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Abstract. In this paper we study the extension problem, the averaging problem, and the generalized

Erdős–Falconer distance problem associated with arbitrary homogeneous varieties in three dimen-

sional vector spaces over finite fields. In the case when the varieties do not contain any plane passing

through the origin, we obtain the best possible results on the aforementioned three problems. In par-

ticular, our result on the extension problem modestly generalizes the result by Mockenhaupt and Tao

who studied the particular conical extension problem. In addition, investigating the Fourier decay on

homogeneous varieties enables us to give complete mapping properties of averaging operators. More-

over, we improve the size condition on a set such that the cardinality of its distance set is nontrivial.

1 Introduction

Both the extension problem and the averaging problem ask us to determine the

boundedness of certain operators. In the Euclidean space, these problems have been

well studied, but have not yet been solved in any higher dimensions or general set-

tings. On the other hand, the Falconer distance problem is considered to be a con-

tinuous analogue of the Erdős distance problem, which roughly asks how large a

distance set can be. The recent breakthrough work by Guth and Katz [8] has con-

firmed the Erdős distance conjecture in dimension two, which says that the distance

set is essentially as large as the set. However, the Falconer distance problem remains

open in any dimension, and the current best results were obtained by Erdog̃an [5]

who applied Tao’s bilinear restriction theorem [27], one of the most beautiful the-

orems in harmonic analysis. Motivated by these works, these problems have been

recently studied in the finite field setting. In part, finite fields not only serve as a typ-

ical model for the Euclidean space but also have powerful structures that enable us

to relate the above problems to other well-studied problems in arithmetic combina-

torics, algebraic geometry, and analytic number theory. Moreover, finite fields often

yield better results compared to the same problems in the Euclidean setting. In this

paper, we focus on studying the following well-known Euclidean problems related to

homogeneous varieties in F
3
q: the extension problem, the averaging problem, and the

Erdős–Falconer distance problem.
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Before we introduce our main results, let us briefly review these problems in the

Euclidean setting. Let H be a set in R
d and dσ a measure on the set H. In the Eu-

clidean case, the extension problem is to determine the optimal range of exponents

1 ≤ p, r ≤ ∞ such that the following extension estimate holds:

‖( f dσ)∨‖Lr(Rd) ≤ C(p, r, d)‖ f ‖Lp(H,dσ) for all f ∈ Lp(H, dσ),

where ( f dσ)∨ denotes the inverse Fourier transform of the measure f dσ. This prob-

lem was first addressed in 1967 by Stein [22] and it has been extensively studied in the

last few decades. We refer readers to [28] for a comprehensive survey of this problem.

The averaging problem also asks us to find the exponents 1 ≤ p, r ≤ ∞ such that

the following inequality holds:

‖ f ∗ dσ‖Lr(Rd) ≤ C(p, r, d)‖ f ‖Lp(Rd) for all f ∈ Lp(R
d),

where dσ is a measure supported on a surface H in R
d and the convolution f ∗ dσ is

defined by the relation f ∗dσ(x) =
∫

H
f (x− y) dσ(y) for x ∈ R

d. For classical results

on this problem, see [17, 21, 23]. In particular, Iosevich and Sawyer [12] obtained

the sharp mapping properties of averaging operators on a graph of homogeneous

function of degree ≥ 2.
The Erdős distance problem and the Falconer distance problem attempt to mea-

sure sizes of distance sets determined by discrete sets and continuous sets respectively.

Given E,G ⊂ R
d, d ≥ 2, the distance set ∆(E,G) is defined by

∆(E,G) = {|x − y| : x ∈ E, y ∈ G},

where | · | denotes the usual Euclidean norm. Given finite sets E,G, the Erdős distance

problem is to determine the smallest possible cardinality of the distance set ∆(E,G)

in terms of sizes of sets E,G. In the case when E = G, Erdős [6] first studied this

problem and conjectured that for every finite set E ⊂ R
d,

|∆(E, E)| ' |E|
2
d ,

where | · | denotes the cardinality of the finite set (see [24–26] for the best results in

dimensions d ≥ 3). As a continuous analog of the Erdős distance problem, Falconer

[7] conjectured that if the Hausdorff dimension of a Borel subset E in R
d, d ≥ 2,

is greater than d/2, then the Lebesgue measure of the distance set ∆(E, E) must be

positive. This problem is known as the Falconer distance problem and is still open

in all dimensions. The best known result on this problem is due to Erdog̃an [5]

who extended the work by Wolff [30] showing that any Borel set E with the Haus-

dorff dimension greater than d/2 + 1/3 yields the distance set ∆(E, E) with a positive

Lebesgue measure.

The purpose of this paper is to obtain the sharp results on the extension problem,

the averaging problem, and the Erdős Falconer distance problem associated with ar-

bitrary homogeneous varieties in three dimensional vector spaces over finite fields.

