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STABLE MODELS OF LUBIN-TATE CURVES
WITH LEVEL THREE

NAOKI IMAI aNnD TAKAHIRO TSUSHIMA

Abstract. We construct a stable formal model of a Lubin—Tate curve with
level three, and study the action of a Weil group and a division algebra
on its stable reduction. Further, we study a structure of cohomology of the
Lubin—Tate curve. Our study is purely local and includes the case where the
characteristic of the residue field of a local field is two.

Introduction

Let K be a nonarchimedean local field with a finite residue field k£ of
characteristic p. Let p be the maximal ideal of the ring of integers Ok of
K. Let n be a natural number. We write LT (p") for the Lubin-Tate curve
with full level n as a deformation space of formal Ox-modules by quasi-
isogenies. Let D be the central division algebra over K of invariant 1/2. Let
¢ be a prime number different from p. We write C for the completion of an
algebraic closure of K. Then, the groups Wg, GLy(K) and D* act on

hﬂ H(} (LT(pm)Ca @5)7

and these actions partially realize the local Langlands correspondence and
the local Jacquet—Langlands correspondence for GLs. The realization of the
local Langlands correspondence was proved by global automorphic methods
in [Cal. Since Lubin—Tate curves are purely local objects, it is desirable to
have a purely local proof which only makes use of the geometry of Lubin—
Tate curves.

We put

Kﬂp"):{(i Z) € GL2(Ok) | c=0, dzlmodp”}.
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STABLE MODELS OF LUBIN-TATE CURVES WITH LEVEL THREE 101

Let LT;(p™) be the Lubin-Tate curve with level K;(p™) as a deformation
space of formal O-modules by quasi-isogenies. Then, the cohomology group

HALT, 0", 0 = (i BLAT(67)e, 8))

will give representations of Wx and D* that correspond to smooth irre-
ducible representations of GLg(K) with conductor less than or equal to n.
The purpose of this paper is to study this cohomology in the case n = 3. We
note that 3 is the smallest conductor of a two-dimensional representation
of Wg which cannot be written as an induction of a character. Such a
representation is called a primitive representation.

Our method is purely local and geometric. In fact, we construct a stable
model of the connected Lubin-Tate curve X (p3) with level K1(p?) by using
the theory of semistable coverings (cf. [CM, Section 2.3]). Our study includes
the case where p=2, and in this case, primitive Galois representations
of conductor 3 appear in the cohomology of Xi(p3). It gives a geometric
understanding of a realization of the primitive Galois representations.

Our method of the calculation of the stable reduction is similar to that
in [CM]. In [CM], Coleman and McMurdy calculate the stable reduction of
the modular curve Xo(p?) under the assumption p > 13. The calculation of
the stable reductions in the modular curve setting is equivalent to that in
the Lubin-Tate setting where K = Q,. As for the calculation of the stable
reduction of the modular curve X;(p"), it is given in [DR] if n = 1.

We explain the contents of this paper. In Section 1, we recall a definition of
the connected Lubin—Tate curve, and study the action of a division algebra
in a general setting. In Section 2, we study the cohomology of Lubin—Tate
curves as representations of GLg(K) by purely local methods. By this result,
we can calculate the genus of some Lubin-Tate curves. In Section 3, we
construct a stable covering of the connected Lubin—Tate curve with level
K1(p?), which is used to study a covering of Xy (p3).

In Section 4, we define several affinoid subspaces Y2, Y21 and Z(il of
X1 (p?), and calculate their reductions. Let k2 be the residue field of C. We
put ¢ = |k| and

S - {uQ(qzl)(kac) if ¢ is odd,
1=
fg2—1 (k) if ¢ is even.

The reductions of Y12 and Yo ; are isomorphic to the affine curve defined
by 29y — xy? = 1. This affine curve has genus ¢(¢ — 1)/2, and is called the
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Deligne-Lusztig curve for SLy(F,) or the Drinfeld curve. Here, the genus of a
curve means the genus of the smooth compactification of the normalization
of the curve. The reduction 2(1)71 of Z(1),1 is isomorphic to the affine curve
defined by Z9+ X ¢’~1 4 x~(@~1) = . This affine curve has genus 0 and
singularities at X € Sj.

Next, we analyze tubular neighborhoods {D¢}¢es, of the singular points
of 2[1)71. If g is odd, D¢ is a basic wide open space with the underlying affinoid
X¢. See [CM, 2B] for the precise definition of a basic wide open space.
Roughly speaking, it is a smooth geometrically connected one-dimensional
rigid space which contains an affinoid such that the reduction of the affinoid
is irreducible and has at worst ordinary double points as singularities, and
the complement of the affinoid is a disjoint union of open annuli. The
reduction of X is isomorphic to the Artin—Schreier affine curve of degree 2
defined by z? — z = w?. This affine curve has genus (q — 1)/2.

On the other hand, if ¢ is even, it is harder to analyze D¢, because the
space D¢ is not a basic wide open space. First, we find an affinoid Pg. The

reduction ?2 of Pg has genus 0 and singular points parametrized by ¢’ € k*.

Second, we analyze the tubular neighborhoods of singular points of ?2. As
a result, we find an affinoid X ~, whose reduction X“/ is isomorphic to
the affine curve defined by 22 + z = w3. The smooth compactification of this
curve is the unique supersingular elliptic curve over £%¢, whose j-invariant
is 0, and its cohomology gives a primitive Galois representation. By using
these affinoid spaces, we construct a covering C; (p3) of Xj(p?).

In Section 5, we calculate the action of OF on the reductions of the
affinoid spaces in X (p3), where Op is the ring of integers of D. In Section 6,
we calculate an action of a Weil group on the reductions. In the case
where ¢ is even, we construct an SLy(F3)-Galois extension of K" and
show that the Weil action on XQCI up to translations factors through the
Weil group of the constructed extension. For such a Galois extension, see
also [Weil, 31].

In Section 7, we show that the covering C;(p?) is semistable. To show
this, we calculate the summation of the genera of the reductions of the
affinoid spaces in X1 (p?), and compare it with the genus of X;(p?). Using
the constructed semistable model, we study a structure of cohomology
of X3 (p3)
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The dual graph of the semistable reduction of X;(p3) in the case where
q is even is the following;:

¢ 50 ¢
Yo Zy7 Yy,
(@] (@] (]

/N
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/ N

le) . .. e} le) o .. le)
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Xag Xag, X

2C Kep 10y

where 121 () = {1, ..., (1}, k¥ ={C], ..., (;_1} and X denotes the
smooth compactification of the normalization of X for a curve X over
k2. The constructed semistable model is in fact stable, except in the case
where g =2. If ¢ =2, we get the stable model by blowing down some P!-
components.

The realization of the local Jacquet—Langlands correspondence in coho-
mology of Lubin-Tate curves was proved in [Mi] by a purely local method.
Therefore, the remaining essential part of the study of the realization of
the local Langlands correspondence is to study actions of Weil groups and
division algebras. In the paper [IT3], we give a purely local proof of the
realization of the local Langlands correspondence for representations of
conductor three using the result of this paper.

Finally, we mention some recent progress on related topics according
to a suggestion of a referee. In [Wein], Weinstein constructs semistable
models of Lubin—Tate curves for arbitrary level in the case where the
residue characteristic is not equal to two using Lubin—Tate perfectoid spaces.
In [IT4] and [IT5], some of our results in this paper are generalized to
arbitrary dimensional cases for Lubin—Tate perfectoid spaces. In [IT6], we
construct an affinoid in the two-dimensional Lubin—Tate space such that
the cohomology of the reduction of the affinoid realizes representations that
are a bit more ramified than the epipelagic representations.

Notation

In this paper, we use the following notation. Let K be a nonarchimedean
local field. Let Ok denote the ring of integers of K, and let k denote the
residue field of K. Let p be the characteristic of k. We fix a uniformizer w of
K. Let ¢ = |k|. We fix an algebraic closure K¢ of K. For any finite extension
F of K in K2 let G denote the absolute Galois group of F', let W denote
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the Weil group of F, and let Ir denote the inertia subgroup of Wg. The
completion of K2 is denoted by C. Let O¢ be the ring of integers of C, and
let k?¢ be the residue field of C. For an element a € O¢, we write a for the
image of a by the reduction map Oc — k*. Let v(-) denote the valuation
of C such that v(w) = 1. Let K" denote the maximal unramified extension
of K in K2°. The completion of K" is denoted by K. For a,be C and a
rational number a € Qx¢, we write a =b (mod «) if we have v(a — b) > «,
and a =b (mod a+) if we have v(a —b) > a. For a curve X over k¢, we
denote by X¢ the smooth compactification of the normalization of X, and
the genus of X means the genus of X¢. For an affinoid X, we write X for its
reduction. The category of sets is denoted by Set. For a representation 7
of a group, the dual representation of 7 is denoted by 7*. We take rational
powers of w compatibly as needed.

81. Preliminaries

1.1 The universal deformation

Let X denote a formal Og-module of dimension 1 and height 2 over k2,
which is unique up to isomorphism. Let n be a natural number. We define
Ki(p™) as in the introduction. In the following, we define the connected
Lubin-Tate curve X;(p™) with level K (p™).

Let C be the category of Noetherian complete local O, -algebras with
residue field k2. For A € C, a formal Ox-module F = Spf A[[X]] over A and
an A-valued point P of F, the corresponding element of the maximal ideal
of A is denoted by z(P). We consider the functor

Ai(p") : C — Set; A [(F, ¢, P),

where F is a formal Ox-module over A with an isomorphism ¢ : X ~ F ®4 k?¢
and P is a w"-torsion point of F such that

[ (X —2(as(P) | [="#(X)

QEOK/W"OK

in A[[X]]. This functor is represented by a regular local ring R4 (p™) by [Dr,
Section 4.B) Lemma]. We write X;(p™) for Spf R1(p™). Its generic fiber is
denoted by X;(p™), which we call the connected Lubin-Tate curve with
level K;(p™). The space X;(p") is a rigid analytic curve over K. We can
define the Lubin—Tate curve LT (p") with level n by changing C to be the
category of Oz, -algebras where w is nilpotent, and ¢ to be a quasi-isogeny
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Y Qpac A/wA — F ®4 A/wA. We consider LT (p™) as a rigid analytic curve
over K.

The ring R1(1) is isomorphic to the ring of formal power series O .. [[u]].
We simply write B(1) for Spf Oz, [[u]]. Let B(1) denote an open unit ball
such that B(1)(C) ={u € C|v(u) > 0}. The generic fiber of B(1) is equal
to B(1). Then, the space X;(1) is identified with B(1). Let F*" denote
the universal formal Og-module over X;(1).

In this subsection, we choose a parametrization of X;(1) ~ B(1) such that
the universal formal Og-module has a simple form. Let F be a formal Og-
module of dimension 1 over a flat Og-algebra R. For a nontrivial invariant
differential w on F, a logarithm of F means a unique isomorphism F : F =
G over R® K with dF =w (cf. [GH, 3]). In the following, we always take
an invariant differential w on F so that a logarithm F' has the following
form: .

