduce a new parameter Z as

(4.25) Z0 +
x2

x3
− x3

x1
= γ4

x2

x3
Z.

We note that v(Z) > 0. Substituting this into the left-hand side of the

congruence (4.24), and dividing it by γ3(x2/x3)q, we acquire

(4.26) Zq ≡ Z0 + γq
2−q−1

3

x
q(q+1)
3

tqxq
2+q−1

2

(mod ε3+) .

By substituting (4.25) into (4.26), we obtain

(4.27)

Zq + xq
2−1

3 (1− γ4Z) + x
−(q2−1)
3 ≡−γq

2−q−1
3 x

−q(q2−1)(q+1)
3 (mod ε3+)

by (4.17), (4.20) and (4.22). Note that we have v(γq
2−q−1

3 )> ε3, if q 6= 2.

Proposition 4.4. The reduction of the space Z0
1,1 is isomorphic to

the affine curve defined by Zq + xq
2−1

3 + x
−(q2−1)
3 = 0. This affine curve has

genus 0 and singularities at x3 ∈ S1.

Proof. The required assertion follows from the congruence (4.27) modulo

0+.

Definition 4.5.

(1) For any ζ ∈ S1, we define a subspace

Dζ ⊂ Z0
1,1 ×K̂ur K̂

ur(ω3)

by x̄3 = ζ. We call the space Dζ a singular residue class of Z0
1,1.

(2) We define a subspace

Z1,1 ⊂ Z0
1,1 ×K̂ur K̂

ur(ω3)

by the complement Z0
1,1 ×K̂ur K̂

ur(ω3)\
⋃
ζ∈S1 Dζ .

Proposition 4.6. The reduction of the space Z1,1 is isomorphic to the

affine curve defined by Zq + xq
2−1

3 + x
−(q2−1)
3 = 0 with x3 /∈ S1.

Proof. This follows from Proposition 4.4.
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4.4 Analysis of the singular residue classes of Z0
1,1

In this subsection, we analyze the singular residue classes {Dζ}ζ∈S1 of

Z0
1,1. If q is odd, the space Dζ is a basic wide open space with an underlying

affinoid Xζ , whose reduction Xζ is isomorphic to the affine curve defined

by zq − z = w2. On the other hand, if q is even, the situation is slightly

complicated, because the space Dζ is not basic wide open. Hence, we have

to cover Dζ by smaller basic wide open spaces. As a result, in Dζ , we find

an affinoid P0
ζ , whose reduction is isomorphic to the affine curve defined by

z2
f+1 = w1(wq−1

1 − 1)2. This affine curve has q − 1 singular points at w1 ∈ k×.

Then, by analyzing the tubular neighborhoods of these singular points, we

find an affinoid Xζ,ζ′ ⊂P0
ζ for each ζ ′ ∈ k×, whose reduction is isomorphic

to the affine curve defined by z2 + z = w3.

4.4.1 q odd

We assume that q is odd. For each ζ ∈ µ2(q2−1)(k
ac), we define an affinoid

Xζ ⊂Dζ and compute its reduction Xζ .

For ι ∈ µ2(kac), we choose an element c′1,ι ∈ O
×
Kac such that c̄′1,ι =−2ι

and c′2q1,ι = 4(1− γ4c
′
1,ι). We take ζ ∈ µ2(q2−1)(k

ac). We put c1,ζ = c′
1,ζq2−1

,

and define c2,ζ ∈ O×Kac by cq
2−1

2,ζ =−2c−q1,ζ and c̄2,ζ = ζ. We put

aζ = ωq−1
4 cq+1

2,ζ , bζ =−2ζq
2−1ω

(q−1)/2
3 c−q1,ζc

(q+3)/2
2,ζ .

Note that we have v(aζ) = 1/(2q4) and v(bζ) = 1/(4q3).

For an element ζ ∈ µ2(q2−1)(k
ac), we define an affinoid Xζ by v(x3 −

c2,ζ) > 1/(4q3). We change variables as

Z = aζz + c1,ζ , x3 = bζw + c2,ζ .

Then, we acquire

aqζ(z
q − z − w2)≡ 0 (mod ε3+)

by (4.27). Dividing this by aqζ , we have zq − z = w2 (mod 0+). Hence, the

reduction of Xζ is isomorphic to the affine curve defined by zq − z = w2.

Proposition 4.7. For each ζ ∈ µ2(q2−1)(k
ac), the reduction Xζ is iso-

morphic to the affine curve defined by zq − z = w2, and the complement

Dζ \Xζ is an open annulus.

https://doi.org/10.1017/nmj.2016.36 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.36


STABLE MODELS OF LUBIN–TATE CURVES WITH LEVEL THREE 119

Proof. We have already proved the first assertion. We prove the second

assertion. We change variables as

Z = z′ + c1,ζ , x3 = w′ + c2,ζ

with 0< v(w′)< 1/(4q3). Substituting them into (4.27), we obtain

z′q ≡ w′2
(
mod 2v(w′)+

)
.

Note that we have 0< v(z′)< 1/(2q4). By setting w′ = z′′z′(q−1)/2, we

acquire

z′′2 ≡ z′
(
mod v(z′)+

)
.

Hence, we can see that z′ is written as a function of z′′. Then, w′ is

also written as a function of z′′. Therefore, (Dζ \Xζ)(C) is identified with

{z′′ ∈C | 0< v(z′′)< 1/(4q4)}.

4.4.2 q even

We assume that q is even. We put

Z1 = xq
2−1

3 .

Then, the congruence (4.27) has the following form:

(4.28) Zq + Z1(1− γ4Z) + Z−1
1 ≡−γq

2−q−1
3 Z

−q(q+1)
1 (mod ε3+) .

1. Projective lines For each ζ ∈ k×2 , we define a subaffinoid P0
ζ ⊂Dζ by

v(Z) > 1/(4q4). We change variables as

Z =$1/(4q4)w1, Z1 = 1 +$1/(8q3)z1.

Substituting these into (4.28) and dividing it by $1/(4q3), we acquire

(z1 + w
q/2
1 )2 +$1/(8q3)z3

1 +$1/(4q3)z4
1 +$(q−1)/(4q4)w1

+$(3q−2)/(8q4)z1w1 ≡$(2q−3)/(4q3)

(
mod

1

4q3
+

)
.(4.29)

We can check that v(z1) > 0. We set q = 2f and put

li =
(2i − 1)q

2i
, mi =

1

2i+2q3

for 1 6 i6 f + 1. Furthermore, we define parameters zi for 2 6 i6 f + 1 by

(4.30) zi + wli1 =$mi+1zi+1 for 1 6 i6 f.
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Lemma 4.8. We assume that v(Z) > 1/(4q4). Then, we have

z2
f+1 + w2q−1

1 + w1 +$1/(8q4)zf+1w
q
1 ≡ (q/2)$1/(4q4)

(
mod

1

4q4
+

)
.

(4.31)

Proof. If q = 2, we can check that

z2
2 + w3

1 + w1 +$1/128z2w
2
1 ≡$1/64(w1z

2
2 + z4

1 + w2
1 + 1)

(
mod

1

64
+

)
(4.32)

by

z1 =−w1 +$1/128z2.

We have v(z2
2 + w3

1 + w1)> 0. Therefore, we obtain

w1z
2
2 + z4

1 + w2
1 ≡ w1(z2

2 + w3
1 + w1)≡ 0 (mod 0+) .

Hence, the required assertion in this case follows from (4.32). Assume that

f > 2. For 1 6 i6 f + 1, we put

ni =
q − 2i−1

2i+1q4
.

We prove

(4.33) (zi + wli1 )2 +$miziw
q
1 +$niw1 ≡ 0

(
mod

1

2i+1q3
+

)
for 2 6 i6 f + 1 by induction on i. Eliminating z1 from (4.29) by (4.30) and

dividing it by $1/(8q4), we obtain

(z2 + w
3q/4
1 )2 +$1/(16q3)z2w

q
1 +$(q−2)/(8q4)w1

+$1/(8q3)w
q/2
1 (z2 + w

3q/4
1 )2 ≡ 0

(
mod

1

8q3
+

)
.

This shows

v
(
z2 + w

3q/4
1

)
>

1

32q3
.

Hence, we have (4.33) for i= 2. Assume (4.33) for i. Eliminating zi from

(4.33) by (4.30) and dividing it by $mi , we obtain (4.33) for i+ 1. Hence,

we have (4.33) for f + 1, which is equivalent to (4.31).
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Proposition 4.9. For each ζ ∈ k×2 , the reduction P
0
ζ is isomorphic to

the affine curve defined by z2
f+1 = w1(wq−1

1 − 1)2, which has genus 0 and

singularities at w1 ∈ k×, and the complement Dζ \P0
ζ is an open annulus.

Proof. The claim on P
0
ζ follows from the congruence (4.31) modulo 0+.

We prove the last assertion. We change a variable as Z1 = 1 + z′1 with 0<

v(z′1)< 1/(8q3). Similarly to (4.30), we introduce parameters {z′i}26i6f+1

by z′i + Z li = z′i+1 for 1 6 i6 f . Then, by similar computations to those in

the proof of Lemma 4.8, we obtain

z′2f+1 ≡ Z2q−1
(
mod 2v(z′f+1)+

)
.