In the finite fields setting, we will prove that all of these problems can be completely
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understood by observing that an extremely good Fourier decay estimate is valid on

any non-degenerate homogeneous variety in F
3
q, which may be a specific property in

the finite field setting. This fact is interesting because it could not be true in higher

dimensions d ≥ 4. For instance, if d ≥ 4 is even, then there exists a non-degenerate

homogeneous variety containing a large d/2-dimensional subspace. As a result, the

Fourier decay estimate may not be enough to obtain the sharp averaging estimates,

and one would need a new approach (e.g., see [14]). On the other hand, if d ≥ 5

is odd, then a homogeneous variety can not contain any d/2-dimensional subspace,

because d/2 is not an integer. In this case, a relatively small (d − 1)/2-dimensional

subspace could only be contained in the homogeneous variety, and the Fourier decay

estimate could be so good that one could obtain the complete mapping properties

of averaging operators. However, computing the Fourier decay estimate on homo-

geneous varieties in higher odd dimensions (d ≥ 5, d is odd) is extremely difficult.

Moreover, even if one succeeds in obtaining good Fourier decay estimates and a sharp

L2 − Lr extension estimate, it is known from [14] that the result does not cover the

necessary conditions for the problem in higher odd dimensions d ≥ 5. Therefore,

it is very interesting to remark that one can settle down both the extension problem

and the averaging problem in three dimensions simply by using the Fourier decay

estimate.

2 Notation, Definitions, and Key Lemmas

Let Fq be a finite field with q elements. We denote by F
d
q, d ≥ 2, the d-dimensional

vector space over the finite field Fq. Given a set E ⊂ F
d
q, we denote by |E| the cardi-

nality of the set E. For nonnegative real numbers A,B, we write A . B if A ≤ CB for

some C > 0 independent of the size of the underlying finite field Fq. In other words,

the constant C > 0 is independent of the parameter q. We also use A ∼ B to indi-

cate A . B . A. We say that a polynomial P(x) ∈ Fq[x1, . . . , xd] is a homogeneous

polynomial of degree k if the polynomial’s monomials with nonzero coefficients all

have the same total degree k. For example, P(x1, x2, x3) = x5
1 +x3

2x2
3 is a homogeneous

polynomial of degree five. Given a homogeneous polynomial P(x) ∈ Fq[x1, . . . , xd],
we define a homogeneous variety H in F

d
q by the set

H = {x ∈ F
d
q : P(x) = 0}.

For example, the cone in three dimension, which was introduced in [19], is a homo-

geneous variety generated by the homogeneous polynomial P(x) = x2
1−x2x3.We now

review the Fourier transform of a function defined on F
d
q. Denote by χ the nontrivial

additive character of Fq. For example, if q is prime, then we may take χ(t) = e2πit/q

where we identify t ∈ Fq with a usual integer. We now endow the space F
d
q with a nor-

malized counting measure dx. Thus, given a complex valued function f : F
d
q → C,

the Fourier transform of f is defined by

f̂ (m) =

∫

Fd
q

χ(−m · x) f (x) dx =
1

qd

∑

x∈Fd
q

χ(−m · x) f (x),
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where m is any element in the dual space of (F
d
q, dx). Recall that the Fourier transform

f̂ is actually defined on the dual space of (F
d
q, dx). We shall endow the dual space of

(F
d
q, dx) with a counting measure dm.We write (F

d
q, dm) for the dual space of (F

d
q, dx).

Then, we also see that the Fourier inversion theorem says that for every x ∈ (F
d
q, dx),

(2.1) f (x) =

∫

Fd
q

χ(x · m) f̂ (m) dm =

∑

m∈Fd
q

χ(x · m) f̂ (m).

We also recall the Plancherel theorem: ‖ f̂ ‖L2(Fd
q ,dm) = ‖ f ‖L2(Fd

q ,dx), which is same as

∑

m∈Fd
q

| f̂ (m)|2 =
1

qd

∑

x∈Fd
q

| f (x)|2.

For instance, if f is a characteristic function on the subset E of F
d
q, then the Plancherel

theorem yields

(2.2)
∑

m∈Fd
q

|Ê(m)|2 =
|E|

qd
,

here, and throughout the paper, we identify the set E ⊂ F
d
q with the characteristic

function on the set E, and we denote by |E| the cardinality of the set E ⊂ F
d
q.

Remark 2.1 We use the notation F
d
q for both the space and its dual space for a sim-

ple notation. However, this may confuse readers, because the measures of the space

and its dual space are different. To avoid this confusion, we always use the variable

“x” as an element of the space (F
d
q, dx) with the normalized counting measure dx.

For example, we write x ∈ F
d
q for x ∈ (F

d
q, dx). On the other hand, we always use the

variable “m” as an element of the dual space (F
d
q, dm) with a counting measure dm.

Thus, m ∈ F
d
q means that m ∈ (F

d
q, dm).

2.1 Fourier Decay Estimate on Homogeneous Varieties

We shall estimate the Fourier transform of characteristic functions on homogeneous

varieties in three dimensional vector space over the finite field Fq. First, let us review

the well-known Schwartz–Zippel lemma, which gives us the information about the

cardinality of any variety in F
d
q. For a nice proof of the Schwartz–Zippel lemma below,

see [18, Theorem 6.13].

Lemma 2.2 (Schwartz–Zippel) Let P(x) ∈ Fq[x1, . . . , xd] be a nonzero polynomial

of degree k. Then we have

|{x ∈ F
d
q : P(x) = 0}| ≤ kqd−1.