F(X)=X+)Y_ fX" with fie R® K.
i>1

Let F(X) =) ;0 fiX7 € K[[u, X]] be the universal logarithm over
Ok|[u]]. By [GH, (5.5), (12.3), Proposition 12.10], the coefficients {f;}i>o
satisfy fo=1and wfi =3 o< i1 fjviqij for i > 1, where v = u, v = 1 and
v; =0 for ¢ > 3. Hence, we have the following;:

u 1 uatl
f0:17 f1:77 f2:(1+ >7
w

w w
1 ) ud’tatl
f3 = —5 u + Uq + 5
w w

By [GH, Proposition 5.7] or [Ha, 21.5], if we set

(1.1)

(1.2) F™Y(X,Y)=F Y F(X)+F(Y)), [a]rum(X)=F (aF(X))

for a € Ok, it is known that these power series have coefficients in
Ok|[u]] and define the universal formal Ox-module F"V over Oz, [[u]]
of dimension 1 and height 2 with logarithm F'(X). We have the following
approximation formula for [w],(X).

LEMMA 1.1. We have the following congruence:
(@] punie (X) = @X + uXT+ X7 — %{(qu + XY axe XY

mod (X%, uwX?, wXQQ, Xq3+1).
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Proof. This follows from a direct computation using the relation
F([w]funi'v(X)) - wF(X) a.nd (1.1). D

In the following, F"V means the universal formal Og-module with the
identification X;(1) ~ B(1) given by (1.2), and we simply write [a], for
[a] Funiv. The reduction of (1.2) gives a simple model of ¥ such that
(1.3)

X+4sY=X+4Y, [u(X)=(X for C€pg1(0k), [@ls(X) =X

We put
An = O [, Xnll/ ([@"u(Xn) /[@"u(X0)).-

Then, there is a natural identification
(1.4) X1(p™) ~ Spf A,

that is compatible with the identification X;(1) ~ B(1). The Lubin-Tate
curve Xj(p") is identified with the generic fiber of the right-hand side of
(1.4). We set X; = [@"|4(X,,) for 1 <i<n— 1. We write X(1) for X;(1).

1.2 Action of a division algebra on X;(p")

Let D be the central division algebra over K of invariant 1/2. We write
Op for the ring of integers of D. In this subsection, we recall the left action
of OF on the space X1 (p").

Let K5 be the unramified quadratic extension of K. Let k9 be the residue
field of K3, and let o € Gal(K3/K) be the nontrivial element. The ring Op
has the following description: Op = Ok, ® ¢Ok,, with p? =w and ap =
wa’ for a € Ok,. We define an action of Op on ¥ by ((X)=(X for ( €
tq2—1(OrK,) and p(X) = X 9. Then, this gives an isomorphism Op ~ End(X)
by [GH, Proposition 13.10].

Let d = dy + ¢da € O, where d; € (’)IX<2 and ds € Of,. By the definition
of the action of Op on X, we have

(1.5) d(X)=d X + (d2X)? mod (XT).

We take a lifting d(X) € O, [[X]] of d(X) € k2[[X]]. Let F; be the formal
Ogk-module defined by

FiX,Y)=d(F™(dH(X),d (V)  [alr(X) =d(lalu(d (X))
for a € Ok. Then, we have an isomorphism

J. Funiv =5 i (u, X) = (u, d(X)).
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By [GH, Proposition 14.7], the formal Ox-module F; with

d—l L . J®kac
0L 5 L v g o LB g e

gives an isomorphism
(1.6) d:X(1)— X(1),

which is independent of the choice of a lifting d, such that there is the unique
isomorphism

R JF Fwmiv Fi (u, X) — (u, j(X))

satisfying 7(X) = X mod (@, u), where d*F""V denotes the pullback of
FWY gver X(1) by the map (1.6). Hence, we have

(1.7) (] romiv (571 (X)) = 57 ([@] 5, (X).-
On the other hand, we have the following isomorphism:

JF FUmiv Funiv; (u, X/) = (d(u), X/)'

Furthermore, we consider the following isomorphism under the identifica-
tion (1.4):

(1.8) Y X1(p") — X1("); (u, Xn) e (d(u), jTHA(XR))),

which depends only on d as in [GH, Proposition 14.7]. We put

We define a left action of d on X1 (p™) by
(Foo )l ((Freod L, P))

Then, this action coincides with 14 by the definition.
By (1.5), we have

(1.9) AN (X)=d;'X —d;"ValXe  mod (w, XT)

in O, [[X]]. We use the following lemma later to compute the Ojj-action
on the stable reduction of Xy (p?).
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LEMMA 1.2. We assume v(u) =1/(2q). Let d =dy + pda € OF,. We set
u' = d(u). We change variables as u=w" D4 and v’ = /Dy’ . Then,
we have the following:

(1.10) u = d;(qfl)u(l +dy %dau)  mod (w, u?),
(1.11) iTHX) = X +d]%duX  mod (w, u’X, uX?).
Proof. We set d~! = d} + pd}. Then,
dy=di', dy=-d;""Vdy (mod1).

First, we prove (1.10). If v(u) = 1/(2q), the function w(u) in [GH, (25.11)]
is well approximated by a function wu(ww + u¢*1)~1. By [GH, (25.13)], we
have
wu’ di'wu(w + ut*) 7l + wdy
w + it dywu(w + uitt)=l 4+ dj
wu(d; — diu?)

= 14).
di(w + uitl) — dywu (mod 1+)

Hence, we acquire the following by u = w!(29¢ and o/ = w!/ )¢/
o i(dy — w'/?da) mod Lt
Wt + la-1/(20)  qlaatt + wla-D/Dd] — wl/2dya 2 '

(1.12)

By taking an inverse of the congruence (1.12), we obtain

~ —(g—1) ~
(@ — d" D)1 = la-1)/Ca) <u’—dll“>
dl_(q_ ) s

au

1
(1.13) + w2 (dT 2% — dydy) <mod 2+) .

Now, we set @' — d;(“)a = w!/(9z. By substituting this into (1.13) and

172 we obtain

dividing it by w
(z —d} 2dyi®)? = 27 202 (x — dy *da@®)  (mod 0+) .

Since x is an analytic function of @, a congruence x = d%fzngfﬂ (mod 0+)
must hold. Hence, we have

- . 1
@ =dy Nl + w0 d dya) <mod 2q+)
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using @ — d?” i = w'/ (20 . This implies (1.10), because ' is an analytic
function of w.
By Lemma 1.1, (1.7) and (1.9), we have

u'j7H(X)4 Ej_l(ud;(qfl)Xq) mod (o, Xq2).

Hence, the assertion (1.11) follows from (1.10) and j~!(X) = X mod (=, u).
i

§2. Cohomology of Lubin—Tate curve

Let £ be a prime number different from p. We take an algebraic closure
Qg of Qy. Let LT(p™) be the Lubin-Tate curve with full level n over K"
(cf. [Da, 3.2]). We put

Hiyp o =ling H((LT(p")/=")c, Q)

for any nonnegative integer i, where LT (p")/w? denotes the quotient of
LT(p") by the action of w? C D*. Then, we can define an action of
GL2(K) x D* x Wk on HIiJT,w for a nonnegative integer i (cf. [Da, 3.2, 3.3]).

We write Irr(D*, Q) for the set of isomorphism classes of irreducible
smooth representations of D* over Qy, and Disc(GLa(K), Q,) for the set of
isomorphism classes of irreducible discrete series representations of GLa(K)
over Q. Let

JL:Trr(D*, Q) — Disc(GL2(K), Q)

be the local Jacquet—Langlands correspondence. We denote by LJ the
inverse of JL. For an irreducible smooth representation m of GLa(K),
let w,; denote the central character of m. We write St for the Steinberg
representation of GLa(K).

The following fact is well known as a corollary of the Deligne-Carayol
conjecture. Here, we give a purely local proof of this fact.

ProprosiTION 2.1. We have isomorphisms

HﬁT,w ~ @ 7 ®2dimLI(n) o @(St ® (x o det)),
™ X

HET,w ~ @(X o det)
X

as representations of GLo(K), where ™ runs through irreducible cuspidal rep-
resentations of GLa(K) such that w(w) =1, and x runs through characters
of K* satisfying x(w?) = 1.
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Proof.  First, we show the second isomorphism. Let X(p™) be the
connected Lubin-Tate curve with full level n over K" (cf. [St2, 2.1]). We
put

H)QC = MHE (X(pn)Ca@E)>
GLy(K)" = {g € GLa(K) | det g € O}

Then, GL2(K)? acts on H%. By [St2, Theorem 4.4(i)], we have

(2.1) Hy ~ @D (x o det)
X

as representations of GLa(Of), where x runs through characters of Oj.
Let H be the kernel of GL2(K)? — Aut(H%). Then, H = SLy(K), because a
normal subgroup of GLy(K)® containing SLa(Of ) is SLa(K) by [De, Lemme
2.2.5(iii)]. Hence, we see that (2.1) is an isomorphism as representations of
GLa(K)°. The second isomorphism follows from this, because we have

GLy(K)/w

2 L2
Hip o~ C‘IndGLz(K)O Hx.
Next, we show the first isomorphism. By [Mi, Definition 6.2 and Theorem

6.6], the cuspidal part of HﬁT,w is

@ @2 dim LI (m)
™

Here, we note that the characteristic of a local field is assumed to be zero
in [Mi], but the same proof works in the equal characteristic case. By [Far2,
Théoreme 4.3] and the Faltings—Fargues isomorphism (cf. [Fal] and [FGL)),
we see that the noncuspidal part of HﬁT,w is the Zelevinsky dual of HﬁT,w.
Therefore, we have the first isomorphism. 0

83. Stable covering of Lubin—Tate curve with level two

In this section, we construct a stable covering of X1 (p?). Let (u, X2) be
the parameter of X;(p?) given by the identification (1.4).

Let Y11, Wo, Wyx, W 1, We 2 and W 3 be the subspaces of X (p?)
defined by the following conditions.

Y :v(u):L v(X) = q2q_1, U(X2):q(qu_1)'
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W, IO<U(U) < 1 U(Xl)zl_iv(u) U(XQ)—LU(U)

q+1 g—1" Coglg—1)
W, ;0<v(u)<q+11, U(Xl)zlq__”(f), U(XQ):q(Z(f)l)
Woo1:0<v(u) < q%l v(X) = q(z(i‘)l), v(Xs) qg(“q“i) I
Woeaio() > o (X)) = o(X) q2(q21_ 5
Woess : q+11 <o) < q% v(X1) = lq__“(l“) v(Xs) = (]12(;”_(“1)).

We put
W = Woo,l ) Woo,2 U Woo,B-

Note that we have
Xi1(p*) =Y11 UWoU WL, UW.

PROPOSITION 3.1. The Lubin—Tate curve X1(p?) is a basic wide open
space with underlying affinoid Y1 1. Further, Wo and W, are open annuli,
and Wyx is a disjoint union of ¢ — 1 open annuli.

Proof. This is proved in [IT1] by direct calculations without cohomolog-
ical arguments. Here, we sketch another proof based on arguments in this
paper.

First, we note that AXj(1) is a good formal model of X;(1). Then, we
can show that X;(p) is isomorphic to an open annulus by a cohomological
argument as in the proof of Theorem 7.14 using the natural level-lowering
map X;(p) — X;(1).

Next, we can see that the reduction of Y;; is isomorphic to the
affine curve defined by z%y — xy? =1 by a calculation as in the proof of
Proposition 4.2 (cf. [IT1, Section 3.1]). Then, we can prove the claim by
a similar argument to that above using the natural level-lowering map
X1 (p?) = X (p). 0

§4. Reductions of affinoid spaces in X (p?)