By setting z′f+2 = Zq/z′f+1, we obtain

z′2f+2 ≡ Z (mod v(Z)+) .

Then, we can see that all parameters z′i for 1 6 i6 f + 1 and Z are written

as functions of z′f+2. Hence, (Dζ \P0
ζ)(C) is identified with

{z′f+2 ∈C | 0< v(z′f+2)< 1/(8q4)}.

2. Elliptic curves For ζ ′ ∈ k×, we choose c2,ζ′ ∈ O×C such that c̄2,ζ′ = ζ ′

and

c
4(q−1)
2,ζ′ + 1 +$1/(4q4)c4q−3

2,ζ′ = 0,

and a square root c
1/2
2,ζ′ of c2,ζ′ . Further, we choose c1,ζ′ such that

c2
1,ζ′ +$1/(8q4)cq2,ζ′c1,ζ′ + c2,ζ′(c

2(q−1)
2,ζ′ + 1) =

q

2
$1/(4q4),

and b2,ζ′ such that b32,ζ′ =$1/(4q4)c4
2,ζ′ . We put

a1,ζ′ =$1/(8q4)cq2,ζ′ , b1,ζ′ = c
(2q−3)/2
2,ζ′ b2,ζ′ .

For each ζ ′ ∈ k×, we define a subspace Dζ,ζ′ ⊂P0
ζ by v(w1 − c2,ζ′)> 0.

Furthermore, we define Xζ,ζ′ ⊂Dζ,ζ′ by v(w1 − c2,ζ′) > 1/(12q4). We put

Pζ = P0
ζ

∖ ⋃
ζ′∈k×

Dζ,ζ′ .

We take (ζ, ζ ′) ∈ k×2 × k× and compute the reduction of Xζ,ζ′ . In the

following, we omit the subscript ζ ′ of a1,ζ′ , b1,ζ′ , b2,ζ′ c1,ζ′ and c2,ζ′ , if there
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is no confusion. We change variables as

zf+1 = a1z + b1w + c1, w1 = b2w + c2.

By substituting these into (4.31), we acquire

(4.34) a2
1(z2 + z + w3)≡ 0

(
mod

1

4q4
+

)
by the definition of a1, b1, b2, c1 and c2.

Proposition 4.10. For each (ζ, ζ ′) ∈ k×2 × k×, the reduction of Xζ,ζ′ is

isomorphic to the affine curve defined by z2 + z = w3, and the complement

Dζ,ζ′ \Xζ,ζ′ is an open annulus.

Proof. The first assertion follows from (4.34). We prove the second

assertion. We change variables as

zf+1 = z′ + c
(2q−3)/2
2 w′ + c1, w1 = w′ + c2

with 0< v(w′)< 1/(12q4). Substituting them into (4.31), we acquire

z′2 ≡ c2(q−2)
2 w′3

(
mod 2v(z′)+

)
by the choice of c2. Note that we have

v(z′) = 3v(w′)/2<
1

8q4
.

By setting z′′ = z′/(cq−2
2 w′), we obtain

z′′2 ≡ w′
(
mod v(w′)+

)
.

Then, we can see that z′ and w′ are written as functions of z′′. Hence,

(Dζ,ζ′ \Xζ,ζ′)(C) is identified with {z′′ ∈C | 0< v(z′′)< 1/(24q4)}.

4.5 Stable covering of X1(p3)

In this subsection, we show the existence of the stable covering of X1(p3)

over some finite extension of the base field K̂ur. See [CM, Section 2.3] for

the notion of semistable coverings. A semistable covering is called stable, if

the corresponding semistable model is stable.

Proposition 4.11. There exists a stable covering of X1(p3) over a finite

extension of the base field.
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Proof. First, we show that, after taking a finite extension of the base

field, X1(p3) is a wide open space. By [St1, Theorem 2.3.1(i)], X1(p3) is the

Raynaud generic fiber of the formal completion of an affine scheme overO
K̂ur

at a closed point on the special fiber. Then, we can apply [CM, Theorem

2.29] to the formal completion of the affine scheme along its special fiber,

after shrinking the affine scheme. Hence, X1(p3) is a wide open space over

some extension.

By [CM, Theorem 2.18], a wide open space can be embedded to a proper

algebraic curve so that its complement is a disjoint union of closed disks.

Therefore, X1(p3) has a semistable covering over some finite extension by

[CM, Theorem 2.40]. Then, a simple modification gives a stable covering.

In the following, we construct a candidate of a semistable covering of

X1(p3) over some finite extension. We put

V1 = W+
1,1′ ∪

⋃
26i66

Wi,1′ , V2 = W−
1,1′ ∪

⋃
26i64

W1,i′ ,

U = W1,1′\
⋃
ζ∈S1

Xζ .

We note that V1 ⊃Y1,2, V2 ⊃Y2,1, U⊃ Z1,1, V1 ∩V2 = ∅, V1 ∩U =

W+
1,1′ and V2 ∩U = W−

1,1′ .

We consider the case where q is even in this paragraph. We set D̂ζ =

Dζ\
(⋃

ζ′∈k× Xζ,ζ′
)

for ζ ∈ k×2 . Then, D̂ζ contains Pζ as the underlying

affinoid. On the other hand, for (ζ, ζ ′) ∈ k×2 × k×, the space Dζ,ζ′ has the

underlying affinoid Xζ,ζ′ .

We put

S =

{
S1 if q is odd,

k×2 × k× if q is even.

Now, we define an admissible covering of X1(p3) as

C1(p3) =

{
{V1,V2,U, {Dζ}ζ∈S1} if q is odd,

{V1,V2,U, {D̂ζ}ζ∈k×2 , {Dζ,ζ′}(ζ,ζ′)∈S} if q is even.

In Section 7.2, we show that C1(p3) is a semistable covering of X1(p3) over

some finite extension.
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§5. Action of the division algebra on the reductions

In this section, we determine the action of O×D on the reductions Y1,2,

Y2,1 Z1,1, {Pζ}ζ∈k×2 and {Xζ}ζ∈S by using the description of O×D-action in

(1.8). We take

d= d1 + ϕd2 ∈ O×D,

where d1 ∈ O×K2
and d2 ∈ OK2 . We put

κ1(d) = d̄1, κ2(d) =−d̄−q1 d̄2.

Lemma 5.1. The element d induces the following morphisms:

Y1,2→Y1,2; (x, y) 7→ (κ1(d)x, κ1(d)−qy),

Y2,1→Y2,1; (x, y) 7→ (κ1(d)−1x, κ1(d)qy).

Proof. We prove the assertion for Y1,2. By (1.5), we have

d∗x1 ≡ d1x1, d∗x3 ≡ d1x3 (mod 0+) .

Therefore, the required assertion follows from (4.5). The assertion for Y1,2

is proved similarly.

Now, let the notation be as in Section 4.3. We put

x′i = d∗xi for 1 6 i6 3,

t′ = d∗t, Z ′0 = d∗Z0, Z ′ = d∗Z.

We have

j−1(x1) ≡ x1 + d−q1 d2$
ε1 ũx1 (mod ε1+) ,

j−1(x2) ≡ x2 + d−q1 d2$
ε1 ũx2 (mod ε1+) ,

j−1(x3) ≡ x3 (mod ε2+)

by (1.11). On the other hand, we have

d̃(x1) ≡ d1x1 (mod ε1+) ,

d̃(x2) ≡ d1x2 + dq2$
ε1xq2 (mod ε1+) ,

d̃(x3) ≡ d1x3 + dq2$
ε3xq3 (mod ε2+)
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by (1.5). Hence, we obtain

x′1 ≡ d1x1 + d
−(q−1)
1 d2$

ε1 ũx1 (mod ε1+) ,(5.1)

x′2 ≡ d1x2 + d
−(q−1)
1 d2$

ε1 ũx2 + dq2$
ε1xq2 (mod ε1+) ,(5.2)

x′3 ≡ d1x3 + dq2$
ε3xq3 (mod ε2+) .(5.3)

By the definition of t and the equation x′2/x
′
1 =−1 + γ2(x′q2 /t

′), we acquire

(5.4) t′ ≡ dq1t− d
q−1
1 dq2t

2−q$ε2 (mod ε2+)

using (5.1) and (5.2). We put

G0 = d−q1 d2x
q(q−1)
3 + d−1

1 dq2x
−q(q−1)
3 .

By the definition of Z0 and the equation 1 + (x′q3 /t
′) = γ3Z

′
0, we obtain

(5.5) Z ′0 ≡ Z0 −$ε3G0 (mod ε3+)

using (5.3) and (5.4). We put

G=G0 + d−1
1 dq2(x2x

q−2
3 + x−1

1 xq3).

By the definition of Z and the equation

Z ′0 + (x′2/x
′
3)− (x′3/x

′
1) = γ4(x′2/x

′
3)Z ′,

we obtain

(5.6) Z ′ ≡ Z − x3

x2
$ε4G (mod ε4+)

using (5.1), (5.2), (5.3) and (5.5). We have

G≡ d−q1 d2x
q(q−1)
3 + d−1

1 dq2x
(q−1)(q+2)
3 (mod 0+)

by x1 ≡−xq
2

3 , x2 ≡ xq
2

3 (mod 0+). We put

∆ = d−q1 d2x
−(q−1)
3 + d−1

1 dq2x
q−1
3 .