Using the Schwartz–Zippel lemma, we obtain the following lemma.
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Lemma 2.3 Given a nonzero homogeneous polynomial P(x) ∈ Fq[x1, x2, x3], let H

be the homogeneous variety given by

H = {x ∈ F
3
q : P(x) = 0}.

If the homogeneous variety H does not contain any plane passing through the origin, then

for every m ∈ F
3
q\{(0, 0, 0)}, we have |H∩Πm| . q, whereΠm = {x ∈ F

3
q : m·x = 0},

which is a hyperplane passing through the origin.

Proof First, let us observe the set H ∩ Πm. Fix m 6= (0, 0, 0). Without loss of gener-

ality, we may assume that m = (m1,m2,−1). Then we see that

Πm = {x ∈ F
3
q : m1x1 + m2x2 − x3 = 0}.

and

H = {x ∈ F
3
q : P(x) = 0}.

Thus, we see that

H ∩Πm =
{

(x1, x2,m1x1 + m2x2) ∈ F
3
q : P(x1, x2,m1x1 + m2x2) = 0

}
.

Put R(x1, x2) = P(x1, x2,m1x1 + m2x2). Then it is clear that

|H ∩Πm| =
∣∣{ (x1, x2) ∈ F

2
q : R(x1, x2) = 0

}∣∣ .

If R(x1, x2) is a nonzero polynomial, then the Schwartz–Zippel lemma tells us that

|H∩Πm| . q, and we complete the proof. Now assume R(x1, x2) is a zero polynomial.

Then it follows that R(x1, x2) = P(x1, x2,m1x1 + m2x2) = 0 for all x1, x2 ∈ Fq. This

implies that the variety H = {x ∈ F
3
q : P(x) = 0} contains a plane m1x1 + m2x2 −

x3 = 0, which contradicts our hypothesis that H does not contain any plane passing

through the origin. Thus, the proof is complete.

In order to compute the Fourier transform on homogeneous varieties, we shall

need the following lemma. We remark that the proof of Lemma 2.4 adopts the in-

variant property of homogeneous varieties, which was already observed in [4]. For

the readers’ convenience, we state the lemma in a slightly different way and give a

proof here.

Lemma 2.4 Let P(x) ∈ Fq[x1, . . . , xd] be a nonzero homogeneous polynomial. Define

a homogeneous variety H ⊂ F
d
q by

H = {x ∈ F
d
q : P(x) = 0}.

For each m ∈ F
d
q, we have

Ĥ(m) =
1

qd+1 − qd

(
q|H ∩Πm| − |H|

)
,

where Πm = {x ∈ F
d
q : m · x = 0}.
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Proof For each m ∈ F
d
q, we have

Ĥ(m) = q−d
∑

x∈H

χ(−m · x).

Since P(x) is a homogeneous polynomial, a change of the variable yields that for each

t 6= 0, Ĥ(m) = Ĥ(tm). It therefore follows that

Ĥ(m) = q−d(q − 1)−1
∑

x∈H

∑

t∈Fq\{0}

χ(−tm · x)

= q−d(q − 1)−1
∑

x∈H

∑

t∈Fq

χ(−tm · x) − q−d(q − 1)−1|H|.

By the orthogonality relation of nontrivial additive character χ, we complete the

proof.

From Lemmas 2.3 and 2.4, the Fourier transform on homogeneous varieties in

dimension three can be estimated. The following corollary will have a crucial role in

proving our results.

Corollary 2.5 Suppose the homogeneous variety H = {x ∈ F
3
q : P(x) = 0} does

not contain any plane passing through the origin in F
3
q, where P(x) is a homogeneous

polynomial in Fq[x1, x2, x3]. Then, for any m 6= (0, 0, 0), we have

(2.3) |Ĥ(m)| =

∣∣∣∣
1

q3

∑

x∈H

χ(−m · x)

∣∣∣∣ . q−2.

Proof Since the homogeneous variety H does not contain any plane passing through

the origin, it is clear that the polynomial P(x) ∈ Fq[x1, x2, x3] is a nonzero polyno-

mial. Thus, the Schwartz–Zippel lemma says that |H| . q2, and Corollary 2.5 follows

immediately from Lemmas 2.4 and 2.3.

Remark 2.6 Let dσ be the normalized surface measure on the homogeneous variety

H ⊂ F
3
q given in Corollary 2.5. Then we notice that if |H| ∼ q2, then the conclusion

(2.3) in Corollary 2.5 implies that for every m ∈ F
3
q \ {(0, 0, 0)},

(2.4) |(dσ)∨(m)| =

∣∣∣∣
1

|H|

∑

x∈H

χ(m · x)

∣∣∣∣ . q−1.

3 Extension Problems for Finite Fields

In the finite field setting, Mockenhaupt and Tao [19] first set up and studied the ex-

tension problem for various algebraic varieties. Here, we review the definition of

the extension problem for finite fields and introduce our main result on the prob-

lem for homogeneous varieties in three dimension. For a fixed polynomial P(x) ∈
Fq[x1, . . . , xd], consider an algebraic variety

V = {x ∈ F
d
q : P(x) = 0}.
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Recall from Remark 2.1 that the variety V is considered to be a subset of the space

(F
d
q, dx) with the normalized counting measure dx. Therefore, if f : (F

d
q, dx) → C is

a complex valued function, then for 1 ≤ p < ∞ the Lp−norm of f takes the value

‖ f ‖Lp(Fd
q ,dx) =

(
1

qd

∑

x∈Fd
q

| f (x)|p

) 1
p

.