4.1 Definitions of several subspaces in X (p?)
In this subsection, we define several subspaces of X1 (p?). Let (u, X3) be
the parameter of X1 (p3) given by the identification (1.4).

https://doi.org/10.1017/nmj.2016.36 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.36

112 N. IMAI AND T. TSUSHIMA

Let Y12, Y21 and Z?y1 be the subspaces of Xj(p®) defined by the
following conditions.

Yio:o(u)= q—l—ll R e R q(q21—1)
v(Xs) q3(q21— 1)
Yaiot = gy W0 =EI =
05 =
Zisv(w)= 21(1’ vy = 2(12(61(1_—11)’ v(X2)= 2(J(q1— 1)’
0%0) = 56,

We write down the following possible cases for (u, X7, X»):

1) 0<u< g e =1 e =T,
@ 0<o< g o= ) =

1 q 1 )
(3) v(u) = (]_1_717 U(Xl) = qg 1 U(XQ) = ma
@ 0<o < wt = ) =

q 1 1
6) vz T )= )=

1 q 1 —wv(u) 1 —v(u)

(6) ) v(u )<ﬁ U(Xl)—q_717 v(Xg) = 2 —1)
(4.1)

Next, we consider the following possible cases for (X3, X3):

(1) w(X{)=v(X) <v(uX]),  (2) v(Xg)=0v(X2) <v(X]),
(3) v(Xa)>o(X]) =v(Xg). (1) v(Xa)=v(X]) =v(uX).
(4.2)
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LEMMA 4.1. For2<i<6in (4.1) and 2' <j' <4 in (4.2), the case i
and j' does not happen.

Proof. This is an easy exercise. [

Let W, j» be the subspace of X4 (p?) defined by the conditions 1 <4 < 6 in
(4.1) and 1" < j' < 4" in (4.2). We note that W3y =Y 9 and Wy =Yo ;.
Let Wil, and W1, be the subspaces of Wy 1/ defined by 1/(2¢) <wv(u) <
1/(¢g+1) and 1/(q(¢+ 1)) <v(u) <1/(2q) respectively.

4.2 Reductions of the affinoid spaces Y32 and Y3

In this subsection, we compute the reductions of the affinoid spaces Y o
and Yy 1. The reductions of Y1 and Y 2 are isomorphic to the affine curve
defined by z%y — xy? = 1. These curves have genus ¢(q — 1)/2.

PROPOSITION 4.2. The reduction of Y12 is isomorphic to the affine
curve defined by xly — xy? =1.

Proof. We change variables as u=w!/ @, X; =¥ (@ Vg, X,=
wl/(q(‘ZQ_l))a:g and X3 = wl/(qg(QQ_l))xg. By Lemma 1.1, we have

(4.3) U= —Jrf(qfl), T =axd + ng, X9 = 9:%2 (mod 0+) .

Then, we have ﬂ:—xl_(q_l)

+ Fo(@, 1) for some function Fy(a, )
satisfying v(Fo(@, z1)) > v(@). Substituting @ = —xl_(q_l) + Fy(@, z1) into
Fy(@, x1) and repeating it, we see that @ is written as a function of .
Similarly, by xo = a:§2 (mod 0+4), we can see that x5 is written as a function
of 1 and z3. By (4.3), we acquire

3
q
T3
q
1

4
q
ZC3 _

(4.4) 1==

do+).
. (mod 0+)

[y

By setting 1+ :Eflscgz = azg3tfl and substituting this into (4.4), we obtain
t{ = z1 (mod 02+) and hence (1 + z4t;1)7= :cgdtfl (mod 0+). By setting
L+ 23t =287t5 ", we obtain t§ = ¢ (mod 0+). Hence,

(1+as5t;1)? =20 51 (mod 0+) .

Finally, by setting x=x3 and 1+ x3t2_1 =ady, we acquire y?= tz_l
(mod 0+). Hence, we have z%y — zy? =1 (mod 0+). Note that

(*—1) jL‘,]Ckg}tfrl)(qz’—l)) _1_1,%2

g3 +g*-1 ’
3

xl(l—i—mg

(4.5) r=x3, Y=
1T
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which we will use later. N

We put _
i = o1~ D/ (24")

for 1 <7< 4. We choose an element ¢y such that cg — ’y%co 4+ 1=0. Note

that we have ¢y = —1 (mod 0+). Further, we choose a gth root c(l)/q of ¢p.

PROPOSITION 4.3. The reduction of the space Yo 1 is isomorphic to the
affine curve defined by x%y — xy? = 1.

Proof. We change variables as

u = ot/ ala+1) g X, = w(q2+q71)/(q(q2—1))m17 X, — wl/(q271);1:2

)

and X3 = /(@@= g,

By Lemma 1.1, we have

—(g- -1
(4.6) o= —x (=1) (mod g 7 +> ,
-1
(4.7) T = Uz +’yf(a:§2 + x2) (mod 1 7z +> ,
-1
(4.8) Ty = x§2 + uxd <mod qq2 +> .

By (4.6) and (4.8), we can see that @ is written as a function of 1, and that
X2 is written as a function of z; and z3. We define a parameter ¢ by

q
T2 2Ty
4.9 — =co+5—.
(4.9) o €T 727

We note that v(t) = 0. By considering 2] *x (4.7), we have
2

z2\? T xd 21
(4.10) (2> 11— P2 =22 (mod 1 5 +) .
r1 x1 x1 q

By substituting (4.9) into the left-hand side of the congruence (4.10), and
dividing it by 7%:6%2, we acquire

pa—1 \ 1 q—1
Z
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By this congruence, we can see that x; is written as a function of ¢ and x3.
By considering z7 ' x (4.8), we acquire

(4.12) L ) a1y
: c L= (= mo
0 Y2 n 1 T qQ
by (4.9). Substituting (4.11) into (4.12), we have
q q q? 1
(4.13) c(l)/q _I ) = —ygw mod L=+ .
t T q(g—1) 2
1 t;pQ q

By (4.9) and ¢p = —1 (mod 0+), we have 92 = —x; (mod 0+). Therefore, we
acquire
2
(224 23)! =22 '27  (mod 0+)

by (4.6) and (4.8). In particular, we obtain v(ze 4+ x3) = 0. We introduce a
new parameter t1 as
T3 q (xg -+ xg)q

q
/g %3

4.14 el + - _

(4.14) 0T T T T

Substituting this into the left-hand side of the congruence (4.13), and
dividing it by —’y%:cz_q(q_l)(xg + x3)q2, we acquire t = t{ (mod 0+). By this
congruence, we can see that ¢ is written as a function of ¢; and z3. By (4.14),
we obtain

T3 = t‘fQ(l +a3t;H)?  (mod 0+)
using ¢t =t (mod 0+) and z; = t¢ (mod 0+). Hence, by setting z = t; ' and
y=tI(1 + 3t "), we acquire z% — yz? =1 (mod 0+). 0
4.3 Reduction of the affinoid space Z(1),1
In this subsection, we calculate the reduction of the affinoid space Z?,l'
We define S; as in the introduction. The reduction 2(1)71 is isomorphic to

_(g2—
the affine curve defined by Z9 + xgtl + x5 (¢°=1)
genus 0 and singularities at x3 € ;.

We put

= 0. This affine curve has

1

w; = ,wl/(qu(qfl))7 € = —
2q"

for 1 <7< 4. We change variables as u = wi’flﬂ, X = wqulml, Xo = wixo
and X3 = wsrz. By Lemma 1.1, we have

(4.15) = —xf(qfl) (mod 3+),
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5 2
(4.16) r1 = ard + yad + i, (mod 3+),
(4.17) T = x§2 + youzd  (mod e1+) .

Note that we have v(y?) > 1/2 if ¢ # 2. By (4.15) and (4.17), we can see
that % is written as a function of z1, and that x5 is written as a function of
x1 and x3. We define a parameter ¢t by

q
T2 Tq

4.18 — =—1+y—=.

( ) 1 72 :

By considering 27 ' x (4.16), we acquire

q q?
To T Y1 1
4.19 — 41 =yn—=11 d =
( ) (331 + ) oGl - < + 1’%21) (mo 2+)

by (4.15). Substituting (4.18) into (4.19), and dividing it by 'ylx‘;, we obtain

(4.20) x =t4 (1 + ;Zl_1> (mod €1+4) .
L2

Therefore, we have v(t) = 0. By considering ;' x (4.17), we acquire

27\ 7 $q2 27 N
(4.21) 1+32) —yp—S =y 24+ (2 (mod €1+)
t ta x% t T

by (4.15), (4.18) and (4.20). We define a parameter Zy by

2
(4.22) 1+$=%%.
We note that v(Zp) > 0. Substituting this into (4.21), and dividing it by 72,
we obtain
q q q
(4.23) zi=22 4 (B3} 400158 (mod eyt).
2

Ty w3\ z2\? oy
(4.24) <Z0 + 2 3> =3 <2> Zo+ 4 ! 32_1 (mod €2+) .
€3 tql'g
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We introduce a new parameter Z as
(4.25) Zot =~ 2 =m 2
We note that v(Z) > 0. Substituting this into the left-hand side of the
congruence (4.24), and dividing it by ~y3(z2/x3)?, we acquire

q(g+1)

2_ 4 X
(4.26) Z9=Zy+~4 4 :ngﬁ (mod e3+4) .
Lo

By substituting (4.25) into (4.26), we obtain
(4.27)

2_ _(n2_ 2 _ 2_
Z9+ 1(1 —YaZ) + x4 (@1 —d 1:c3 a(a”—1)(a+1) (mod e3+)
by (4.17), (4.20) and (4.22). Note that we have v(yd ~971) > es, if ¢ # 2.

PROPOSITION 4.4. The reduction of the space Z%l 18 1somorphic to

the affine curve defined by Z1 + :U%Ll + x;(qll) = 0. This affine curve has
genus 0 and singularities at r3 € S1.

Proof. The required assertion follows from the congruence (4.27) modulo

0+. [
DEFINITION 4.5.

(1) For any ¢ € S1, we define a subspace
DC C Z?,l X Sur I?ur(a@)

by Z3 = (. We call the space D¢ a singular residue class of Z(1],1-
(2) We define a subspace

Zi1 CZ9 ) X K™ (ws3)

by the complement Z(1)71 X Sur IA(ur(wg)\ Uces, De-

PROPOSITION 4.6. The reduction of the space Z1 1 is isomorphic to the
(g2 —
affine curve defined by Z1 + xg2_1 + x5 @ =1 — 0 with x3 ¢ Sy.

Proof. This follows from Proposition 4.4. 0
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4.4 Analysis of the singular residue classes of Z?y1

In this subsection, we analyze the singular residue classes {D¢}ces, of
Z?,l' If ¢ is odd, the space D¢ is a basic wide open space with an underlying
affinoid X¢, whose reduction X; is isomorphic to the affine curve defined
by 27—z =w?. On the other hand, if ¢ is even, the situation is slightly
complicated, because the space D, is not basic wide open. Hence, we have
to cover D¢ by smaller basic wide open spaces. As a result, in D¢, we find
an affinoid P?, whose reduction is isomorphic to the affine curve defined by
2= wy(wi™t =1
Then, by analyzing the tubular neighborhoods of these singular points, we
find an affinoid X¢ ¢ C Pg for each ¢’ € k*, whose reduction is isomorphic

to the affine curve defined by 2% + z = w?3.