Then, the congruence (5.6) has the following form:

(5.7) Z ′ ≡ Z −$ε4∆ (mod ε4+) .
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Proposition 5.2. The element d acts on Z1,1 by

(Z, x3) 7→ (Z, κ1(d)x3).

Proof. This follows from (5.3) and (5.7).

Proposition 5.3. The element d induces the morphism

Pζ →Pκ1(d)ζ ; w1 7→ w1.

Proof. This follows from (5.7), Proposition 5.2 and Z =$1/(4q4)w1.

Proposition 5.4. We take ζ ∈ S1. Further, we take ζ ′ ∈ k×, if q is even.

We set as follows:

η =

{
ζ if q is odd,

(ζ, ζ ′) if q is even,

dη =

{
κ1(d)ζ if q is odd,

(κ1(d)ζ, ζ ′) if q is even,

fd =

{
Trk2/k(ζ

−2qκ2(d)) if q is odd,

Trk2/F2
(ζ1−qζ ′−2κ2(d)) if q is even,

where η, dη ∈ S. Then, the element d induces

Xη→Xdη :

{
(z, w) 7→ (κ1(d)−(q+1)(z + fd), κ1(d)−(q+1)/2w) if q is odd,

(z, w) 7→ (z + fd, w) if q is even.

Proof. First, we assume that q is odd. Recall that Z = aζz + c1,ζ and x3 =

bζw + c2,ζ . Similarly, we have Z ′ = ad̄1ζz
′ + c1,d̄1ζ

and x3 = bd̄1ζw
′ + c2,d̄1ζ

.

Then, the claim follows from (5.7).

Next, we assume that q is even. By (5.7) and d∗x3 ≡ d1x3 (mod (ε3/2)+),

we acquire

(5.8) d∗zf+1 − zf+1 ≡$ε4/4
f∑
i=1

wq−2i

1 ∆2i−1
(

mod
ε4
4

+
)

on the locus where v(Z) > ε4/2. By zf+1 = a1,ζ′z + b1,ζ′w + c1,ζ′ and w1 =

b2,ζ′w + c2,ζ′ , we obtain

d∗z − z ≡
f∑
i=1

c−2i

2,ζ′∆
2i−1

(mod 0+) ,
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d∗w ≡ w
(

mod
ε4
3

+
)

on Xζ,ζ′ by (5.7) and (5.8). On the other hand, we have

f∑
i=1

c̄−2i

2,ζ′∆
2i−1

= fd,

because x̄3 = ζ and c̄2,ζ′ = ζ ′. Hence, we have proved the claim.

§6. Action of the Weil group on the reductions

In this section, we compute the actions of the Weil group on the reductions

Y1,2, Y2,1, Z1,1, {Pζ}ζ∈k×2 and {Xη}η∈S .

Let X be a reduced affinoid over C with an action of WK . For P ∈X(C),

the image of P under the natural reduction map X(C)→X(kac) is denoted

by P . The action of WK on X is a homomorphism

wX :WK →Aut(X)

characterized by σ(P ) = wX(σ)(P ) for σ ∈WK and P ∈X(C). For σ ∈WK ,

we define rσ ∈ Z so that σ induces the q−rσth power map on the residue field

of Kac.

Remark 6.1. In the usual sense, WK does not act on X1(p3), because

the action of WK does not preserve the connected components of LT1(p3).

Precisely, wX is the action of

{(σ, ϕ−rσ) ∈WK ×D×},

which preserves the connected components of LT1(p3).

6.1 Actions of the Weil group on Y1,2, Y2,1 and Z1,1

For σ ∈WK , we put

λ(σ) = σ($1/(q2−1))/$1/(q2−1) ∈ k×2 .

We note that λ is not a group homomorphism in general.

Lemma 6.2. Let σ ∈WK . Then, the element σ induces the automor-

phisms

Y1,2→Y1,2; (x, y) 7→ (λ(σ)qxq
−rσ

, λ(σ)−1yq
−rσ

),

Y2,1→Y2,1; (x, y) 7→ (λ(σ)−1xq
−rσ

, λ(σ)qyq
−rσ

)

as schemes over k.
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Proof. We prove the claim for Y1,2. We set

σ($1/(q3(q2−1))) = ξ$1/(q3(q2−1))

with ξ ∈ µq3(q2−1)(K
ac). Let P ∈Y1,2(C). We have X3(σ(P )) = σ(X3(P )).

By applying σ to X3(P ) =$1/(q3(q2−1))x3(P ), we obtain

x3(σ(P )) = ξσ(x3(P ))≡ ξx3(P )q
−rσ

(mod 0+) .

In the same way, we have

x1(σ(P ))≡ ξq4x1(P )q
−rσ

(mod 0+) .

Therefore, we acquire xσ = ξ̄xq
−rσ

and yσ = ξ̄−qyq
−rσ

by (4.5). Hence, the

claim follows from ξ̄ = λ(σ)q. We can prove the claim for Y2,1 similarly.

For σ ∈WK , we put

ξσ =
σ(ω3)

ω3
∈ µ2q3(q−1)(K

ac).

Lemma 6.3. Let σ ∈WK . Then, σ acts on Z1,1 by (Z, x3) 7→ (Zq
−rσ

,

ξ̄σx
q−rσ

3 ).

Proof. We use the notation in Section 4.3. Let P ∈ Z1,1(C). Since we set

X1 = ω2q−1
1 x1, X2 = ω1x2 and X3 = ω3x3, we have

x1(σ(P )) = ξq
2(2q−1)
σ σ(x1(P )),

x2(σ(P )) = ξq
2

σ σ(x2(P )),

x3(σ(P )) = ξσσ(x3(P )).

Hence, we obtain

x2(σ(P ))

x1(σ(P ))
= ξ−2q2(q−1)

σ σ

(
x2(P )

x1(P )

)
≡ σ

(
x2(P )

x1(P )

)
(mod ε1+) .

Since we set x2/x1 =−1 + γ2(xq2/t), we acquire

t(σ(P ))≡ ξq3σ σ(t(P )) (mod ε2+) .

Therefore, we obtain

x3(σ(P ))q

t(σ(P ))
= ξ−q(q

2−1)
σ σ

(
x3(P )q

t(P )

)
≡ σ

(
x3(P )q

t(P )

)
(mod ε2+) .
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Since we set 1 + (xq3/t) = γ3Z0, we obtain

Z0(σ(P ))≡ σ(Z0(P )) (mod ε3+) .

Therefore, we acquire

(6.1) Z(σ(P ))≡ σ(Z(P )) (mod ε4+)

by Z0 + (x2/x3)− (x3/x1) = γ4(x2/x3)Z.

The assertion follows from

x3(σ(P )) = ξσσ(x3(P ))≡ ξσx3(P )q
−rσ

(mod 0+)

and (6.1).

6.2 Action of the Weil group on Xη

In this subsection, let ζ ∈ µ2(q2−1)(k
ac). Until Lemma 6.8, let σ ∈WK .

6.2.1 q odd

We assume that q is odd. We use the notation in Section 4.4.1. By (6.1)

and x3(σ(P )) = ξσσ(x3(P )), we have

a
ξ̄σζq

−rσ z(σ(P )) + c
1,ξ̄σζq

−rσ = Z(σ(P ))≡ σ(Z(P ))

= σ(aζ)σ(z(P )) + σ(c1,ζ) (mod ε4+)(6.2)

and

b
ξ̄σζq

−rσw(σ(P )) + c
2,ξ̄σζq

−rσ = x3(σ(P )) = ξσσ(x3(P ))

= ξσσ(bζ)σ(w(P )) + ξσσ(c2,ζ)(6.3)

for P ∈Xζ(C). Note that c
1,ξ̄σζq

−rσ = c1,ζ and c
2,ξ̄σζq

−rσ = ξq
4

σ ζq
−rσ−1c2,ζ .

We have

v(σ(c1,ζ)− c1,ζ) > ε4

by (6.2). We put

aσ,ζ =
σ(aζ)

ζrσ(q2−1)ξq+1
σ aζ

, bσ,ζ =
σ(c1,ζ)− c1,ζ

ζrσ(q2−1)ξq+1
σ aζ

,

cσ,ζ =
σ(bζ)

ζ(q−rσ−1)(q+3)/2ξ
(q+1)/2
σ bζ

.

Then, we have aσ,ζ , bσ,ζ , cσ,ζ ∈ OKac . In the following, we omit the subscript

ζ of aσ,ζ , bσ,ζ and cσ,ζ .
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Proposition 6.4. We have āσ ∈ k×, b̄σ ∈ k and āσ = c̄2
σ. Further, σ

induces the morphism

Xζ →X
ξ̄σζq

−rσ ; (z, w) 7→ (āσz
q−rσ + b̄σ, c̄σw

q−rσ ).

Proof. We have

v(ξσσ(c2,ζ)− ξq
4

σ ζ
q−rσ−1c2,ζ) > ε3

by v(σ(c1,ζ)− c1,ζ) > ε4. Hence, we have the last assertion by (6.2) and (6.3).

By the definition of aζ , bζ and c1,ζ , we can check that

āq−1
σ = 1, b̄qσ = b̄σ, āσ = c̄2

σ

using cq1,ζ ≡−ι(2− γ4c1,ζ) (mod (q − 1)/q4).