As usual, ‖ f ‖L∞(Fd
q ,dx) is the maximum value of | f |. We now endow the variety V

with the normalized surface measure dσ such that the total mass of V is one. In

other words, the surface measure dσ supported on V can be defined by the relation

(3.1) dσ(x) =
qd

|V |
V (x) dx.

Recall that we identify the set V ⊂ F
d
q with the characteristic function χV on the set

V . Thus, we see that

‖ f ‖Lp(V,dσ) =

(∫

V

| f (x)|pdσ(x)

) 1
p

=

(
1

|V |

∑

x∈V

| f (x)|p

) 1
p

,

and the inverse Fourier transform of measure f dσ is given by

( f dσ)∨(m) =

∫

V

χ(m · x) f (x) dσ(x) =
1

|V |

∑

x∈V

χ(m · x) f (x),

where we recall that m is an element of the dual space (F
d
q, dm) with the counting

measure dm. In addition, note that for 1 ≤ p, r < ∞,

‖( f dσ)∨‖Lr(Fd
q ,dm) =

(∫

Fd
q

|( f dσ)∨(m)|rdm

) 1
r

=

( ∑

m∈Fd
q

|( f dσ)∨(m)|r
) 1

r

and ‖( f dσ)∨‖L∞(Fd
q ,dm) takes the maximum value of |( f dσ)∨|.

3.1 Definition of the Extension Theorem

Let 1 ≤ p, r ≤ ∞. We denote by R∗(p → r) to be the smallest constant such that for

all functions f on V,

‖( f dσ)∨‖Lr(Fd
q ,dm) ≤ R∗(p → r)‖ f ‖Lp(V,dσ).

By duality, we note that the quantity R∗(p → r) is also the best constant such that

the following restriction estimate holds: for every function g on (F
d
q, dm),

(3.2) ‖ĝ‖Lp ′ (V,dσ) ≤ R∗(p → r)‖g‖Lr ′ (Fd
q ,dm),
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where p ′ and r ′ denote the dual exponents of p and r respectively, which means that

1/p + 1/p ′
= 1 and 1/r + 1/r ′ = 1.

Observe that R∗(p → r) is always a finite number but may depend on the param-

eter q, the size of the underlying finite field Fq. In the finite field setting, the extension

problem is to determine the exponents 1 ≤ p, r ≤ ∞ such that

R∗(p → r) ≤ C,

where the constant C > 0 is independent of q. A direct calculation yields the trivial

estimate R∗(1 → ∞) . 1. Using Hölder’s inequality and the nesting properties of

Lp-norms, we also see that

R∗(p1 → r) ≤ R∗(p2 → r) for 1 ≤ p2 ≤ p1 ≤ ∞

and

R∗(p → r1) ≤ R∗(p → r2) for 1 ≤ r2 ≤ r1 ≤ ∞.

In order to obtain the strong result on the restriction problem, if 1 ≤ p(or r) ≤
∞, then we only need to find the smallest number 1 ≤ r (or p) ≤ ∞ such that

R∗(p → r) . 1. In addition, using the interpolation theorem, it therefore suffices to

find the critical exponents 1 ≤ p, r ≤ ∞.

3.2 Necessary Conditions for R∗(p → r) . 1

In [19], Mockenhaupt and Tao showed that if |V | ∼ qd−1 and the variety V ⊂ F
d
q

contains an α-dimensional affine subspace Π(|Π| = qα), then the necessary condi-

tions for R∗(p → r) . 1 are given by

(3.3) r ≥
2d

d − 1
and r ≥

p(d − α)

(p − 1)(d − 1 − α)
.

Now, let us consider the homogeneous variety H = {x ∈ F
3
q : P(x) = 0} in three

dimension where P(x) ∈ Fq[x1, x2, x3] is a homogeneous polynomial. In addition,

assume that |H| ∼ q2. It is clear that the homogeneous variety H contains a line,

because if P(x0) = 0 for some x0 6= (0, 0, 0), then P(tx0) = 0 for all t ∈ Fq. From

(3.3), we therefore see that the necessary conditions for R∗(p → r) . 1 take the

following:

r ≥ 3 and r ≥
2p

p − 1
.

In particular, if H = {x ∈ F
3
q : x2

1 − x2x3 = 0} which is a cone in three dimension,

then the above necessary conditions can be improved by the conditions

r ≥ 4 and r ≥
2p

p − 1
.

This was proved by Mockenhaupt and Tao (see [19, Proposition 7.1]). Moreover,

they proved that R∗(2 → 4) . 1 which implies that the necessary conditions are in
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fact sufficient conditions. Thus, the L2 − L4 extension estimate would imply the best

possible results on the extension problem related to arbitrary homogeneous varieties

in three dimension. It is not known if there exists a specific homogeneous variety

in F
3
q that yields the better extension estimates than the conical extension estimates.