)2. This affine curve has ¢ — 1 singular points at w; € k.

4.4.1 g odd

We assume that g is odd. For each ( € py(42_1)(k*), we define an affinoid
X¢ C D¢ and compute its reduction XC-
For ¢ € pua(k?*), we choose an element c’LL € OF.c such that E’LL =2

and 0/12’? =4(1 — y4c,). We take C € pigq2_1)(k*). We put c;¢c=c

/

1,¢a% -1
2

and define ¢y ¢ € Of.c by ¢4 {1 = —20;2 and ¢ ¢ = (. We put

(q+3)/2‘

Tl b= 20T e e

ac=uwg G

Note that we have v(ac) = 1/(2¢*) and v(be) = 1/(4¢3).
For an element ( € pg(g2—_1)(k*), we define an affinoid X¢ by v(zs —
cac) = 1/(4¢%). We change variables as

Z=acz+cig, T3 =bcw + ca¢.
Then, we acquire

ag(zq —z—w?) =0 (mod e3+)
by (4.27). Dividing this by ag, we have 29 — z = w? (mod 0+). Hence, the

reduction of X is isomorphic to the affine curve defined by 29 — z = w?.

PROPOSITION 4.7.  For each ¢ € py(q2_1)(k%), the reduction X is iso-
morphic to the affine curve defined by 29 — z =w?, and the complement
D¢ \ X¢ is an open annulus.

https://doi.org/10.1017/nmj.2016.36 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.36

STABLE MODELS OF LUBIN-TATE CURVES WITH LEVEL THREE 119

Proof. We have already proved the first assertion. We prove the second
assertion. We change variables as

Z:z/—l—cLC, r3=w +coc
with 0 < v(w') < 1/(4¢%). Substituting them into (4.27), we obtain
Z1=w?  (mod 2v(w)+) .

Note that we have 0<wv(z')<1/(2¢*). By setting w’ = 2”24 D/2 we

acquire
"2 __

Z? =2 (modv(z)4) .

Hence, we can see that 2’ is written as a function of z”. Then, w’ is
also written as a function of 2”. Therefore, (D, \ X¢)(C) is identified with
{z" e C|0<v(2") <1/(4¢")}. 0

4.4.2 q even

We assume that ¢ is even. We put
Zl = aqul.
Then, the congruence (4.27) has the following form:
(4.28) 7294 Z(1 —Z)+ Z7 ' = —fy§2_q_1Z1_q(q+1) (mod e3+) .

1. Projective lines For each ¢ € k5, we define a subaffinoid Pg C D¢ by
v(Z) = 1/(4¢*). We change variables as

7 = wl/(4q4)w17 Zl =1 + wl/(sqs)zl.

Substituting these into (4.28) and dividing it by w!/ (49" we acquire

(Zl + wg/2)2 + wl/(8q3)2% + wl/(4q3)zil + w(q_l)/(4q4)w1
(4.29) + B2/ ) = 5 (20-3)/(4°) (mod 4713 +> .
q

We can check that v(z1) > 0. We set ¢ =2/ and put

(2' = 1)q 1
=T Mg
for 1 <i < f 4 1. Furthermore, we define parameters z; for 2 <i < f + 1 by

(4.30) zi + wlf =w™ iz for 1<i<f.

https://doi.org/10.1017/nmj.2016.36 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.36

120 N. IMAI AND T. TSUSHIMA

LEMMA 4.8. We assume that v(Z) > 1/(4q*). Then, we have

_ 1
2f41 + wi'™ wy + @z ] = (g/2)w 1) (mod 4q4+) :
(4.31)

Proof. If ¢ =2, we can check that

1
22+ wd 4w + @/ P w? = @/ (wi2d + 2w+ 1) <mod 64+>

(4.32)

by

Z1 = —wi + w1/12822.

We have v(23 4+ w$ + wy) > 0. Therefore, we obtain
w123 + 21 +wi =wi (25 +wi +wi)) =0  (mod 04).

Hence, the required assertion in this case follows from (4.32). Assume that
f=22 For1<i< f+1, we put

q— 2@'71
M= o
q
We prove
, . . 1
(4.33) (z + wlf)2 + w™izw! + @"iw =0 (mod W’+>

for 2 <i < f 4 1 by induction on i. Eliminating z; from (4.29) by (4.30) and
dividing it by w!/ (8q4), we obtain

(22 + w2 4 /(68 10 4 5(a-2)/ (B,
1
+ wl/(sq?))wg/?(zz + wfq/4)2 =0 <mod 8q3+> :

This shows 1
3q/4
'U(ZQ +w1q/ ) 2 w
Hence, we have (4.33) for ¢ = 2. Assume (4.33) for 7. Eliminating z; from
(4.33) by (4.30) and dividing it by @™, we obtain (4.33) for i 4+ 1. Hence,
we have (4.33) for f + 1, which is equivalent to (4.31). [
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PROPOSITION 4.9. For each ¢ € k5, the reduction fg 18 1somorphic to
the affine curve defined by sz —wl(w1 —1)2, which has genus 0 and
singularities at wi € k*, and the complement D¢ \ Pg s an open annulus.

Proof. The claim on ?g follows from the congruence (4.31) modulo 0+.
We prove the last assertion. We change a variable as Z; =1 + 2] with 0 <
v(2}) < 1/(8¢?). Similarly to (4.30), we introduce parameters {z/}ocic i1
by 2, + Zhi = ZZ’-Jrl for 1 <7< f. Then, by similar computations to those in
the proof of Lemma 4.8, we obtain

zf+ =721 (mod 21}(2}“)—{—) .
By setting 2}, = Z9/2}, |, we obtain
z}2+2 =7 (modv(Z)+).

Then, we can see that all parameters 2, for 1 <i < f + 1 and Z are written
as functions of 2}, ,. Hence, (D¢ \ PO)(C) is 1dent1ﬁed with

{z}+2 eCl0< U(z}+2) < 1/(8¢M)}. i

2. Elliptic curves For (' € k*, we choose ¢y ¢/ € Oé such that ¢g ¢ = ¢’

and
4 —
2(2/ b + 14 /(e )03?4,3 =0,

and a square root C;/C’ of Ca¢- Further, we choose cre such that
4 2(g—1 q 4
Ci(’ + wl/(&] )cg,C’CLCI + Ca ¢ (027(2/ ) + 1) _ 5wl/(4q )7

and by ¢+ such that b2 o =W 1/(4q* )62 o We put

ot/ (Ba) 1 (29-3)/2y

a1’</ = 2,¢" bl,C' - 02 N 2,¢’

For each ('€ k*, we define a subspace D¢ CPg by v(wy — cg,¢r) > 0.
Furthermore, we define X¢ ¢+ C D¢ ¢ by v(wi — ca ) = 1/(12¢%). We put

P =P\ [J Deo
C/ek)(

We take (¢, () € k5 x k* and compute the reduction of X¢ . In the
fOHOWil’lg, we omit the subscript g/ of ai ¢ty bLCI, b27g~/ Ci1¢! and Ca.¢ly if there

https://doi.org/10.1017/nmj.2016.36 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.36

122 N. IMAT AND T. TSUSHIMA
is no confusion. We change variables as
Zf+1:G12+b1’w+01, w1:b2w+02.

By substituting these into (4.31), we acquire

1
(4.34) a2(2+ 24+ w3 =0 (mod 4q4+)

by the definition of a1, b1, bs, ¢1 and co.

PROPOSITION 4.10. For each ((, (') € k3 x k*, the reduction of X¢ ¢ is
isomorphic to the affine curve defined by 2% + z = w3, and the complement
D¢ er \ X ¢r s an open annulus.

Proof. The first assertion follows from (4.34). We prove the second
assertion. We change variables as

2¢—3)/2
Zf+1=Z/+ng 8/ w' + ¢, w =w' + ¢

with 0 < v(w') < 1/(12¢*). Substituting them into (4.31), we acquire
2? = cg(qﬁ)w’?’ (mod 2v(z")+)

by the choice of co. Note that we have

n o / 1
v(z') =3v(w')/2 < S

By setting 2’ = /(¢ *w'), we obtain

"2 _

Z?=w (mod v(w)+) .

Then, we can see that 2’ and w’' are written as functions of z”. Hence,

(Do \ X¢or)(C) is identified with {z” € C |0 < v(z") < 1/(24¢%)}. 0

4.5 Stable covering of X;(p?)

In this subsection, we show the existence of the stable covering of X (p?)
over some finite extension of the base field K™. See [CM, Section 2.3] for
the notion of semistable coverings. A semistable covering is called stable, if
the corresponding semistable model is stable.

PROPOSITION 4.11. There exists a stable covering of X1(p3) over a finite
extension of the base field.

https://doi.org/10.1017/nmj.2016.36 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.36

STABLE MODELS OF LUBIN-TATE CURVES WITH LEVEL THREE 123

Proof. First, we show that, after taking a finite extension of the base
field, X1 (p?) is a wide open space. By [St1, Theorem 2.3.1(i)], X1 (p?) is the
Raynaud generic fiber of the formal completion of an affine scheme over O,
at a closed point on the special fiber. Then, we can apply [CM, Theorem
2.29] to the formal completion of the affine scheme along its special fiber,
after shrinking the affine scheme. Hence, X;(p?) is a wide open space over
some extension.

By [CM, Theorem 2.18], a wide open space can be embedded to a proper
algebraic curve so that its complement is a disjoint union of closed disks.
Therefore, X1 (p3) has a semistable covering over some finite extension by
[CM, Theorem 2.40]. Then, a simple modification gives a stable covering. []

In the following, we construct a candidate of a semistable covering of
X1 (p3) over some finite extension. We put

Vi=Wi,ul) Wi,  Va=Wi U] Wiy,
2<i<6 2<i<4

U=wW\[J X
CeESY

We note that V1D Y172, V9D Yg,l, U> Z171, VinVy=0 ViNnU=
Wi, and VonU=W,,.

We consider the case where ¢ is even in this paragraph. We set 25( =
DC\(Uc’ekx X, ) for ¢ € k3. Then, T)C contains P¢ as the underlying
affinoid. On the other hand, for (¢, (') € k5 x k*, the space D¢ ¢ has the
underlying affinoid X ¢r.

We put

S— S if ¢ is odd,
B ks x kE* if ¢ is even.

Now, we define an admissible covering of Xj(p?) as

(%) = {V1, Vo, U, {D¢}ees, } if ¢ is odd,
1 - > . .
{Vh V27 U7 {DC}CERQX’ {DQC’}(C,C/)ES} 1f q 1s even.

In Section 7.2, we show that Ci(p3) is a semistable covering of X (p?) over
some finite extension.
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85. Action of the division algebra on the reductions

In this section, we determine the action of O on the reductions 71,2,
Y217, {PC}Celaj and {X(}ces by using the description of O-action in
(1.8). We take

d=dy + @pds EOB,

where d; € (’)[X(2 and dy € O,. We put
Hl(d) = Jl, Kg(d) = —Czl_qCZQ.
LEMMA 5.1. The element d induces the following morphisms:

Yi2— Y12 (z,y) = (k1(d)z, K1(d) " y),
Ya1— You; (z,y) =~ (k1(d) "z, k1(d)%y).