We put L=K($1/2) and L2 =K2($1/2) in Kac. Let LTL2 be the formal

OL2-module over OLur of dimension 1 such that

[$1/2]LTL2
(X) = $1/2X −Xq2 ,

[ζ]LTL2
(X) = ζX for ζ ∈ µq2−1(L2) ∪ {0}.

We put $1,L2 =$1/(2(q2−1)) and take $2,L2 ∈ OKac such that [$1/2]LTL2

($2,L2) =$1,L2 . Let ArtL2 : L×2
∼→W ab

L2
be the Artin reciprocity map nor-

malized so that the image by ArtL2 of a uniformizer is a lift of the geometric

Frobenius. We consider the following homomorphism:

IL2 → k×2 × k2; σ 7→
(
λ1(σ), λ2(σ)

)
=

(
σ($1,L2)

$1,L2

,
$1,L2σ($2,L2)− σ($1,L2)$2,L2

σ($1,L2)$1,L2

)
.

This map is equal to the composite

IL2 →O×L2
→ k×2 × k2,

where the first homomorphism is induced from the inverse of ArtL2 , and the

second homomorphism is given by a+ b$1/2 7→ (ā, b̄/ā) for a ∈ µq2−1(L2)

and b ∈ OL2 . Then, we rewrite Proposition 6.4 as follows.
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Corollary 6.5. Let σ ∈ IL. We put

g0 = 2ζ−(q+1)(λ2(σ)q + ζq
2−1λ2(σ)) ∈ k.

Then, σ induces the morphism

Xζ →Xλ1(σ)q+1ζ ; (z, w) 7→ (λ1(σ)−2(q+1)(z + g0), λ1(σ)−(q+1)w).

Proof. We can check that āσ = λ1(σ)−2(q+1) and c̄σ = λ1(σ)−(q+1) easily.

We prove that

b̄σ = λ1(σ)−2(q+1)g0.

We simply write $i for $i,L2 . We put ι= ζq
2−1 and

C =$
(q2−1)/q
1

{(
$2

$1

)q
+ ι

(
$2

$1

)}
.

Then, we have

Cq − ιγ1C ≡−1

(
mod

1

2
+

)
by $q2

2 −$1/2$2 =−$1. We can easily check the equality

σ(C)− C ≡$ε1(λ2(σ)q + ιλ2(σ)) (mod ε1+) .

On the other hand, we can check

cq1,ζ ≡−ι(2− γ4c1,ζ)

(
mod

q − 1

2q4
+

)
by the definition of c1,ζ . Therefore, the elements C and cq

3

1,ζ/(2ι) satisfy

xq − ιγ1x≡−1

(
mod

1

2
+

)
.

Hence, we obtain C ≡ cq
3

1,ζ/(2ι) (mod ε1+). This implies that

(σ(c1,ζ)− c1,ζ)
q3 ≡ 2ι(σ(C)− C) (mod ε1+) .

Therefore, we obtain

b̄σ ≡ b̄q
3

σ ≡ λ1(σ)−2(q+1)g0 (mod 0+)

by ξσ = λ1(σ)q+1 (mod 0+).
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6.2.2 q even

We assume that q is even. We use the notation in Section 4.4.2. For

P ∈P0(C), we have

(6.4) w1(σ(P ))≡ σ(w1(P ))

(
mod

1

4q4
+

)
by (6.1). We can see that

(6.5) zf+1(σ(P ))≡ σ(zf+1(P ))

(
mod

1

8q4
+

)
using (4.31) and (6.4).

Lemma 6.6. The element σ induces the morphism

Pζ →P
ξ̄σζq

−rσ ; w1 7→ wq
−rσ

1 .

Proof. This follows from Lemma 6.3 and (6.4).

We take ζ ′ ∈ k×. By (6.4) and (6.5), we have

a1,ζ′z(σ(P )) + b1,ζ′w(σ(P )) + c1,ζ′

≡ a1,ζ′σ(z(P )) + σ(b1,ζ′)σ(w(P )) + σ(c1,ζ′)

(
mod

1

8q4
+

)
(6.6)

and

(6.7) b2,ζ′w(σ(P )) + c2,ζ′ ≡ σ(b2,ζ′)σ(w(P )) + σ(c2,ζ′)

(
mod

1

4q3
+

)
using σ(a1,ζ′)≡ a1,ζ′ (mod 1/(8q4)+). We put

aσ,ζ′ =
σ(b2,ζ′)

b2,ζ′
, bσ,ζ′ =

σ(b1,ζ′)b2,ζ′ − b1,ζ′σ(b2,ζ′)

a1,ζ′b2,ζ′
,

b′σ,ζ′ =
σ(c2,ζ′)− c2,ζ′

b2,ζ′
, cσ,ζ′ =

σ(c1,ζ′)− c1,ζ′ − b1,ζ′b−1
2,ζ′(σ(c2,ζ′)− c2,ζ′)

a1,ζ′
.

In the following, we omit the subscript ζ ′ of aσ,ζ′ , bσ,ζ′ , b
′
σ,ζ′ and cσ,ζ′ . We

note that v(aσ) = 0. We have v(b′σ) > 0 by (6.7). This implies that v(bσ) > 0.

By (6.6) and (6.7), we obtain v(cσ) > 0 using v(bσ) > 0.
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Proposition 6.7. The element σ induces the morphism

Xζ,ζ′ →X
ξ̄σζq

−rσ ,ζ′ ; (z, w) 7→ (zq
−rσ

+ b̄σw
q−rσ + c̄σ, āσw

q−rσ + b̄′σ).

Proof. This follows from (6.6) and (6.7).

In the following, we simplify the description of āσ, b̄σ, b̄′σ and c̄σ. Let

ζ̃ ′ ∈ µq−1(K) be the lift of ζ ′. We put

hζ′(x) = x4 −$1/4ζ̃ ′4x− ζ̃ ′4.

Lemma 6.8. There is a root δ1 of hζ′(x) = 0 such that

δ1 ≡ cq
4

2,ζ′ +
q

2
$1/4ζ̃ ′2

(
mod

1

4
+

)
.

Proof. We put

h(x) = x4(q−1) + 1 +$1/4x4q−3.

By the definition of c2,ζ′ , we have h(cq
4

2,ζ′)≡ 0 (mod 1). Hence, we have a

root c′2 of h such that c′2 ≡ c
q4

2,ζ′ (mod 3/4) by Newton’s method. We can

check that

c′2 ≡ ζ̃ ′ +$1/16ζ̃ ′5/4
(

mod
1

16
+

)
.

We define a parameter s with v(s) > 1/16 by x= ζ̃ ′ + s. Then, we have

h(ζ̃ ′ + s) ≡ ζ̃ ′−4s4 +
(q

2
− 1
)
ζ̃ ′−8s8 +$1/4(ζ̃ ′ + s)

≡ ζ̃ ′−4hζ′(x) +
(q

2
− 1
)
ζ̃ ′−8s8 +$1/4s4ζ̃ ′−3

(
mod

1

2
+

)
.

This implies that

hζ′(c
′
2)≡ q

2
$1/2ζ̃ ′6

(
mod

1

2
+

)
.

Therefore, we have a root δ1 of hζ′(x) = 0 such that

δ1 ≡ c′2 +
q

2
$1/4ζ̃ ′2

(
mod

1

4
+

)
by Newton’s method.
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By the definition of b2,ζ′ , we have

b3q
4

2,ζ′$
−1/4 ≡ ζ̃ ′4 (mod 0+) .

Let ζ ′′ be the element of µ3(q−1)(K
ur) satisfying ζ ′′ ≡ bq

4

2,ζ′$
−1/12 (mod 0+).

Note that ζ ′′3 = ζ̃ ′4. We take δ1 as in Lemma 6.8 and put δ = δ1/(ζ
′′$1/12).

Then, we have

δ4 − δ =
1

ζ ′′$1/3
.

Note that v(δ) =−1/12. We take ζ3 ∈ µ3(Kur) such that ζ3 6= 1, and put

hδ1(x) = x2 − (1 + 2ζ3)$1/4δ2q
1 x−$

1/4δ4q−1
1 (1 + 2$1/4δ1).

Lemma 6.9. There is a root θ1 of hδ1(x) = 0 such that

θ1 ≡ c2q4

1,ζ′

(
mod

1

4
+

)
.

Proof. By the definition of c1,ζ′ and c2,ζ′ , we have hδ1(c2q4

1,ζ′)≡ 0

(mod 1/2+). Hence, we can show the claim using Newton’s method.

We take θ1 as in Lemma 6.9 and put

θ =
θ1

$1/4δ2q
1

− ζ3.

Then, we have θ2 − θ = δ3. Note that v(θ) =−1/8. Let σ ∈WK in this

paragraph. We put

ζ3,σ =
σ(ζ ′′$1/3)

ζ ′′$1/3
.

We take νσ ∈ µ3(Kur) ∪ {0} such that σ(δ)≡ ζ−1
3,σ(δ + νσ) (mod 5/6). Then,

we have

(6.8)

(
σ(θ)− θ + ν2

σδ
)2 ≡ σ(θ)− θ + ν2

σδ + ν3
σ,(

σ(θ)− θ + ν2
σδ + ν3

σ

)2 ≡ σ(θ)− θ + ν2
σδ (mod 0+) .