However, it is easy to see that there exists a homogeneous variety on which the best

possible extension estimates are worse than the conical extension estimates. For ex-

ample, if we take a homogeneous variety as H = {x ∈ F
3
q : x1 + x2 + x3 = 0}, then H

contains a plane, a 2-dimensional subspace, and so the necessary conditions in (3.3)

say that only trivial Lp−L∞, 1 ≤ p ≤ ∞, estimates hold. Based on this example, one

may ask what kind of homogeneous varieties in F
3
q yield the same extension estimates

as the conical extension estimates? In the following section, we give the answer.

4 Main Result on the Extension Problem

We prove that if the homogeneous variety in F
3
q does not contain any plane passing

through the origin, then the extension estimates are as good as the conical extension

estimates. More precisely, we have the following main result.

Theorem 4.1 For each homogeneous polynomial P(x) ∈ Fq[x1, x2, x3], let

H = {x ∈ F
3
q : P(x) = 0}.

Suppose that |H| ∼ q2 and the homogeneous variety H does not contain any plane

passing through the origin. Then we have the following extension estimate on H:

R∗(2 → 4) . 1.

We shall give two different proofs of Theorem 4.1. One is based on a geometric

approach, and the other is given in view of the Fourier decay estimate on the homo-

geneous variety in dimension three.

4.1 The Proof of Theorem 4.1 Based on a Geometric Approach

In order to show that R∗(2 → 4) . 1, we shall use the following well-known lemma

for reduction, which is basically to estimating the incidences between the variety and

its nontrivial translations. For a complete proof of the following lemma, see both

[19, Lemma 5.1] and [10, Lemma 13].

Lemma 4.2 Let V be any algebraic variety in F
d
q, d ≥ 2, with |V | ∼ qd−1. Suppose

that for every ξ ∈ F
d
q \ {(0, . . . , 0)},

∑

(x,y)∈V×V
x+y=ξ

1 . qd−2.

Then we have R∗(2 → 4) . 1.
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Using Lemma 4.2, the following lemma shall give the complete proof of Theorem

4.1.

Lemma 4.3 Let P(x) ∈ Fq[x1, x2, x3] be a homogeneous polynomial. Suppose that

the homogeneous variety H = {x ∈ F
3
q : P(x) = 0} does not contain any plane passing

through the origin. Then we have that for every ξ ∈ F
3
q \ {(0, 0, 0)},

∣∣{ (x, y) ∈ H × H : x + y = ξ
}∣∣ . q.

Proof The first observation is that since H is a homogeneous variety, H is exactly

the union of lines passing through the origin. To see this, just note that if P(x) = 0

for some x 6= (0, 0, 0), then P(tx) = 0 for all t ∈ Fq. Therefore, we can write

(4.1) H =

N⋃
j=1

L j ,

where N is a fixed positive integer, L j denotes a line passing through the origin, and

Li ∩ L j = {(0, 0, 0)} for i 6= j. From the Schwartz–Zippel lemma, it is clear that

|H| . q2. Thus, the number of lines, denoted by N, is . q, because each line contains

q elements. The second important observation is that if H does not contain any plane

passing through the origin, then for every m ∈ F
3
q \ {(0, 0, 0)},

(4.2) |H ∩Πm| . q,

where Πm = {x ∈ F
3
q : m · x = 0}. This observation follows from Lemma 2.3. We

are ready to prove our lemma. For each ξ 6= (0, 0, 0), it suffices to prove that the

number of common solutions of P(x) = 0 and P(ξ − x) = 0 is . q. Since P(x) is

a homogeneous polynomial, we see that P(ξ − x) = 0 if and only if P(x − ξ) = 0.
Therefore, we aim to show that for every ξ 6= (0, 0, 0),

|H ∩ (H + ξ)| . q,

where H + ξ = {(x + ξ) ∈ F
3
q : x ∈ H}. Now, fix ξ 6= (0, 0, 0). From (4.1), we see

that

|H ∩ (H + ξ)| ≤

N∑

j=1

|H ∩ (L j + ξ)|.

Notice that if ξ ∈ L j , then L j + ξ = L j and so |H ∩ (L j + ξ)| = q. However, there is

at most one line L j such that ξ ∈ L j . Thus, it is enough to show that if ξ /∈ L j , then

|H ∩ (L j + ξ)| . 1, because N . q. However, this will be clear from (4.2). To see this,

first notice that if (0, 0, 0) 6= ξ /∈ L j , then the line L j + ξ does not pass through the

origin, because the line L j passes through the origin. Thus, the line L j + ξ is different

from all lines Lk in H =
⋃N

k=1 Lk, so there is at most one intersection point of the line

L j +ξ and each line in H. Next, consider the unique plane Πm which contains the line

L j + ξ. Then (4.2) implies that at most few lines in H lie in the plane Πm containing

the line L j + ξ. Thus, we conclude that |H ∩ (L j + ξ)| . 1 for ξ /∈ L j , and the proof

is complete.
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4.2 Remark on the Fourier Decay Estimate on Homogeneous Varieties

In [19], Mockenhaupt and Tao showed that if dσ is the normalized surface measure

on the paraboloid V = {x ∈ F
d
q : xd = x2

1 + · · ·+x2
d−1}, d ≥ 2, then the sharp Fourier

decay estimate of dσ is given by

(4.3) |(dσ)∨(m)| . q−
d−1

2 for m ∈ F
d
q \ {(0, . . . , 0)}.