Proof. We prove the assertion for Y 2. By (1.5), we have
d*z = dix1, d*r3 = dix3 (mod 0-1—) .

Therefore, the required assertion follows from (4.5). The assertion for Yo
is proved similarly. [

Now, let the notation be as in Section 4.3. We put

= d*z; for1<i<3,

]

t' = d*t, Zy = d*Zy, 7' =d*7
We have

i N x) =@ + d{'doyw™uzy  (mod e+),
i o) = @ + d{‘dywaze  (mod €1+) ,
J

i~l(z3) =23 (mod ex+)
by (1.11). On the other hand, we have

d(z1) = dizy  (mod e;+)

S

(2) = dize + diw 28 (mod e1+),
(1‘3) = dll‘g +dq €3 g (

S

mod ez+)
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by (1.5). Hence, we obtain
(5.1) ) = dir + d;(q_l)dgwelﬂml (mod €1+) ,

(5.2) rh = dixe + df(qfl)dgwelﬂxg +diw 2l (mod e14),

(5.3) zy = dizs + diw@ad  (mod ex+) .
By the definition of ¢ and the equation @} /2 = —1 + ya(x3 /t'), We acquire
(5.4) t'=djt — d(ffldgt%qw62 (mod ez2+)
using (5.1) and (5.2). We put

GO — dl—quxg(Q*l) 4 dl_ldgaqu(qil).
By the definition of Zy and the equation 1+ (23! /t') = 732}, we obtain
(5.5) Zh=Zy — w?Gy  (mod ez+)
using (5.3) and (5.4). We put

G=Gp+ dfldg(x2x§_2 +xytzd).
By the definition of Z and the equation

Z+ (wh/2h) — (@h/7}) = (zh/ah) 2,

we obtain

(5.6) 7'=7- ?w“G (mod e4+)
2

using (5.1), (5.2), (5.3) and (5.5). We have
G= dfngazg(q_l) + dfldg:ﬂéq_l)(qH) (mod 0+)
by x1 = —ng, X9 = mgQ (mod 0+). We put
A =dy%dyz; Y 4 dy el
Then, the congruence (5.6) has the following form:

(5.7) 7'=7 - w“*A  (mod es+) .
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PROPOSITION 5.2. The element d acts on 21,1 by
(Z,x3) — (Z, k1(d)x3).
Proof. This follows from (5.3) and (5.7). [
PROPOSITION 5.3. The element d induces the morphism
Pc =P, wy > wy.
Proof. This follows from (5.7), Proposition 5.2 and Z = w/ Wy [

PROPOSITION 5.4. We take ( € Sy. Further, we take (' € k™, if q is even.
We set as follows:

{C if q is odd,

"7V ) ifg s even,
dn — k1(d)C if q is odd,
TT sld)C, €Y if q is even,

= Ter/k(C_quig(d)) if q 1s odd,
T\ Traa i, (9 2k2(d)) i g s even,

where n,dn € S. Then, the element d induces

(2, w) = (r1(d) "D (2 + fa), w1 (d)~ 0D Pw) if g is odd,

X, = Xy :
! dn {(z,w)r—> (z + fa, w) if q is even.

Proof. First, we assume that ¢ is odd. Recall that Z = a¢z + ¢y ¢ and 23 =
bew + ¢ ¢ Similarly, we have Z' = ag 2" + ¢ g, and x3 =bg ;w' + ¢y g,
Then, the claim follows from (5.7).

Next, we assume that ¢ is even. By (5.7) and d*z3 = dyjz3 (mod (e3/2)+),
we acquire

f .
(5.8) d*zpi1 — 21 =@ Z wi™F AP (mod %+)
i=1

on the locus where v(Z) > €4/2. By zy41 = a1,z + by ow + ¢y ¢ and wy =
bQ,C/w +co ¢, We obtain

f o
d'z— 2z = Z CQ_ETAQPI (mod 0+) ,
i=1
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€4
* N
d'w =w (mod §+)

on X¢ o by (5.7) and (5.8). On the other hand, we have

f __21-721'71
> 6uh =t
i=1
because 23 = ¢ and ¢ ¢» = (. Hence, we have proved the claim. [

86. Action of the Weil group on the reductions

In this section, we compute the actions of the Weil group on the reductions
Y172, Y271, Z171, {PC}CEk; and {Xn}neg.

Let X be a reduced affinoid over C with an action of Wi . For P € X(C),
the image of P under the natural reduction map X(C) — X (k?°) is denoted
by P. The action of Wx on X is a homomorphism

wx WK — Aut(i)

characterized by o(P) = wx (o)(P) for 0 € Wk and P € X(C). For 0 € Wk,
we define r, € Z so that o induces the ¢~"th power map on the residue field
of K?°,

REMARK 6.1. In the usual sense, Wy does not act on X;(p3), because
the action of W does not preserve the connected components of LTy (p?).
Precisely, wx is the action of

{(o,97") e Wk x D*},
which preserves the connected components of LTy (p?).

6.1 Actions of the Weil group on ?1’2, ?271 and 21,1
For o € Wi, we put

A0) = o (@ (@) jol/@=D) € k.

We note that A is not a group homomorphism in general.

LEMMA 6.2. Let 0 € Wg. Then, the element o induces the automor-
phisms

Yi2— Y12 (1) > (\0) 1277 Mo) L7,
?2,1 —>?2,1; (z,y) — ()\(0)711‘(1—1«(;7 )\(U)qu_r")

as schemes over k.

https://doi.org/10.1017/nmj.2016.36 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.36

128 N. IMAI AND T. TSUSHIMA

Proof. We prove the claim for 71’2. We set
o (@ (@@ -D)) = ¢t/ (@ (@-1))

with § € pigs(g2—1)(K?*°). Let P € Y1 2(C). We have X3(o(P)) = o(X3(P)).
By applying o to X3(P) = wl/(qs(qz_l)):cg(P), we obtain

z3(0(P)) = o (z3(P)) = €x3(P)? " (mod 04) .
In the same way, we have
21(0(P) =&z (P)T " (mod 0+).

Therefore, we acquire 27 =29 7 and y = £ %9 ° by (4.5). Hence, the
claim follows from & = A(0)?. We can prove the claim for ?271 similarly. []

For o € Wi, we put

3) € H2g3(g—1) (Kac).

LEMMA 6.3. Let 0 € Wi. Then, o acts on Z11 by (Z,x3)— (Z9 7,
5_01‘3, U)'
Proof. We use the notation in Section 4.3. Let P € Z; ;(C). Since we set
X = wqula:l, X9 = wiz and X3 = w33, we have
21(0(P)) = €% Vo (a1(P)),
22(0(P)) = & o (a2(P)),
23(0(P)) = &oo(x3(P)).
Hence, we obtain
22(0(P)) _ ,—ag2(g-1) <$2(P)> (962(13))
——= =&, =0 mod €1+) .
n(e(P) ¢ p))="\ap)) mota?)

(
Since we set x9/x1 = —1 + y2(a/t), we acquire

t(o(P)) =€ o(t(P))  (mod ext) .

Therefore, we obtain

W _ {;q(q2—1)0<$3(P)q) _ J(xs(P)‘I) (tm0d e34)
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Since we set 1+ (2 /t) =329, we obtain

Zo(a(P))

o(Zp(P)) (mod e3+) .
Therefore, we acquire
(6.1) Z(o(P))=0(Z(P)) (mod es+)

by Zo + (v2/x3) — (v3/71) = Ya(2/23)Z.
The assertion follows from

w3(0(P)) = &0(25(P)) = Eea3(P)” 7 (mod 0+)
and (6.1). il

6.2 Action of the Weil group on Xn
In this subsection, let ¢ € u2(q2_1)(kac). Until Lemma 6.8, let 0 € Wi.

6.2.1 ¢ odd
We assume that ¢ is odd. We use the notation in Section 4.4.1. By (6.1)
and x3(0(P)) = &y0(x3(P)), we have
£, caTo z(o(P)) + CLg caro = Z(o(P))=0o(Z(P))
(6.2) =o(ac)o(z(P)) +o(cie) (mod es+)

a

and

be ca-reW(0(P)) + ¢y ¢ cqmre = 23(0(P)) = oo (23(P))
(6.3) = &oo(be)o(w(P)) + & (cac)

for P € X(C). Note that c, g care =C1¢ and Cyg o—ro :£g4<q7rg—16274.
We have
v(o(ere) —cie) 2 e

by (6.2). We put

o(ac) _ olag) —ag
> bU,C - 2 1
Cra(q _1)53—"_ aC

(et

a/0.7§

9

_ o(be)
¢lare—1)(a+3)/2¢+D/2p

CJ?C

Then, we have aq.¢, by ¢, Cs ¢ € Okac. In the following, we omit the subscript
C of (xe bg’g and Co-
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PROPOSITION 6.4. We have a, € kX, b, €k and a, = ¢%. Further, o
induces the morphism

X=Xz v (z,w) = (Gp2? " + by, Gow? 7).
Proof. We have

4 —To
v(&ea(cae) —€LCT o) > e

by v(o(c1¢) — c1¢) = €. Hence, we have the last assertion by (6.2) and (6.3).
By the definition of a¢, b¢ and ¢; ¢, we can check that

ad~t=1, bl = by, Gy = 2

using c‘ic = —1(2 — yer ) (mod (g —1)/qh). [
We put L = K (w'/?) and Ly = Ky(w'/?) in K?°. Let LT}, be the formal
Op,-module over Opur of dimension 1 such that
[wl/Q]LTLQ (X) _ w1/2X . qu’
[Cur,, (X) = ¢X  for ¢ € pga_y(La) U{0}.

We put @y 1, = w!/2@-1) and take w2, 1, € Okac such that [w1/2]LTL2
(wa,L,) = @11, Let Artr, : LS = Wf}; be the Artin reciprocity map nor-
malized so that the image by Arty, of a uniformizer is a lift of the geometric
Frobenius. We consider the following homomorphism:

Ip, — kS X ko; o ()\1(0), )\2(0))

W1,Lo ’ U(wl,L2)wLL2

_ (U(WLLQ) wl,L2U(w2,L2) - U(wl,Lz)wle)
This map is equal to the composite
IL2 — 022 —)]{J; X /6‘2,
where the first homomorphism is induced from the inverse of Arty,, and the

second homomorphism is given by a + bw'/? — (a, b/a) for a € tq2—1(L2)
and b € Or,. Then, we rewrite Proposition 6.4 as follows.

https://doi.org/10.1017/nmj.2016.36 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.36

STABLE MODELS OF LUBIN-TATE CURVES WITH LEVEL THREE 131

COROLLARY 6.5. Let o€ I;. We put
g0 =20 T (Aa(0)? + (7 ha(0) € .
Then, o induces the morphism
Xe =Xy (zw) = (A(0) 2 (2 + go), At (o) "0 Dw).

Proof. We can check that a, = Al(a)_z(q“‘l) and ¢, = )\1(0)_(‘7“) easily.
We prove that )
bO’ = )\1(0.)_2((1"!‘1)90'

We simply write w; for w; r,. We put ¢ = Cq2—1 and

ot {(2) (2))
w1 w1

1
Cl1—imC=-1 <m0d 2—1—)

Then, we have

2

by wg — /2

we = —w1. We can easily check the equality
o(C)— C=w™(A2(0)? 4+ tA2(0)) (mod e1+) .