By these equations, we can take µσ ∈ µ3(Kur) ∪ {0} such that

µσ ≡ σ(θ)− θ + ν2
σδ + ν3

σ + σ(ζ3)− ζ3 (mod 0+) .

Then, we have µ2
σ + µσ ≡ ν3

σ (mod 1) by (6.8) and νσ, µσ ∈ µ3(Kur) ∪ {0}.
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Lemma 6.10.

(1) Let σ ∈WK . Then, we have

aσ ≡ ζ3,σ, bσ ≡ ζ3,σν
2
σ, b′σ ≡ νσ, cσ ≡ µσ (mod 0+) .

(2) Let σ ∈WK . Then we have āσ ∈ F×4 and b̄σ, b̄
′
σ, c̄σ ∈ F4. Further, āσ b̄

2
σ =

b̄′σ and b̄3σ = c̄2
σ + c̄σ hold.

Proof. By the definition of b2,ζ′ , we have

a4q4

σ ≡ σ(ζ ′′4$1/3)

ζ ′′4$1/3
(mod 0+) .

Hence, we have ā4q4
σ = ζ̄3,σ ∈ F×4 . This implies that āσ = ζ̄3,σ ∈ F×4 .

By the definition of a1,ζ′ and b1,ζ′ , we have

b2q
4

σ ≡
σ(b2q

4

2,ζ′)
(
σ(c

q4(2q−3)
2,ζ′ )− cq

4(2q−3)
2,ζ′

)
$1/4c2q5

2,ζ′

≡
a2q4
σ b2q

4

2,ζ′
(
σ(δ2q−3

1 )− δ2q−3
1

)
$1/4δ2q

1

≡
ζ2

3,σζ
′′2(σ(δ1)− δ1

)
$1/12δ4

1

≡ ζ2
3,σ

(
σ(ζ ′′$1/12)

ζ ′′$1/12
σ(δ)− δ

)
≡ ζ2

3,σνσ (mod 0+) ,

where we use Lemma 6.8 in the second congruence, bq
4

2,ζ′/$
1/12 ≡

ζ ′′ (mod 0+) in the third congruence, δ4
1 = ζ̃ ′4 (mod 1/4) and ζ ′′3 = ζ̃ ′4 in

the fourth congruence, and σ(ζ ′′$1/12)/(ζ ′′$1/12)≡ ζ3,σ (mod 0+) in the

last congruence. Hence, we obtain b̄σ = ζ̄3,σν̄
2
σ ∈ F4.

By Lemma 6.8 and bq
4

2,ζ′/$
1/12 ≡ ζ ′′ (mod 0+), we have

b′q
4

σ ≡
σ(cq

4

2,ζ′)− c
q4

2,ζ′

bq
4

2,ζ′

≡ σ(δ1)− δ1

ζ ′′$1/12
=
σ(ζ ′′$1/12)

ζ ′′$1/12
σ(δ)− δ ≡ νσ (mod 0+) .

Hence, we obtain b̄′σ = ν̄σ ∈ F4.
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By Lemmas 6.8 and 6.9 and the definition of a1,ζ′ , we have

c2q4

σ ≡ σ(θ1)− θ1 − δ2q−3
1 (σ(δ2

1)− δ2
1)

$1/4δ2q
1

≡
δ−2q

1 σ
(
δ2q

1 $
1/4(θ + ζ3)

)
−$1/4(θ + ζ3)− δ−3

1 (σ(δ1)− δ1)2

$1/4

≡
σ
(
$1/4(θ + ζ3)

)
−$1/4(θ + ζ3)−$1/12δ

(
σ($1/12δ)−$1/12δ

)2
$1/4

≡ σ(θ)− θ + ν2
σδ + σ(ζ3)− ζ3 (mod 0+) ,

where we use σ(δ1)≡ δ1 (mod 1/4) in the second congruence, and δ4
1 = ζ̃ ′4

(mod 1/4) in the third congruence. Then, we have c̄2q4
σ ∈ F4 by (6.8). Hence,

we have c̄σ ∈ F4 and cσ ≡ µσ (mod 0+), again by (6.8).

By the above calculations, we can easily check that āσ b̄
2
σ = b̄′σ and b̄3σ =

c̄2
σ + c̄σ.

Lemma 6.11. The field K(ζ3, ζ
′′$1/3, θ) is a Galois extension over K.

Proof. Let σ ∈WK . It suffices to show that σ(θ) ∈K(ζ3, ζ
′′$1/3, θ). We

put

θσ = θ + ν2
σδ + ν3

σ + µσ + σ(ζ3)− ζ3.

Then, we have θ2
σ − θσ ≡ σ(δ)3 (mod 2/3). Hence, we can find θ′ such that

θ′2 − θ′ = σ(δ)3 and θ′ ≡ θσ (mod 2/3). By the choice of µσ, we have θ′ =

σ(θ) (mod 0+). Hence, we obtain θ′ = σ(θ).

We take σ′ ∈WK such that σ′(θ) 6= σ(θ). We can define θσ′ as above,

and have σ′(θ)≡ θσ′ (mod 2/3). If νσ = νσ′ , then we have ζ3,σσ(δ)≡
ζ3,σ′σ

′(δ) (mod 5/6), which implies that ζ3,σσ(δ) = ζ3,σ′σ
′(δ) because both

sides are roots of

x4 − x− 1

ζ ′′$1/3
= 0.

Hence, if σ(δ)3 6= σ′(δ)3, we have νσ 6= νσ′ , which implies that

σ(θ)≡ θσ 6≡ θσ′ ≡ σ′(θ) (mod 0+) .

If σ(δ)3 = σ′(δ)3, we have σ(θ) 6≡ σ′(θ) (mod 0+). Therefore, we have

v(σ(θ)− θσ)> v(σ′(θ)− θσ).

Then, we obtain

σ(θ) ∈K(θσ)⊂K(ζ3, ζ
′′$1/3, θ)

by Krasner’s lemma.
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Let E be the elliptic curve over kac defined by z2 + z = w3. We put

Q=

g(α, β, γ) =

α β γ
α2 β2

α

 ∈GL3(F4)

∣∣∣∣∣ αγ2 + α2γ = β3

 .

We note that |Q|= 24 and Q is isomorphic to SL2(F3) (cf. [Se, 8.5.

Exercices 2]). Let Qo Z be a semidirect product, where r ∈ Z acts on Q by

g(α, β, γ) 7→ g(αq
r
, βq

r
, γq

r
). Then, Qo Z acts faithfully on E as a scheme

over k, where (g(α, β, γ), r) ∈Qo Z acts on E by

(z, w) 7→
(
zq
−r

+ α−1(βwq
−r

+ γ), α(wq
−r

+ (α−1β)2)
)

for kac-valued points.

Proposition 6.12. The element σ ∈WK sends Xζ,ζ′ to X
ξ̄σζq

−rσ ,ζ′. We

identify Xζ,ζ′ with X
ξ̄σζq

−rσ ,ζ′ by (z, w) 7→ (z, w). Then, the action of WK

gives a homomorphism

Θζ′ :WK →Qo Z⊂Autk(Xζ,ζ′); σ 7→
(
g(ζ̄3,σ, ζ̄

2
3,σν̄

2
σ, ζ̄3,σµ̄σ), rσ

)
.

Proof. This follows from Proposition 6.7 and Lemma 6.10.

Proposition 6.13. The homomorphism Θζ′ factors through W (Kur

($1/3, θ)/K) and gives an isomorphism W (Kur($1/3, θ)/K)'Qo Z.

Proof. By Lemma 6.10(1), the homomorphism Θζ′ factors through

W (Kur($1/3, θ)/K) and induces an injective homomorphism

W (Kur($1/3, θ)/K)→Qo Z.

To prove the surjectivity, it suffices to show that Θζ′ sends IK onto

Q. Let g = g(α, β, γ) ∈Q. We take ζα ∈ µ3(Kur), νβ, µγ ∈ µ3(Kur) ∪ {0}
such that ζ̄α = α, ν̄β = α−1β and µ̄γ = α−1γ. We put δg = ζ−1

α (δ + νβ) and

θg = θ + ν2
βδ + ν3

β + µγ . Then, we have

δ4
g − δg ≡

1

ζαζ ′′$1/3

(
mod

5

6

)
.

Hence, we can find δ′g such that δ′4g − δ′g = 1/(ζαζ
′′$1/3) and δ′g ≡ δg

(mod 5/6). Further, we have θ2
g − θg ≡ δ′3g (mod 2/3). Hence, we can find

θ′g such that θ′2g − θ′g = δ′3g and θ′g ≡ θg (mod 2/3). Then, $1/3 7→ ζα$
1/3,

and θ 7→ θ′g gives an element of IK , whose image by Θζ′ is g.
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§7. Cohomology of X1(p3)

In this section, we show that the covering C1(p3) is semistable, and study

a structure of `-adic cohomology of X1(p3). In the following, for a projective

smooth curve X over k, we simply write H1(X,Q`) for H1(Xkac ,Q`). For a

finite abelian group A, the character group HomZ(A,Q×` ) is denoted by A∨.