Using the Tomas–Stein type argument for finite fields with the estimate, they ob-

served that

R∗
(

2 →
2d + 2

d − 1

)
. 1,

where the exponents p = 2, r = (2d +2)/(d−1) are called the standard Tomas–Stein

exponents. In particular, if d = 3, then R∗(2 → 4) . 1, which is exactly same as

the conclusion of Theorem 4.1. Since (2.4) in Remark 2.6 says that the surface mea-

sure on our homogeneous variety in dimension three yields the good Fourier decay

estimate in (4.3), it is clear that the Tomas–Stein type argument gives the complete

proof of Theorem 4.1. However, this is no longer true if d ≥ 4 is even. For example,

if S0 = {x ∈ F
d
q : x2

1 + · · · + x2
d = 0} and d ≥ 4 is even, then the explicit Gauss sum

estimates show that if m2
1 + · · · + m2

d = 0, then

|(dσ)∨(m)| ∼ q−
d−2

2 ,

which is much weaker than the estimate (4.3). It seems that every non-degenerate

homogeneous variety would yield the standard Tomas–Stein exponents in odd di-

mensions but not in even dimensions. In the last section, we shall discuss this further.

4.3 The proof of Theorem 4.1 by the Fourier Decay Estimate

In the previous subsection, we saw that the Tomas–Stein type argument for finite

fields yields the alternative proof of Theorem 4.1. For the sake of completeness, we

give the complete proof. Let R∗ : Lp(H, dσ) → Lr(F
3
q, dm) be the extension map

f → ( f dσ)∨, and let R : Lr ′(F
3
q, dm) → Lp ′

(H, dσ) be its dual, the restriction map

g → ĝ|H . Observe that R∗Rg = (ĝdσ)∨ = g ∗(dσ)∨ for every function g on (F
3
q, dm).

Now, in order to prove Theorem 4.1 we must show that for every function f on

(H, dσ),

‖( f dσ)∨‖L4(F3
q,dm) . ‖ f ‖L2(H,dσ),

where dσ is the normalized surface measure on the homogeneous variety H ⊂ F
3
q. By

duality (3.2), it is enough to show that the following restriction estimate holds: for

every function g defined on (F
3
q, dm), we have

‖ĝ‖2
L2(H,dσ) . ‖g‖2

L
4
3 (F3

q,dm)
.
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By the orthogonality principle and Hölder’s inequality , we see that

‖ĝ‖2
L2(H,dσ) =< Rg, Rg >L2(H,dσ)=< R∗Rg, g >L2(F3

q,dm)

=< g ∗ (dσ)∨, g >L2(F3
q,dm) ≤ ‖g ∗ (dσ)∨‖L4(F3

q,dm) ‖g‖
L

4
3 (F3

q,dm)
.

It therefore suffices to show that for every function g on (F
3
q, dm),

‖g ∗ (dσ)∨‖L4(F3
q,dm) . ‖g‖

L
4
3 (F3

q,dm)
.

For each m ∈ (F
3
q, dm), define K(m) = (dσ)∨(m) − δ0(m), where δ0(m) = 0 for

m 6= (0, 0, 0) and δ0(0, 0, 0) = 1. Since (dσ)∨(0, 0, 0) = 1, we see that K(m) = 0 if

m = (0, 0, 0) and K(m) = (dσ)∨(m) if m 6= (0, 0, 0). It follows that

‖g ∗ (dσ)∨‖L4(F3
q,dm) = ‖g ∗ (K + δ0)‖L4(F3

q,dm) ≤ ‖g ∗ K‖L4(F3
q,dm) + ‖g ∗ δ0‖L4(F3

q,dm).

Since g ∗ δ0 = g and dm is the counting measure, we see that

‖g ∗ δ0‖L4(F3
q,dm) = ‖g‖L4(F3

q,dm) ≤ ‖g‖
L

4
3 (F3

q,dm)
.

Thus, it is enough to show that for every g on (F
3
q, dm),

‖g ∗ K‖L4(F3
q,dm) . ‖g‖

L
4
3 (F3

q,dm)
.

However, this estimate follows immediately by interpolating the following two in-

equalities:

(4.4) ‖g ∗ K‖L2(F3
q,dm) . q‖g‖L2(F3

q,dm)

and

(4.5) ‖g ∗ K‖L∞(F3
q,dm) . q−1‖g‖L1(F3

q,dm).

Thus, it remains to show that both (4.4) and (4.5) hold. Using the Plancherel theo-

rem, the inequality (4.4) follows from the observation that

‖g ∗ K‖L2(F3
q,dm) = ‖ĝK̂‖L2(F3

q,dx) ≤ ‖K̂‖L∞(F3
q,dx)‖ĝ‖L2(F3

q,dx)

. q‖g‖L2(F3
q,dm),

where the last line is based on the observation that for each x ∈ (F
3
q, dx),

K̂(x) = dσ(x) − δ̂0(x) = q3|H|−1H(x) − 1 . q,

because |H| ∼ q2 and δ0 is a function on (F
3
q, dm) with a counting measure dm.