On the other hand, we can check

~1
1 ¢ =—u2 = yc1) (mOd q2q4 +)

by the definition of ¢; . Therefore, the elements C' and C({SC /(2¢) satisfy
1
! — i =-1 (mod 2—|—> .

Hence, we obtain C' = c‘fgc/(QL) (mod €;4). This implies that

(0(cre) — e1.0) =2u(0(C) = C)  (mod e1+) .

Therefore, we obtain

by & = A1 (0)?t! (mod 0+). 0

https://doi.org/10.1017/nmj.2016.36 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.36

132 N. IMAI AND T. TSUSHIMA

6.2.2 q even

We assume that ¢ is even. We use the notation in Section 4.4.2. For
P € P°(C), we have

(6.4) wi(o(P)) =o(wi(P)) <m0d 4(1]4+>

by (6.1). We can see that

(6.5) zpr1(0(P)) = o(zp41(P)) (mod 8174+>

using (4.31) and (6.4).
LEMMA 6.6. The element o induces the morphism

?C — ?— o

. q
Egcq—TU ) w1 — wl

Proof. This follows from Lemma 6.3 and (6.4). [
We take ¢ € k*. By (6.4) and (6.5), we have

CLLC/Z(O'(P)) + bLglw(O'(P)) + c1,¢r

(66) = aLC/O'(Z(P)) + O’(bl,c)d(w(P)) + O'(CLC/) (mod 8jl4+>

and

(6.7)  baycw(o(P)) + caer = a(bger)o(w(P)) + o) <mod 423+)

using o(ay ) = ap ¢ (mod 1/(8¢*)+). We put

o(ba¢r) o (bi,¢)bacr — brco(bacr)
aU,C’ = ? bg’cl = ?
ba,¢/ a1,¢ba ¢
;o aleye) — e alene) —ene = bieby(o(ene) — )
e e . :
< 1

In the following, we omit the subscript (" of ag ¢/, bgcr, U ¢ and ¢q . We
note that v(a,) = 0. We have v(b)) > 0 by (6.7). This implies that v(b,) > 0.
By (6.6) and (6.7), we obtain v(¢,) > 0 using v(b,) = 0.
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PROPOSITION 6.7. The element o induces the morphism

X = X caro o1}

Proof. This follows from (6.6) and (6.7). [

(z,w) = (297 4+ bow? " + o, aew? ~ +b)).

_ In the following, we simplify the description of ag, by, bl and ¢,. Let
¢' € pg—1(K) be the lift of ¢’. We put

hg/(l‘) _ $‘4 o w1/4 Nl4x o 5/4'
LEMMA 6.8. There is a root 61 of h¢r(x) =0 such that
- g q4__1/4512 1
Proof. We put
h(z) =20 D 41 4 /4493,

By the definition of ¢y, we have h(cg4<,) =0 (mod 1). Hence, we have a

root ¢, of h such that ¢, = cgz, (mod 3/4) by Newton’s method. We can
check that

cy=C 4wt/ <mod 116+> )

We define a parameter s with v(s) >1/16 by = ¢’ + s. Then, we have
h(E +5) = G464 4 (g _ 1) 1848 +w1/4(5/ +5)

= f"‘*hg (x) + (% — 1) (1868 4 /g3 <mod ;+> .

This implies that
= 1
her(cy) = gwl/QC'G mod ~+ | .
2 2
Therefore, we have a root d; of h¢(x) =0 such that
= 1
h=cy+ gw1/4C'2 <m0d 4+>

by Newton’s method. 0

https://doi.org/10.1017/nmj.2016.36 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.36

134 N. IMAI AND T. TSUSHIMA

By the definition of by ¢/, we have

B

o @ VA= (mod 04).

Let ¢" be the element of 3,1y (K") satisfying (" = bq4 w112 (mod 0+).
Note that ¢’ = ("*. We take §; as in Lemma 6.8 and put 6 =01/(C"w/12).

Then, we have
1

¢'w M=1/3"
Note that v(§) = —1/12. We take (3 € pus(K"") such that (3 # 1, and put

6t —6=

hs, (x) = 2% — (1 + 2{3)731/45%133 - w1/4511q71(1 +2w'/45)).
LEMMA 6.9. There is a root 61 of hs,(x) =0 such that
4 1
= c??c, <m0d 4—{—) .
Proof. By the definition of ¢; ¢ and ¢y, we have hg, (c?q;) =0
(mod 1/2+). Hence, we can show the claim using Newton’s method. [

We take 61 as in Lemma 6.9 and put

01
o= w1/15% — G
Then, we have 62 — 6§ = 3. Note that v(#) = —1/8. Let 0 € Wi in this
paragraph. We put

B O'(C//wl/3)
C?’v” - C”wl/3 ’
We take v, € pus(K") U {0} such that o(d) = C?:;(é + v5) (mod 5/6). Then,
we have
(6.8) (o0 —9+y252) =0(0) —0+v25+v2,

(o 0)—0+v35+v2) =0(0) —0+v26 (mod 0+).
By these equations, we can take y, € pug(K™) U {0} such that
fo=0(0) =0+ 25 +v3 +0(G) — ¢ (mod 0+).

Then, we have p2 + 1, = v2 (mod 1) by (6.8) and vy, e € uz(K™) U {0}.
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LEMMA 6.10.

(1) Let o € Wgk. Then, we have
ae = (30, by = 43701/3, b =v,, Co =g (mod 0+).

(2) Leto € Wg. Then we have a, € F} and be, l_)’a, ¢y € Fy. Further, ELUB[Q, =
b, and b3 =% + &, hold.

Proof. By the definition of by v, we have

ah O'(C”4w1/3)
ald = oA (mod 0+) .

Hence, we have ag = Cg o € F}. This implies that a, = Cg - €FJ.
By the definition of ay ¢ and by ¢/, we have

(b2q )( (! a* (29— 3)) q* (29— 3)) B 2q qu ( (5211 3)_5%11—3)

p2at = T2 Co ¢’ % < 2,0
o 1/4c§qu - 1/45%(]
Cg Ucuz( ( ) _ 51) _ €2 U(C//wl/u)a((;) s
1/1254 — 53,0 C//wl/m

= C?ioz/g (mod 0+)

4
where we use Lemma 6.8 in the second congruence, q( Jwt/12 =

¢" (mod 0+) in the third congruence, ¢ = ¢’* (mod 1/4) and ¢ =™ in
the fourth congruence, and o(("w 1/12)/(C” 1/12) = (3 5 (mod 0+) in the
last congruence. Hence, we obtain b, = 6370172 eFy.

By Lemma 6.8 and bgz,/wl/u = (" (mod 0+), we have

4 4
i _ole 4’) ~ G _ o) =6 _ o("w/12) B
bt = pa! - ("ewl/12 - (Moml/12 0(0) =0 =v, (mod 0+).
2,¢

Hence, we obtain b/, = 7, € Fy.
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By Lemmas 6.8 and 6.9 and the definition of a; ¢/, we have

gt _ 0(01) b1 = 67" (o (6]) — O7)

a w1/453q
070 (89O + G3)) — w0+ ) — 873 (0 (6r) — 6r)?
= ol/4
_ 0(w1/4(9 + CS)) — w0+ (3) — w1/125(0(w1/125) - w1/126)2
- ol/4

=0(0) —0+v25+0(¢3) — ¢ (mod 0+),

where we use ¢(d1) = 01 (mod 1/4) in the second congruence, and §} =
(mod 1/4) in the third congruence. Then, we have &2 ¢ Fy by (6.8). Hence,
we have ¢, € Fy and ¢, = i, (mod 0+), again by (6.8).
By the above calculations, we can easily check that a,b2 = b and b3 =
2+ Cp. il
LEMMA 6.11. The field K (3, ("w'/3,0) is a Galois extension over K.

Proof. Let o € W. It suffices to show that o () € K(C3, ("w'/3, 6). We

put

Oo =0+ V50 + Vg + iy + 0(Cs) — 3.
Then, we have 62 — 0, = ()3 (mod 2/3). Hence, we can find §’ such that
02 —0' =0(5) and 0 =6, (mod 2/3). By the choice of j,, we have 0 =
c(0) (mod 0+). Hence, we obtain 6/ = o ().

We take o' € Wk such that o/(0) # (). We can define 6, as above,
and have o/(0) =60, (mod 2/3). If vy =v,, then we have (3,0(0)=
(3,50'(0) (mod 5/6), which implies that (3 ,0(d) = (3,0’ (d) because both
sides are roots of

4 1
=T C//wl/?;
Hence, if 0(8)® # o’ (8)3, we have v, # v,/, which implies that
0(0)=0, %0, =0'(0) (mod 0+).
If 0(6)2 = 0’(8)3, we have o () # o’(#) (mod 0+). Therefore, we have

v(o(0) — 0,) >v(a'(0) — 6,).

=0.

Then, we obtain
o(6) € K(65) C K(G3,¢"w'®, 6)

by Krasner’s lemma. 0
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Let E be the elliptic curve over k* defined by 2 + z = w?. We put

a B v
Q=19(a,B,7)= a? B2 | € GL3(Fy) | ay? + oy =33
(0]

We note that |@Q|=24 and @ is isomorphic to SLo(F3) (cf. [Se, 8.5.
Exercices 2]). Let @ x Z be a semidirect product, where r € Z acts on @ by
gla, B,7) = g(a?, B9, ~7"). Then, Q x Z acts faithfully on E as a scheme
over k, where (g(«, 8,7),r) € Q X Z acts on E by

(z,w) = (27 + o (Bu? " +9), a(w? "+ (a7'8)%)
for k?°-valued points.

PROPOSITION 6.12. The element o € W sends X“/ to XE caTo ¢ We
identify X¢ oo with Xéccq—rg o by (z,w) — (z,w). Then, the action of Wi

gives a homomorphism
@CI . WK — Q X 7 C Autk(igcl); g+ (9(5370-, gg’gﬂg, 53,(7[]0-), ’I“O-).
Proof. This follows from Proposition 6.7 and Lemma 6.10. [

PROPOSITION 6.13.  The homomorphism O  factors through W (K"
(w'/3,0)/K) and gives an isomorphism W (K" (ww'/3,0)/K) ~Q x Z.

Proof. By Lemma 6.10(1), the homomorphism O factors through
W (K™ (w!/?,0)/K) and induces an injective homomorphism

W(K"(w'/3,0)/K) = Q x Z.

To prove the surjectivity, it suffices to show that ©. sends Ix onto

Q- Let g=g(a, B,7) € Q. We take (4 € u3(K™), vg, py € pg(K") U {0}
such that (, = o, Vg = a1 and fiy = a1y, We put 0y = GO+ vg) and
0y =0+ 1/%5 + 1/2 + pt. Then, we have

1 5
4
Bt ().

Hence, we can find &, such that &, —d) = 1/(¢a¢"w'/?) and by =0y
(mod 5/6). Further, we have 62 — 0, = 6,° (mod 2/3). Hence, we can find
0) such that 0> — 6/ = 6> and 0}, =0, (mod 2/3). Then, w!/3 s (qw!/3,
and 6 — 9; gives an element of Iy, whose image by O is g. [
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§7. Cohomology of X;(p?)

In this section, we show that the covering Ci(p?) is semistable, and study
a structure of f-adic cohomology of X (p?). In the following, for a projective
smooth curve X over k, we simply write H'(X, Q) for H!(Xjac, Q). For a
finite abelian group A, the character group Homy (A, @Z ) is denoted by AV.