7.1 Cohomology of reductions

Let XDL be the smooth compactification of the affine curve over k defined

by Xq −X = Y q+1. The curve XDL is also the smooth compactification of

the Deligne–Lusztig curve xqy − xyq = 1 for SL2(Fq). Then, a ∈ k acts on

XDL by

αa : (X, Y ) 7→ (X + a, Y ).

On the other hand, ζ ∈ k×2 acts on XDL by

βζ : (X, Y ) 7→ (ζq+1X, ζY ).

By these actions, we consider H1(XDL,Q`) as a Q`[k × k×2 ]-module.

Lemma 7.1. We have an isomorphism

H1(XDL,Q`)'
⊕

ψ∈k∨\{1}

⊕
χ∈µq+1(k2)∨\{1}

ψ ⊗ χ

as Q`[k × µq+1(k2)]-modules.

Proof. As Q`[k × µq+1(k2)]-modules, we have the short exact sequence

(7.1) 0→
⊕
ψ∈k∨

ψ→H1
c (XDL\XDL(k),Q`)→H1(XDL,Q`)→ 0.

Let Lψ denote the Artin–Schreier Q`-sheaf associated to ψ ∈ k∨. Let Kχ
denote the Kummer Q`-sheaf associated to χ ∈ µq+1(k2)∨. Since

XDL\XDL(k)→Gm; (X, Y ) 7→ Y q+1

is a finite etale Galois covering with a Galois group k × µq+1(k2), we have

the isomorphism

(7.2) H1
c (XDL\XDL(k),Q`)'

⊕
ψ∈k∨

⊕
χ∈µq+1(k2)∨

H1
c (Gm, Lψ ⊗Kχ)
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as Q`[k × µq+1(k2)]-modules. Note that we have

dimH1
c (Gm, Lψ ⊗Kχ) = 1

if ψ 6= 1 by the Grothendieck–Ogg–Shafarevich formula (cf. [SGA5, Exposé

X, Théorème 7.1]). Clearly, if χ 6= 1, we have H1
c (Gm,Kχ) = 0 and

H1
c (Gm, Lψ)' ψ. Hence, we acquire the isomorphism⊕

ψ∈k∨

⊕
χ∈µq+1(k2)∨

H1
c (Gm, Lψ ⊗Kχ)

'
⊕

ψ∈k∨\{1}

⊕
χ∈µq+1(k2)∨\{1}

H1
c (Gm, Lψ ⊗Kχ)⊕

⊕
ψ∈k∨

ψ(7.3)

as Q`[k × µq+1(k2)]-modules. By (7.1), (7.2) and (7.3), the required assertion

follows.

For a character ψ ∈ k∨ and an element ζ ∈ k×, we denote by ψζ the

character x 7→ ψ(ζx). We consider a character group (k×)∨ as a subgroup

of (k×2 )∨ by Nr∨k2/k.

Lemma 7.2. We have an isomorphism

H1(XDL,Q`)'
⊕

χ̃∈(k×2 )∨\(k×)∨

χ̃

as Q`[k
×
2 ]-modules.

Proof. By Lemma 7.1, we take a basis

{eψ,χ}ψ∈k∨\{1}, χ∈µq+1(k2)∨\{1}

of H1(XDL,Q`) over Q` such that k × µq+1(k2) acts on eψ,χ by ψ ⊗ χ. For

ζ ∈ k×2 and a ∈ k, we have

βζ ◦ αa ◦ β−1
ζ = αζq+1a

in Autk2(XDL). Hence, ζ ∈ k×2 acts on H1(XDL,Q`) by

eψ,χ 7→ cψ,χ,ζeψ
ζ−(q+1) ,χ

with some constant cψ,χ,ζ ∈Q×` . Therefore, we acquire an isomorphism

H1(XDL,Q`)'
⊕

χ∈µq+1(k2)∨\{1}

Ind
k×2
µq+1(k2)(χ)

as Q`[k
×
2 ]-modules. Hence, the required assertion follows.
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Proposition 7.3. We have isomorphisms

H1(Y
c
1,2,Q`)'

⊕
χ̃∈(k×2 )∨\(k×)∨

(χ̃ ◦ λ)⊗ (χ̃q ◦ κ1),

H1(Y
c
2,1,Q`)'

⊕
χ̃∈(k×2 )∨\(k×)∨

(χ̃ ◦ λ)⊗ (χ̃ ◦ κ1)

as (IK ×O×D)-representations over Q`.

Proof. This follows from Lemmas 5.1, 6.2 and 7.2.

Let XAS be the smooth compactification of the affine curve X ′AS over k

defined by zq − z = w2. Let a ∈ k act on XAS by

αa : (z, w) 7→ (z + a, w).

By this action, we consider H1(XAS,Q`) as a Q`[k]-module. On the other

hand, let b ∈ µ2(q−1)(k
ac) act on XAS by

βb : (z, w) 7→ (b2z, bw).

Lemma 7.4. We assume that q is odd. Let G be the Galois group of the

Galois extension F over k((s)) defined by zq − z = 1/s2. Let Gr be the upper

numbering ramification filtration of G. Then, Gr =G if r 6 2, and Gr = 1

if r > 2.

Proof. We take a ∈ F such that aq − a= 1/s2. Then, sa(q−1)/2 is a

uniformizer of F . Let vF be the normalized valuation of F . For σ ∈G and

an integer i, the condition

vF
(
σ(sa(q−1)/2)− sa(q−1)/2

)
> i

is equivalent to the condition

vF
(
σ(a)− a

)
> i− 3.

Hence, the claim follows.

For a character ψ ∈ k∨ and x ∈ k×, we write ψx ∈ k∨ for the character

y 7→ ψ(xy). We set

V =
⊕

ψ∈k∨\{1}

ψ

as Q`[k]-modules. Let {eψ}ψ∈k∨\{1} be the standard basis of V .
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Lemma 7.5. We assume that q is odd.

(1) Then, we have H1(XAS,Q`)' V as Q`[k]-modules.

(2) For b ∈ µ2(q−1)(k
ac), the automorphism βb of XAS induces the action

eψ 7→ cψ,beψb−2

on H1(XAS,Q`)' V with some constant cψ,b ∈Q×` . Furthermore, we

have cψ,−1 =−1.

Proof. We have H1(XAS,Q`)'H1
c (X ′AS,Q`), because the complement

XAS\X ′AS consists of one point. The curve X ′AS is a finite etale Galois

covering of A1 with a Galois group k by (z, w) 7→ w. For ψ ∈ k∨, let L2,ψ be

the smooth Q`-sheaf on A1 defined by the covering X ′AS and ψ. Then, we

have

H1
c (X ′AS,Q`)'

⊕
ψ∈k∨\{1}

H1
c (A1, L2,ψ)

as Q`[k]-modules. By Lemma 7.4 and the Grothendieck–Ogg–Shafarevich

formula, we have

dimH1
c (A1, L2,ψ) = 1

and H1
c (A1, L2,ψ)' ψ as Q`[k]-modules for ψ ∈ k∨\{1}. Hence, the first

assertion follows.

The second assertion follows from the fact that βbαaβ
−1
b = αab2 for a ∈ k

and b ∈ µ2(q−1)(k
ac). The assertion cψ,−1 =−1 follows from the Lefschetz

trace formula.

We put

UD = {d ∈ O×D | κ1(d) ∈ k×}.

We take ζ0 ∈ µ2(q2−1)(k
ac)\k×2 . Let ∆ ∈ (k×)∨ be the character defined by

x 7→ x(q−1)/2 ∈ {±1} ⊂Q×`

for x ∈ k×. If q is odd, we put

τχ,ψ = IndIKIL
(
(χ ◦ λq+1

1 )⊗ (ψ2 ◦ Trk2/k ◦ λ2)
)
,

τ ′χ,ψ = IndIKIL

(
(χ ◦ λq+1

1 )⊗
(
ψ2 ◦ Trk2/k ◦ (−ζ−(q+1)

0 λ2)
))
,

θχ,ψ = (∆χ ◦ κ1)⊗ (ψ ◦ Trk2/k ◦ κ2),
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θ′χ,ψ = (∆χ ◦ κ1)⊗
(
ψ ◦ Trk2/k ◦ (ζ−2q

0 κ2)
)
,

ρχ,ψ = Ind
O×D
UD

θχ,ψ,

ρ′χ,ψ = Ind
O×D
UD

θ′χ,ψ

for χ ∈ (k×)∨ and ψ ∈ k∨\{1}. We note that

dim ρχ,ψ = dim ρ′χ,ψ = q + 1.

For different ψ, ψ′ ∈ k∨\{1}, we can check that τχ,ψ = τχ,ψ′ if and only if

ψ′ = ψ−1, and ρχ,ψ = ρχ,ψ′ if and only if ψ′ = ψ−1. Similar conditions hold

also for τ ′χ,ψ and ρ′χ,ψ. We define an equivalence relation ∼ on k∨\{1} by

ψ ∼ ψ−1. We put

Πχ,ψ = τχ,ψ ⊗ ρχ,ψ, Π′χ,ψ = τ ′χ,ψ ⊗ ρ′χ,ψ
for χ ∈ (k×)∨ and ψ ∈ k∨\{1}.

Proposition 7.6. We assume that q is odd. Then, we have an isomor-

phism ⊕
ζ∈µ2(q2−1)(k

ac)

H1(X
c
ζ ,Q`)'

⊕
χ∈(k×)∨

⊕
ψ∈(k∨\{1})/∼

Πχ,ψ ⊕Π′χ,ψ

as representations of IK ×O×D.