Finally, the estimate (4.5) follows from Young’s inequality and the Fourier decay es-

timate (2.4) in Remark 2.6. Thus, the proof is complete.
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5 Averaging Problem for Finite Fields

In the finite field setting, Carbery, Stones and Wright [2] recently addressed the av-

eraging problem over algebraic varieties related to vector-valued polynomials. Recall

that (F
d
q, dx), d ≥ 2, is the d-dimensional vector space with the normalized counting

measure dx. For 1 ≤ k ≤ d − 1, they considered a specific vector-valued polynomial

Pk : F
k
q → F

d
q given by

Pk(x) =
(

x1, x2, . . . , xk, x2
1 + x2

2 + · · · + x2
k , x3

1 + · · · + x3
k , . . . , xd−k+1

1 + · · · + xd−k+1
k

)

and studied the averaging problem over the k-dimensional surface Vk = {Pk(x) ∈
F

d
q : x ∈ F

k
q}. Using Weil’s theorem [29] for exponential sums, they obtained the

sharp, good Fourier decay estimates on the surface Vk, which led to the complete

solution for the averaging problem. It will be also interesting to study the aver-

aging problem over some algebraic varieties that cannot be explicitly defined by a

vector-valued polynomial. Koh [14] studied the averaging problem over the variety

V = {x ∈ F
d
q : a1x2

1 + a2x2
2 + · · · + adx2

d = 0} for all a j 6= 0. Using the explicit Gauss

sum estimates, he observed that if the dimension d is odd, then the sharp Fourier de-

cay estimates on the variety V are given by |V̂ (m)| . q−(d+1)/2 for all m 6= (0, . . . , 0).
In addition, he showed that if the dimension d ≥ 3 is odd, then the complete solu-

tion to the averaging problem over the variety V can be obtained by simply applying

the Fourier decay estimates on V. However, when the dimension d ≥ 2 is even, it

was also observed that the sharp Fourier decay estimates on V take the weaker form

|V̂ (m)| . q−d/2 for every m 6= (0, . . . , 0), and so the averaging problem becomes

much harder. From Koh’s observations, one may conjecture that most homogeneous

varieties in odd dimensions yield the good Fourier decay but the homogeneous va-

rieties in even dimensions do not. We do not know the precise answer to this issue,

but Corollary 2.5 gives a positive answer in three dimensions. In this section, we shall

show that Corollary 2.5 implies the complete solution to the averaging problem over

the homogeneous varieties in three dimensions.

5.1 Definition of the Averaging Problem for Finite Fields

We review the averaging problem over algebraic varieties in the finite field setting. Let

V be an algebraic variety in (F
d
q, dx), d ≥ 2, where dx also denotes the normalized

counting measure. We also denote by dσ the normalized surface measure on V. For

1 ≤ p, r ≤ ∞, define A(p → r) as the smallest constant such that for every f defined

on (F
d
q, dx), we have

‖ f ∗ dσ‖Lr(Fd
q ,dx) ≤ A(p → r)‖ f ‖Lp(Fd

q ,dx),

where we recall that f ∗ dσ(x) =
∫

V
f (x − y)dσ(y) =

1
|V |

∑
y∈V f (x − y). Then,

the averaging problem is to determine the exponents 1 ≤ p, r ≤ ∞ such that

A(p → r) ≤ C for some constant C > 0 independent of q, the size of the under-

lying finite field Fq.
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5.2 Sharp Boundedness of the Averaging Operator on Homogeneous Varieties
in F

3
q

Now, let us consider the homogeneous variety

(5.1) H = {x ∈ F
3
q : P(x) = 0},

where P(x) ∈ Fq[x1, x2, x3] is a homogeneous polynomial. The following is our main

theorem, whose proof is based on applying well-known harmonic analysis methods

for the Euclidean case. We shall prove our main theorem by adopting the arguments

of [2].

Theorem 5.1 Let H ⊂ F
3
q be the homogeneous variety given as in (5.1). Assume that

|H| ∼ q2 and H does not contain any plane passing through the origin. Then we have

that A(p → r) . 1 if and only if (1/p, 1/r) is contained in the convex hull of the points

(0, 0), (0, 1), (1, 1), (3/4, 1/4).

Remark 5.2 In the Euclidean case, it is well known that if 1 ≤ r < p ≤ ∞, then

Lp − Lr estimate is impossible. However, in the finite field setting, we shall see that it

is always true that R∗(p → r) . 1 for 1 ≤ r < p ≤ ∞. Like the Euclidean case, the

main interest for finite fields will be the case when 1 ≤ p ≤ r ≤ ∞.

Proof We prove Theorem 5.1.

(=⇒) Suppose that A(p → r) . 1 for 1 ≤ p, r ≤ ∞. Then it must be true that for

every function f on (F
3
q, dx),

‖ f ∗ dσ‖Lr(F3
q,dx) . ‖ f ‖Lp(F3

q,dx).

In particular, this inequality also holds when we take f = δ0, where δ0(x) = 0 if

x 6= (0, 0, 0) and δ0(0, 0, 0) = 1. Thus, we see that

(5.2) ‖δ0 ∗ dσ‖Lr(F3
q,dx) . ‖δ0‖Lp(F3

q,dx).

Since dx is the normalized counting measure, the right-hand side is given by

(5.3) ‖δ0‖Lp(F3
q,dx) = q−

3
p .