7.1 Cohomology of reductions
Let Xpr, be the smooth compactification of the affine curve over k defined
by X9 — X =Y%*!, The curve Xpy, is also the smooth compactification of
the Deligne-Lusztig curve %y — 2y? =1 for SLy(F,). Then, a € k acts on
XpL by
a: (X, V)= (X +a,Y).

On the other hand, ¢ € k5 acts on Xpy, by
B (X, Y) = (¢TX, CY).

By these actions, we consider H'(Xpr, Q) as a Qy[k x k5 ]-module.

LEMMA 7.1. We have an isomorphism

H'(Xpr, Q) ~ @ @ X%

PERV\{1} xEpgr1(k2)V\{1}
as Qulk x pig+1(ka)]-modules.

Proof. As Qy[k X pig+1(k2)]-modules, we have the short exact sequence

(7.1) 0— P ¢ — H}(XpL\XoL(k), Q) - H' (Xpr, Q) — 0.
pekY

Let £y denote the Artin-Schreier Q,-sheaf associated to 1 € kV. Let K,
denote the Kummer Qy-sheaf associated to x € iq+1(k2)". Since

Xpr\XpL(k) = Gy (X,Y) = Yyrt

is a finite etale Galois covering with a Galois group k X pig4+1(k2), we have
the isomorphism

(7.2) H (Xp\XpL(k), @)~ P P  HXGm Ly ®Ky)

YekY x€pgr1(k2)Y
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as Qy[k X pg41(ke)]-modules. Note that we have
dim HY(Gy,, Ly @ Ky) =1

if ¢ # 1 by the Grothendieck—-Ogg—Shafarevich formula (cf. [SGA5, Exposé
X, Théoreme 7.1]). Clearly, if y#1, we have H!(G,,,K,)=0 and
H Cl (G, Ly) ~ 1. Hence, we acquire the isomorphism

@ @ Hcl(Gm7£¢®’Cx)

HERY xEpgt1(k2)V

(73) ~ D D HGnLiok)o D

YERV\{1} XEptgr1(k2)V\{1} ek
as Qy[k X pg41(ke)]-modules. By (7.1), (7.2) and (7.3), the required assertion
follows. [

For a character ¢ € k¥ and an element ¢ € k*, we denote by 1. the
character x + 1(Cxz). We consider a character group (k*)Y as a subgroup
of (k5)" by Ny .

LEMMA 7.2. We have an isomorphism

H'(Xpr, Q) ~ . X
XE (k3 )Y\ (kX)V
as Qqlks]-modules.

Proof. By Lemma 7.1, we take a basis

{ev e\ {1}, xemg i1 (b2)\ {1}

of H'(Xpr, Q) over Q; such that k x ig11(k2) acts on ey, by ¢ ® x. For
¢ €k and a € k, we have

BC O Qg0 /Bc_l = Qgatlg
in Autg,(Xpr,). Hence, ¢ € k5 acts on H!(Xpr, Q) by
e%x = c¢,X7€6¢C—(q+1) X

. X . . .
with some constant ¢y , ¢ € Q, . Therefore, we acquire an isomorphism

_ kX
HI(XDL7 QE) = @ Induz+1(k2)(X)
X€pqg+1(k2)V\{1}

as Qy[kJ']-modules. Hence, the required assertion follows. [
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ProposITION 7.3. We have isomorphisms
H(¥0T)~ @ GoNe om),
XE (k3 )\ (RX)V
H' (Y3, Q) =~ @ (XoA) ® (X o ki)
XE (k3 )Y\ (k*)Y
as (Ix x OF)-representations over Q.

Proof. This follows from Lemmas 5.1, 6.2 and 7.2.

i

Let Xas be the smooth compactification of the affine curve X' q over k

defined by 27 — z = w?. Let a € k act on Xag by

g (z,w) = (z+a,w).

By this action, we consider H'(Xas, Q,) as a Q[k]-module. On the other

hand, let b € pip(q—1)(k*°) act on Xag by
By : (2, w) = (b2, bw).

LEMMA 7.4. We assume that q is odd. Let G be the Galois group of the
Galois extension F over k((s)) defined by 29 — z =1/s%. Let G" be the upper
numbering ramification filtration of G. Then, G" =G if r <2, and G" =1

ifr>2.

Proof. We take a € F such that a? —a=1/s>. Then, sal?D/2 is a
uniformizer of F'. Let vp be the normalized valuation of F. For ¢ € G and

an integer i, the condition
vp (a(sa(qfl)ﬂ) _ Sa(qfl)/2) >
is equivalent to the condition
vp(o(a) —a) >i—3.

Hence, the claim follows.

i

For a character v € k¥ and x € k>, we write 1, € k¥ for the character

y— (zy). We set

V= & v

Ppekv\{1}
as Qg[k]-modules. Let {ey}yepv\q13 be the standard basis of V.

https://doi.org/10.1017/nmj.2016.36 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.36

STABLE MODELS OF LUBIN-TATE CURVES WITH LEVEL THREE 141

LEMMA 7.5. We assume that q is odd.

(1) Then, we have H' (Xas, Q) =V as Q,[k]-modules.
(2) For b€ pyq—1)(k™), the automorphism By of Xag induces the action

€y 7 Cop by, o

on H'(Xas, Q) =~V with some constant cyp, € @Z Furthermore, we
have cy 1 = —1.

Proof. We have H'(Xas, Q) ~ H} (X4, Q/), because the complement
X AS\Xf\S consists of one point. The curve ng is a finite etale Galois
covering of Al with a Galois group k by (z, w) — w. For ¢ € kY, let Lo 4 be
the smooth Qg-sheaf on A! defined by the covering X \s and 1. Then, we
have

HY(Xhs, Q)= €D HI(A', Loy)
veR\(1}

as Qq[k]-modules. By Lemma 7.4 and the Grothendieck-Ogg—Shafarevich
formula, we have

dim HY (A, Lo) =1
and HY(AY, £5,) ~1 as Qk]-modules for v € kV\{1}. Hence, the first

assertion follows.

The second assertion follows from the fact that Sy, L=y forack
and b € py(g—1)(k*). The assertion ¢y 1 = —1 follows from the Lefschetz
trace formula. [

We put
Up={deOf|ri(d) ek}

We take (o € fig(2—1)(k**)\ky . Let A € (k)Y be the character defined by
N2 e {£1} c Q)
for x € k*. If ¢ is odd, we put
Tow = Indzf (0o M) @ (97 0 Trg, i 0 Mo)),
o = (o AT @ (2 0 Ty i o (—G5 T70) ).
Ox,p = (Ax 0 k1) ® (P o Try, 1, © K2),
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o = (Ax 0 k1) @ (1o Try, 0 (& P k2)),
Py = Id2 0, .,
pX¢ Ind 59
for y € (k™) and ¢ € kY \{1}. We note that
dim p, y = dim plx’w =q+1

For different 1,1’ € k¥\{1}, we can check that 7 4 =7, if and only if
Y =~! and Px, ¢ = pyy if and only if ¢’ = p~!. Similar conditions hold
also for 77 , and p} ,. We define an equivalence relation ~ on EV\{1} by

P~ 1~ We put
Wy =Ty @ Pxys I =T @ Py
for xy € (k*)Y and ¢ € kV\{1}.
PRrROPOSITION 7.6. We assume that q is odd. Then, we have an isomor-

phism
b HXW= D D Hwell,

CEHy(g2_1) (k) XE(R")V pe(RV\{1}) ~
as representations of I x OF.

Proof.  The actions of I, and Up on @;cpx H 1(22, Qy) factor through
k* x k by Proposition 5.4 and Corollary 6.5. On the other hand, the action
of k* x k on Gagekal(XZ"@f) is induced from the action of {1} x k on

H'(X{, Q). Hence, we have
Qx> P D xev
(ekx XE(kX)Y pekV\{1}

as representations of k* x k by Lemma 7.5.1. Therefore, we have an

isomorphism
P HEHX. Q= P B oA @ oTryuod) @0,y
Cekx x€E(kX)V wekv\{l}

as representations of I, x Up by Proposition 5.4, Corollary 6.5 and Lemma
7.5.2. Inducing this representation from Up to OF, we obtain an isomor-

phism
D HE.Q= P D (or)e @ oTu,mor) @
Ceky X€E(kX)V pekV\{1}
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as representations of Iy, x OF. On the left-hand side of this isomorphism,
we have an action of I that commutes with the action of O}. Hence, we

have
D H' X))~ D B @

Ceky XE(RX)V e(kV\{1})/~

as representations of Ix x 0. By similar arguments, we have

O IXUW=>DB D nuerw

CEtgg2 1) (K*)\k3 X€(RX)Y pe(RVA{1}) A~

as representations of Ix x Of. Therefore, we have the isomorphism in the
assertion. [

Let E¥ and Q) be as in Section 6.2.2. Let Z C Q) be the subgroup consisting
of g(1,0,v) with v2 +~ =0, and let ¢ be the unique nontrivial character of
Z. By [BH, Lemma 22.2], there exists a unique irreducible two-dimensional
representation 7 of () such that

(74) T|Z = ¢@27 TI"T(g(O[, 0, O)) - -

for a € F;\{1}. Then, it is easily checked that the determinant character of
T is trivial. Note that every two-dimensional irreducible representation of ()
has a form 7 ® x with x € (F})Y, where we consider x as a character of @

by g(a, B,7) = x(a).
LEMMA 7.7. The Q-representation H'(E, Q) is isomorphic to T.

Proof. The Q-representation H'(E,Q,) satisfies (7.4) by Lemma 7.1.
Hence, the assertion follows. [

Let 7o be the representation of Wy induced from the (Q x Z)-
representation H'(E,Q,) by ©¢. Then, the restriction to Ix of 7 is
isomorphic to the representation induced from 7 by Lemma 7.7.

We say that a continuous two-dimensional irreducible representation V'
of Wi over Qy is primitive, if there is no pair of a quadratic extension K’
and a continuous character y of Wy such that V ~ Ind%ﬁ )

LEMMA 7.8. The representation T¢ is primitive of Artin conductor 3.
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Proof. We use the notations in the proof of Lemma 6.11. The element
1/(w'/363) is a uniformizer of K" (w'/3,0). For o € I, we can show that

31 Qo #1,

1
1 1 24 ;
— 1 .
v (U <w1/393> o w1/303> =9y 1z if (30=1,v, #0,
% if<370:1’7/0:07#o7£0,

using 0(0) =6, (mod 2/3). The claim on the Artin conductor follows from
this.

The unique index-2 subgroup of ) X Z is QQ % 2Z, because ) has no index-
2 subgroup. Hence, if 7¢/ is not primitive, it is induced from a character of
Wk, . However, this is impossible, because the restriction of 7o to Wy, is
irreducible. [

We define a character \¢ : W — k* by A¢(0) = &,. We put

e N = TC ® (X o )\5)7

O = (x o Hl) ® (¢o Tl"kQ/JFQ(C/_Q/w))’
pgg Ind QC/ X0

Her oy = T x @ per

for ¢ € k* and x € (k*)V. In the following, we consider 7¢s , as a represen-
tation of Ig.

PROPOSITION 7.9. We assume that q is even. Let ' € k™. Then, we
have an isomorphism

D H X Q= D Tox
cek XE(kX)V

as representations of I x OF.