Proof. The actions of IL and UD on
⊕

ζ∈k×H
1(X

c
ζ ,Q`) factor through

k× × k by Proposition 5.4 and Corollary 6.5. On the other hand, the action

of k× × k on
⊕

ζ∈k×H
1(X

c
ζ ,Q`) is induced from the action of {1} × k on

H1(X
c
1,Q`). Hence, we have⊕

ζ∈k×
H1(X

c
ζ ,Q`)'

⊕
χ∈(k×)∨

⊕
ψ∈k∨\{1}

χ⊗ ψ

as representations of k× × k by Lemma 7.5.1. Therefore, we have an

isomorphism⊕
ζ∈k×

H1(X
c
ζ ,Q`)'

⊕
χ∈(k×)∨

⊕
ψ∈k∨\{1}

(χ ◦ λq+1
1 )⊗ (ψ2 ◦ Trk2/k ◦ λ2)⊗ θχ,ψ

as representations of IL × UD by Proposition 5.4, Corollary 6.5 and Lemma

7.5.2. Inducing this representation from UD to O×D, we obtain an isomor-

phism⊕
ζ∈k×2

H1(X
c
ζ ,Q`)'

⊕
χ∈(k×)∨

⊕
ψ∈k∨\{1}

(χ ◦ λq+1
1 )⊗ (ψ2 ◦ Trk2/k ◦ λ2)⊗ ρχ,ψ
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as representations of IL ×O×D. On the left-hand side of this isomorphism,

we have an action of IK that commutes with the action of O×D. Hence, we

have ⊕
ζ∈k×2

H1(X
c
ζ ,Q`)'

⊕
χ∈(k×)∨

⊕
ψ∈(k∨\{1})/∼

τχ,ψ ⊗ ρχ,ψ

as representations of IK ×O×D. By similar arguments, we have⊕
ζ∈µ2(q2−1)(k

ac)\k×2

H1(X
c
ζ ,Q`)'

⊕
χ∈(k×)∨

⊕
ψ∈(k∨\{1})/∼

τ ′χ,ψ ⊗ ρ′χ,ψ

as representations of IK ×O×D. Therefore, we have the isomorphism in the

assertion.

Let E and Q be as in Section 6.2.2. Let Z ⊂Q be the subgroup consisting

of g(1, 0, γ) with γ2 + γ = 0, and let φ be the unique nontrivial character of

Z. By [BH, Lemma 22.2], there exists a unique irreducible two-dimensional

representation τ of Q such that

(7.4) τ |Z ' φ⊕2, Tr τ(g(α, 0, 0)) =−1

for α ∈ F×4 \{1}. Then, it is easily checked that the determinant character of

τ is trivial. Note that every two-dimensional irreducible representation of Q

has a form τ ⊗ χ with χ ∈ (F×4 )∨, where we consider χ as a character of Q

by g(α, β, γ) 7→ χ(α).

Lemma 7.7. The Q-representation H1(E,Q`) is isomorphic to τ .

Proof. The Q-representation H1(E,Q`) satisfies (7.4) by Lemma 7.1.

Hence, the assertion follows.

Let τζ′ be the representation of WK induced from the (Qo Z)-

representation H1(E,Q`) by Θζ′ . Then, the restriction to IK of τζ′ is

isomorphic to the representation induced from τ by Lemma 7.7.

We say that a continuous two-dimensional irreducible representation V

of WK over Q` is primitive, if there is no pair of a quadratic extension K ′

and a continuous character χ of WK′ such that V ' IndWK
WK′

χ.

Lemma 7.8. The representation τζ′ is primitive of Artin conductor 3.
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Proof. We use the notations in the proof of Lemma 6.11. The element

1/($1/3θ3) is a uniformizer of Kur($1/3, θ). For σ ∈ IK , we can show that

v

(
σ

(
1

$1/3θ3

)
− 1

$1/3θ3

)
=


1
24 if ζ3,σ 6= 1,
1
12 if ζ3,σ = 1, νσ 6= 0,
1
6 if ζ3,σ = 1, νσ = 0, µσ 6= 0,

using σ(θ)≡ θσ (mod 2/3). The claim on the Artin conductor follows from

this.

The unique index-2 subgroup of Qo Z is Qo 2Z, because Q has no index-

2 subgroup. Hence, if τζ′ is not primitive, it is induced from a character of

WK2 . However, this is impossible, because the restriction of τζ′ to WK2 is

irreducible.

We define a character λξ :WK → k× by λξ(σ) = ξ̄σ. We put

τζ′,χ = τζ′ ⊗ (χ ◦ λξ),

θζ′,χ = (χ ◦ κ1)⊗ (φ ◦ Trk2/F2
(ζ ′−2κ2)),

ρζ′,χ = Ind
O×D
UD

θζ′,χ,

Πζ′,χ = τζ′,χ ⊗ ρζ′,χ

for ζ ′ ∈ k× and χ ∈ (k×)∨. In the following, we consider τζ′,χ as a represen-

tation of IK .

Proposition 7.9. We assume that q is even. Let ζ ′ ∈ k×. Then, we

have an isomorphism⊕
ζ∈k×2

H1(X
c
ζ,ζ′ ,Q`)'

⊕
χ∈(k×)∨

Πζ′,χ

as representations of IK ×O×D.

Proof. The actions of IK and UD on
⊕

ζ∈k×H
1(X

c
ζ,ζ′ ,Q`) factor through

Q× k× by Propositions 5.4 and 6.12. On the other hand, the action of

Q× k× on
⊕

ζ∈k×H
1(X

c
ζ,ζ′ ,Q`) is induced from the action of Q on

H1(X
c
1,ζ′ ,Q`). Hence, we have an isomorphism⊕

ζ∈k×
H1(X

c
ζ,ζ′ ,Q`)'

⊕
χ∈(k×)∨

τ ⊗ χ
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as representations of Q× k×. Therefore, we have an isomorphism⊕
ζ∈k×

H1(X
c
ζ,ζ′ ,Q`)'

⊕
χ∈(k×)∨

τζ′,χ ⊗ θζ′,χ

as representations of IK × UD by Propositions 5.4 and 6.12. Inducing

this representation from UD to O×D, we obtain the isomorphism in the

assertion.

7.2 Genus calculation

Lemma 7.10. We have dimH1
c (X1(p3)C,Q`) = 2q3 − 2q + 1.

Proof. It suffices to show that

dimH1
c

(
(LT1(p3)/$Z)C,Q`

)
= 4q3 − 4q + 2,

because we have

dimH1
c

(
(LT1(p3)/$Z)C,Q`

)
= 2 dimH1

c (X1(p3)C,Q`).

For an irreducible smooth representation π of GL2(K), we write c(π) for

the conductor of π. By Proposition 2.1, we have

H1
c ((LT1(p3)/$Z)C,Q`)'

⊕
π

(πK1(p3))⊕2 dim LJ(π) ⊕
⊕
χ

(St⊗ χ)K1(p3),

where π runs through irreducible cuspidal representations of GL2(K) such

that c(π) 6 3 and ωπ($) = 1, and χ runs through characters of K× such

that c(St⊗ χ) 6 3 and χ($2) = 1. We have the following list of discrete

series representations π of GL2(K) such that c(π) 6 3 and ωπ($) = 1.

(1) π ' St⊗ χ for an unramified character χ :K×→Q×` such that

χ($2) = 1. Then, c(π) = 1 and dim LJ(π) = 1. There are two such

representations.

(2) π ' St⊗ χ for a tamely ramified character χ :K×→Q×` that is not

unramified and satisfies χ($2) = 1. Then, c(π) = 2 and dim LJ(π) = 1.

There are 2(q − 2) such representations.

(3) π ' πχ, in the notation of [BH, 19.1], for a character χ :K×2 →Q×` of

level zero such that χ does not factor through NrK2/K and χ($) = 1.

Then, c(π) = 2 and dim LJ(π) = 2. There are q(q − 1)/2 such represen-

tations.

https://doi.org/10.1017/nmj.2016.36 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.36


146 N. IMAI AND T. TSUSHIMA

(4) The cuspidal representations π of GL2(K) such that c(π) = 3 and

ωπ($) = 1. Then, dim LJ(π) = q + 1 by [Tu, Theorem 3.6]. There are

2(q − 1)2 such representations by [Tu, Theorem 3.9].

We note that dim πK1(p3) = 4− c(π) if π is a discrete series representation

of GL2(K) such that c(π) 6 3. Then, we obtain the claim by taking a

summation according to the above list.

For an affinoid rigid space X, a Zariski subaffinoid of X is the inverse

image of a nonempty open subscheme ofX under the reduction mapX →X.

Proposition 7.11. Let W be a wide open rigid curve over a finite

extension of K̂ur with a stable covering {(Ui, Uu
i )}i∈I . Let X be a subaffinoid

space of W such that X is a connected smooth curve with a positive genus.

Then, there exists i ∈ I such that X is a Zariski subaffinoid of Uu
i .

Proof. Assume that X ∩ Uu
i is contained in a finite union of residue

classes of X for any i ∈ I. Then, a Zariski subaffinoid of X appears in

an open annulus. This is a contradiction, because X has a positive genus.

Hence, there exists i′ ∈ I such that X ∩ Uu
i′ is not contained in any finite

union of residue class of X. We fix such i′ in the following.

Then, some open irreducible subscheme of the reduction of X ∩ Uu
i′ does

not go to one point in X under the natural map X ∩ Uu
i′ →X. Let Y be

the inverse image of such an open subscheme under the reduction map

X ∩ Uu
i′ →X ∩ Uu

i′ . Then, we see that Y is a Zariski subaffinoid ofX by [CM,

Lemma 2.24(i)]. Each connected component of X \ Y is an open disk, and

is included in Uu
i′ or Uu

i for i 6= i′ or an open annulus outside the underlying

affinoids. This can be checked by applying [CM, Corollary 2.39] to every

closed disk in a connected component of X \ Y . Hence, X ∩ Uu
i′ is a Zariski

subaffinoid of X. If X ∩ Uu
i′ 6=X, then Uu

i′ is connected to an open disk in

Uu
i for i 6= i′ or in an open annulus outside the underlying affinoids. This is

a contradiction. Therefore, we have X ⊂ Uu
i . Then, we obtain the claim by

[CM, Lemma 2.24(i)].

Lemma 7.12. Let W be a wide open rigid curve over a finite extension

of K̂ur with a stable covering. Let X be a subaffinoid space of W such that

X is a connected smooth curve with genus zero. Then, there is a basic wide

open subspace of W such that its underlying affinoid is X.

Proof. We note that we have the claim if X appears in an open

subannulus of W . Let {(Ui, Uu
i )}i∈I be the stable covering of W .
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First, we consider the case where X ∩ Uu
i is contained in a finite union of

residue classes of X for any i ∈ I. Then, a Zariski subaffinoid of X appears

in an open annulus. Further, X itself appears in the open annulus, because

X is connected. Hence, we have the claim in this case.

Therefore, we may assume that there exists i′ ∈ I such that X ∩ Uu
i′ is

not contained in any finite union of residue class of X. We fix such i′. By

the same argument as in the proof of Proposition 7.11, we have X ⊂ Uu
i .

If the image of the induced map X → U
u
i is one point, we have the claim

because X appears in an open disk. Otherwise, X is a Zariski subaffinoid

of Uu
i , and we have the claim.

We consider the natural level-lowering map

πf : X1(p3)→X1(p2); (u, X3) 7→ (u, X2).

Lemma 7.13. The connected components of W1,2′, W1,3′, W2,1′ and

W4,1′ ∪W5,1′ ∪W6,1′ are not open balls.

Proof. Let W′
0 be a subannulus of W0 defined by v(u)< 1/(q(q + 1)).

Then, we have π−1
f (Wk×) = W2,1′ , π

−1
f (W∞) = W4,1′ ∪W5,1′ ∪W6,1′ and

π−1
f (W′

0) = W1,2′ ∪W1,3′ . Hence, we have the claim by Proposition 3.1 and

[Co, Lemma 1.4].

The smooth projective curves Y
c
1,2 and Y

c
2,1 have defining equations

XqY −XY q = Zq+1 determined by the equation in Propositions 4.2 and 4.3.

The infinity points of Y1,2 in P2
k consist of P+

a = (a, 1, 0) for a ∈ k and

P+
∞ = (1, 0, 0). The infinity points of Y2,1 consist of P−a = (a, 1, 0) for a ∈ k

and P−∞ = (1, 0, 0).

For a wide open space W , let e(W ) be the number of ends of W , and let

g(W ) be the genus of W (cf. [CM, p. 369 and p. 380]). For a proper smooth

curve C over kac, we write g(C) for the genus of C.

Theorem 7.14. The covering C1(p3) is a semistable covering of X1(p3)

over some finite extension.

Proof. We consider the stable covering of X1(p3)C by Proposition 4.11.

Then, Y
c
1,2 and Y

c
2,1 appear in the stable reduction of X1(p3)C as irreducible

components by Proposition 7.11. The point P+
0 is the unique infinity point

of Y1,2 whose tube is contained in W+
1,1′ , because v(X3)> 1/(q3(q2 − 1))

in W+
1,1′ . Similarly, P−0 is the unique infinity point of Y2,1 whose tube

is contained in W−
1,1′ . Hence, we have e(X1(p3)C) > 2q by Lemma 7.13.
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Therefore, we have g(X1(p3)C) 6 q3 − 2q + 1 by Lemma 7.10. On the other

hand, we have

g(X1(p3)C) > g(Y
c
1,2) + g(Y

c
2,1) +



∑
ζ∈µ2(q2−1)(k

ac)

g(X
c
ζ) if q is odd,

∑
ζ∈k×2 , ζ′∈k×

g(X
c
ζ,ζ′) if q is even,

where the summation on the right-hand side is q3 − 2q + 1 by Proposi-

tions 7.3, 7.6 and 7.9. Then, the affinoids Y1,2, Y2,1, Xζ for ζ ∈ µ2(q2−1)(k
ac)

and Xζ,ζ′ for ζ ∈ k×2 and ζ ′ ∈ k× are underlying affinoids of basic wide

open spaces in the stable covering by Proposition 7.11 and Lemma 7.13.

Therefore, by the above genus inequalities, we see that e(X1(p3)C) = 2q, and

the connected components of W1,2′ , W1,3′ , W2,1′ and W4,1′ ∪W5,1′ ∪W6,1′

are open annuli.

The connected components of X1(p3) \ Z0
1,1 are two wide open spaces,

because each connected component is connected to Z0
1,1 at an open suban-

nulus by Lemma 7.12. Then, we see that these two wide open spaces are

basic wide open spaces with underlying affinoids Y1,2 and Y2,1 by the above

genus inequalities. Therefore, we have the claim by Propositions 4.7, 4.9

and 4.10.

7.3 Structure of cohomology

In this subsection, we study the action of IK ×O×D on `-adic cohomology

of X1(p3). We put

(WK ×D×)0 = {(σ, ϕ−rσ) ∈WK ×D×}.

Although it is possible to study the action of (WK ×D×)0 using the result

of Section 6, here we study only the inertia action for simplicity. The result

in this subsection is essentially used in [IT3].

Let X1(p3) be the semistable formal scheme constructed from C1(p3)

by [IT2, Theorem 3.5]. The semistable reduction of X1(p3) means the

underlying reduced scheme of X1(p3), which is denoted by X1(p3)kac .

Lemma 7.15. The smooth projective curves Y
c
1,2 and Y

c
2,1 intersect with

Z
c
1,1 at P+

0 and P−0 respectively in the stable reduction X1(p3)kac.

Proof. We see this from the proof of Theorem 7.14.
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Let Γ be the graph defined by the following.

• The set of the vertexes of Γ consists of P0, P∞, P+
a and P−a for a ∈

P1(k) \ {0}.
• The set of the edges of Γ consists of P0P

+
a , P0P

−
a , P∞P

+
a and P∞P

−
a for

a ∈ P1(k) \ {0}.

We note that P+
a and P−a for a ∈ P1(k) \ {0} are points of Y

c
1,2 and Y

c
2,1

that are not on Z
c
1,1 by Lemma 7.15. Let H1(Γ,Q`) be the cohomology

group of Γ with coefficients in Q` (cf. [IT2, Section 2]). The group IK ×O×D
acts on P+

a and P−a for a ∈ P1(k) \ {0} via the action on Y
c
1,2 and Y

c
2,1. Let

IK ×O×D act on P0 and P∞ trivially. By this action, we consider H1(Γ,Q`)

as a Q`[IK ×O×D]-module.

Theorem 7.16. We have an exact sequence

0−→H1(Γ,Q`)−→H1
c (X1(p3)C,Q`)−→H1(X1(p3)kac ,Q`)

∗(−1)−→ 0

as representations of (WK ×D×)0. Further, as (IK ×O×D)-representations,

H1(X1(p3)kac ,Q`) is isomorphic to

⊕
χ̃∈(k×2 )∨\(k×)∨

Πχ̃ ⊕


⊕

χ∈(k×)∨

⊕
ψ∈(k∨\{1})/∼

Πχ,ψ ⊕Π′χ,ψ if q is odd,

⊕
ζ′∈k×

⊕
χ∈(k×)∨

Πζ′,χ if q is even,

where we put Πχ̃ = (χ̃ ◦ λ)⊗ (χ̃ ◦ κ1 ⊕ χ̃q ◦ κ1), and H1(Γ,Q`) is isomor-

phic to

1⊕
⊕

χ∈(k×)∨

(
(χ ◦ λq+1)⊗ (χ ◦ κq+1

1 )
)⊕2

.

Proof. The existence of the exact sequence follows from [IT2, Theorem

5.3] and Lemma 7.15 using Poincaré duality (cf. [Far1, Proposition 5.9.2]).

We know the structure of H1(X1(p3)kac ,Q`) by Propositions 7.3, 7.6 and 7.9.

We study the structure of H1(Γ,Q`). By Lemma 5.1 and Lemma 6.2, the

action of IK ×O×D on H1(Γ,Q`) factors through k×. We can check that

H1(Γ,Q`)' 1⊕
⊕

χ∈(k×)∨

χ⊕2

as representations of k×. Hence, the claim follows from Lemmas 5.1 and

6.2.
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