Proof. The actions of Ix and Up on @ cjx H 1(22’0, Qy) factor through
Q@ x k* by Propositions 5.4 and 6.12. On the other hand, the action of
Q x k* on GB&WHI(XE,@@) is induced from the action of ) on

H 1(Xi7c,, Q). Hence, we have an isomorphism

P X Q= P rox

CekX XE(kX)V
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as representations of @@ x k*. Therefore, we have an isomorphism

@ HI(XZC” @5) ~ @ T¢ x X 6(’»(

Cekx x€(k*)Y

as representations of Ix X Up by Propositions 5.4 and 6.12. Inducing
this representation from Up to OF), we obtain the isomorphism in the
assertion. []

7.2 Genus calculation
LEMMA 7.10. We have dim H} (X1 (p?)c, Qp) = 2¢% — 2¢ + 1.

Proof. It suffices to show that
dim H. (LT1(p*)/@%)c, Q) = 4¢* — 4q + 2,
because we have
dim H} ((LT1(p*) /=) c, Q) = 2 dim HY (X1 (p*)c, Q).

For an irreducible smooth representation 7w of GLa(K), we write ¢(m) for
the conductor of . By Proposition 2.1, we have

Hcl((LTl(pg)/wZ)c, @5) ~ @(ﬂ-Kl(pg))@Q dim LJ(7) D @(St ® X)Kl(ps)’

™ X

where 7 runs through irreducible cuspidal representations of GLo(K') such
that ¢(m) <3 and wy(w) =1, and x runs through characters of K* such
that (St ® x) <3 and yx(w?) =1. We have the following list of discrete
series representations m of GLa(K) such that ¢(7) <3 and wy(w) = 1.

(1) n~St®x for an unramified character x:K* —@Q, such that
x(w@?)=1. Then, ¢(n) =1 and dim LJ(7)=1. There are two such
representations.

(2) m~St®x for a tamely ramified character x : K* — Q, that is not
unramified and satisfies x(w?) = 1. Then, ¢(7) = 2 and dim LJ(7) = 1.
There are 2(q — 2) such representations.

(3) m~m,, in the notation of [BH, 19.1], for a character x : K — @, of
level zero such that x does not factor through Nrg, /x and x(w) =1.
Then, ¢(r) =2 and dim LJ(7) = 2. There are ¢(q — 1)/2 such represen-
tations.
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(4) The cuspidal representations m of GLg(K) such that ¢(r)=3 and
wr(w) =1. Then, dim LJ(7) = ¢+ 1 by [Tu, Theorem 3.6]. There are
2(q — 1)? such representations by [Tu, Theorem 3.9].

We note that dim 7%1(") = 4 — ¢(r) if 7 is a discrete series representation
of GL2(K) such that ¢(m) < 3. Then, we obtain the claim by taking a
summation according to the above list. [

For an affinoid rigid space X, a Zariski subaffinoid of X is the inverse
image of a nonempty open subscheme of X under the reduction map X — X.

PRrOPOSITION 7.11. Let W be a wide open rigid curve over a finite
extension of K™ with a stable covering {(U;, UM Yier. Let X be a subaffinoid
space of W such that X is a connected smooth curve with a positive genus.
Then, there exists i € I such that X is a Zariski subaffinoid of U}.

Proof. Assume that X NU is contained in a finite union of residue
classes of X for any ¢ € I. Then, a Zariski subaffinoid of X appears in
an open annulus. This is a contradiction, because X has a positive genus.
Hence, there exists ¢ € I such that X N U} is not contained in any finite
union of residue class of X. We fix such ¢’ in the following.

Then, some open irreducible subscheme of the reduction of X N U} does
not go to one point in X under the natural map X N Ui — X. Let Y be
the inverse image of such an open subscheme under the reduction map
X NUZ— X NU}. Then, we see that Y is a Zariski subaffinoid of X by [CM,
Lemma 2.24(i)]. Each connected component of X \ Y is an open disk, and
is included in U}} or U} for i # i’ or an open annulus outside the underlying
affinoids. This can be checked by applying [CM, Corollary 2.39] to every
closed disk in a connected component of X \ Y. Hence, X N U}} is a Zariski
subaffinoid of X. If X N U} # X, then U} is connected to an open disk in
U} for i # ¢ or in an open annulus outside the underlying affinoids. This is
a contradiction. Therefore, we have X C U;'. Then, we obtain the claim by
[CM, Lemma 2.24(i)]. [

LEMMA 7.12. Let W be a wide open rigid curve over a finite extension
of K™ with a stable covering. Let X be a subaffinoid space of W such that
X is a connected smooth curve with genus zero. Then, there is a basic wide
open subspace of W such that its underlying affinoid is X .

Proof. We note that we have the claim if X appears in an open
subannulus of W. Let {(U;, U") }icr be the stable covering of W.
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First, we consider the case where X N U;" is contained in a finite union of
residue classes of X for any ¢ € I. Then, a Zariski subaffinoid of X appears
in an open annulus. Further, X itself appears in the open annulus, because
X is connected. Hence, we have the claim in this case.

Therefore, we may assume that there exists ¢ € I such that X N U} is
not contained in any finite union of residue class of X. We fix such /. By
the same argument as in the proof of Proposition 7.11, we have X C U}
If the image of the induced map Y—)Uiu is one point, we have the claim
because X appears in an open disk. Otherwise, X is a Zariski subaffinoid
of U}, and we have the claim. [

We consider the natural level-lowering map
s Xa(p?) = Xa (p?); (u, X3) = (u, X2).

LEMMA 7.13. The connected components of Wi o, Wiz, Wy and
Wy 1rUW5 10 UWg 1/ are not open balls.

Proof. Let W{, be a subannulus of Wy defined by v(u) < 1/(¢(q + 1)).
Then, we have 7' (Wx ) = Wa 1, 771 (Woo) = Wy U W5 10 U We 1 and
TFJ:I(Wé)) =W, o UW, 3. Hence, we have the claim by Proposition 3.1 and
[Co, Lemma 1.4]. [

The smooth projective curves ?5’2 and ?;’1 have defining equations
XY — XY? = 79! determined by the equation in Propositions 4.2 and 4.3.
The infinity points of Y12 in P? consist of P = (a,1,0) for a €k and
PE =(1,0,0). The infinity points of Y1 consist of P, = (a, 1,0) for a € k
and P = (1,0,0).

For a wide open space W, let e(W) be the number of ends of W, and let
g(W) be the genus of W (cf. [CM, p. 369 and p. 380]). For a proper smooth
curve C over k*, we write g(C) for the genus of C.

THEOREM 7.14. The covering C1(p3) is a semistable covering of X1 (p3)
over some finite extension.

Proof. We consider the stable covering of X;(p3)c by Proposition 4.11.
Then, Y§,2 and Y;l appear in the stable reduction of X;(p3)c as irreducible
components by Proposition 7.11. The point P0+ is the unique infinity point
of Y12 whose tube is contained in Wfl,, because U(Xg)j 1/(¢3(¢*> — 1))
in Wf‘l,. Similarly, B, is the unique infinity point of Y5 ; whose tube
is contained in W, ,,. Hence, we have e(X;(p?)c) >2¢ by Lemma 7.13.
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Therefore, we have g(X1(p?)c) < ¢® — 2¢ + 1 by Lemma 7.10. On the other
hand, we have

Z g(fz) if ¢ is odd,
CENQ(QQ_l)(kaC)

Z g(XZC/) if ¢ is even,
ceky, ¢'ek

9(X1(p%)c) = g(?ig) + 9(?;,1) +

where the summation on the right-hand side is ¢® —2¢ + 1 by Proposi-
tions 7.3, 7.6 and 7.9. Then, the affinoids Y12, Yo 1, X, for ¢ € ,ug(qz,l)(k:ac)
and X¢ o for (€ ks and ¢ € k* are underlying affinoids of basic wide
open spaces in the stable covering by Proposition 7.11 and Lemma 7.13.
Therefore, by the above genus inequalities, we see that (X1 (p3)c) = 2¢, and
the connected components of Wy o/, W1 3/, Wy 17 and Wy 1/ U W5 1/ U W 1
are open annuli.

The connected components of X (p3)\ Z(1)71 are two wide open spaces,
because each connected component is connected to Z(1),1 at an open suban-
nulus by Lemma 7.12. Then, we see that these two wide open spaces are
basic wide open spaces with underlying affinoids Y 2 and Y5 ;1 by the above
genus inequalities. Therefore, we have the claim by Propositions 4.7, 4.9
and 4.10. [

7.3 Structure of cohomology
In this subsection, we study the action of Ix x O} on f-adic cohomology
of X1(p3). We put

(Wi x D) ={(0, ") € Wk x D*}.

Although it is possible to study the action of (Wx x D*)? using the result
of Section 6, here we study only the inertia action for simplicity. The result
in this subsection is essentially used in [IT3].

Let X1(p®) be the semistable formal scheme constructed from Ci(p?)
by [IT2, Theorem 3.5]. The semistable reduction of Aj(p?) means the
underlying reduced scheme of X (p?), which is denoted by Xi(p3)gac.

LEMMA 7.15. The smooth projective curves ?;2 and ?(2:71 intersect with
2(1:71 at Py and Py respectively in the stable reduction X (p®)gac.

Proof. We see this from the proof of Theorem 7.14. [
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Let I' be the graph defined by the following.

e The set of the vertexes of T' consists of Py, P, P, and P, for a €
PL(R) \ {0).

e The set of the edges of T' consists of PyP,f, PoP,, PP, and Py P, for
a € PL(k)\ {0}.

We note that P and P, for a € P'(k) \ {0} are points of Y} , and Y5,
that are not on Zil by Lemma 7.15. Let H'(I',Q;) be the cohomology
group of I' with coefficients in Q, (cf. [IT2, Section 2]). The group I x OF
acts on P} and P, for a € P1(k)\ {0} via the action on ?12 and ?371. Let
Ik x O act on Py and P trivially. By this action, we consider H'(T, Q)
as a Q[Ix x OF]-module.

THEOREM 7.16. We have an exact sequence
0— H'(T, Q) — H(X1(p*)c, Q) — H' (X1 (p?) e, Q)" (—1) — 0

as representations of (W x D*)°. Further, as (Ix x OJ))-representations,
HY(X1(p3)gac, Qp) is isomorphic to

@ @ IL, 4 @ H;(’w if q is odd,

XE(RX)V pe(kV\{1})
D e -
XE(ES)V\(RX)V @ @ ey if q is even,
¢'ek* xe(k*)v

where we put My = (Yo \) ® (Yo k1 ® X0 k1), and HY(T,Qy) is isomor-

phic to
1@ @ Xo)\‘ﬁ'1 (Xoﬁfrl))@ .
xe(k*)Y

Proof. The existence of the exact sequence follows from [IT2, Theorem
5.3] and Lemma 7.15 using Poincaré duality (cf. [Farl, Proposition 5.9.2]).
We know the structure of H' (X (p3)gac, Q) by Propositions 7.3, 7.6 and 7.9.

We study the structure of H*(T', Q;). By Lemma 5.1 and Lemma 6.2, the
action of Ix x OF on H(T, Q) factors through k*. We can check that

as representations of k*. Hence, the claim follows from Lemmas 5.1 and
6.2. i
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