To estimate the left-hand side, we recall from (3.1) that dσ(x) = q3|H|−1H(x) dx and

notice that

(δ0 ∗ dσ)(x) =
q3

|H|
(δ0 ∗ H)(x) =

1

|H|
δH(x),

where δH(x) = 1 if x ∈ H, and δH(x) = 0 if x /∈ H. Thus, the left-hand side of (5.2)

is given by

(5.4) ‖δ0 ∗ dσ‖Lr(F3
q,dx) = q−

3
r |H|

1−r
r ∼ q

−2r−1
r ,
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where we also use the hypothesis that |H| ∼ q2. Thus, from (5.2), (5.3), and (5.4), it

must be true that

(5.5)
3

p
≤

1

r
+ 2.

By duality we also see that it must be true that

3

r ′
≤

1

p ′
+ 2.

From this and (5.5), a simple calculation shows that (1/p, 1/r) must be contained in

the convex hull of the points (0, 0), (0, 1), (1, 1), (3/4, 1/4).
(⇐=) We must show that A(p → r) . 1 for all 1 ≤ p, r ≤ ∞ such that (1/p, 1/r)

lies in the convex hull of the points (0, 0), (0, 1), (1, 1), (3/4, 1/4). To do this, we shall

first prove that for every function f on (F
3
q, dx),

(5.6) ‖ f ∗ dσ‖Lr(F3
q,dx) . ‖ f ‖Lp(F3

q,dx) if 1 ≤ r ≤ p ≤ ∞.

Next, we shall prove that for every function f on (F
3
q, dx),

(5.7) ‖ f ∗ dσ‖L4(F3
q,dx) . ‖ f ‖

L
4
3 (F3

q,dx)
.

Finally, interpolating (5.6) and (5.7) will give the complete proof. Now, let us prove

that (5.6) holds. Since dσ is the normalized surface measure and dx is the normalized

counting measure, we see that both dσ and (F
3
q, dx) have total mass 1. It therefore

follows from Young’s inequality and Hölder’s inequality that if 1 ≤ r ≤ p ≤ ∞, then

‖ f ∗ dσ‖Lr(F3
q,dx) ≤ ‖ f ‖Lr(F3

q,dx) ≤ ‖ f ‖Lp(F3
q,dx).

To complete the proof, it therefore suffices to show that the inequality (5.7) holds. As

before, we consider a function K on (F
3
q, dm) defined as K = (dσ)∨ − δ0. Note that

for each x ∈ (F
3
q, dx), we have δ̂0(x) =

∫
F3

q
χ(−x ·m)δ0(m)dm = 1, because dm is the

counting measure. Since

dσ = K̂ + δ̂0 = K̂ + 1 and ‖ f ∗ 1‖L4(F3
q,dx) . ‖ f ‖

L
4
3 (F3

q,dx)
‖1‖L2(F3

q,dx) = ‖ f ‖
L

4
3 (F3

q,dx)

by Young’s inequality, it is enough to show that for every f on (F
3
q, dx), we have

‖ f ∗ K̂‖L4(F3
q,dx) . ‖ f ‖

L
4
3 (F3

q,dx)
.

However, this inequality can be obtained by interpolating the following two esti-

mates:

(5.8) ‖ f ∗ K̂‖L2(F3
q,dx) . q−1‖ f ‖L2(F3

q,dx)
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and

(5.9) ‖ f ∗ K̂‖L∞(F3
q,dx) . q‖ f ‖L1(F3

q,dx).

Thus, it remains to prove that both (5.8) and (5.9) hold. From the definition of K and

(2.4) in Remark 2.6, it is clear that ‖K‖∞ . q−1. Thus, using this fact, the inequality

(5.8) follows from the Plancherel theorem. On the other hand, the inequality (5.9)

follows from Young’s inequality and the observation that ‖K̂‖L∞(F3
q,dx) . q. Thus, we

complete the proof.

6 Erdős-Falconer Distance Problem for Finite Fields

Let E, F ⊂ F
d
q, d ≥ 2. Given a polynomial P(x) ∈ Fq[x1, . . . , xd], the generalized

distance set ∆P(E, F) can be defined by

∆P(E, F) = {P(x − y) ∈ Fq : x ∈ E, y ∈ F}.

Throughout this paper, we always assume the characteristic of Fq is larger than the

degree of P. In the finite field case, the generalized Erdős distance problem is to

determine the minimum cardinality of ∆P(E, F) in terms of |E| and |F|. In the case

when E = F and P(x) = x2
1 + x2

2, this problem was first introduced by Bourgain, Katz,

and Tao [1]. Using the discrete Fourier analytic machinery, Iosevich and Rudnev [11]

formulated this problem and obtained several interesting results. For example, they

proved the following theorem.

Theorem 6.1 If E ⊂ F
d
q, d ≥ 2, with |E| ≥ Cq

d
2 for C > 0 sufficiently large, then we

have

|∆P(E, E)| & min
(

q, |E|q−
d−1

2

)
,

where P(x) = x2
1 + · · · + x2

d.

In addition, they addressed the Falconer distance problem for finite fields, which is

the problem to determine the size of E such that |∆P(E, E)| & q. Note that Theorem

6.1 implies that if P(x) = x2
1 +· · ·+x2

d and |E| & q(d+1)/2, then |∆P(E, E)| & q. Authors

in [9] observed that if the dimension d ≥ 3 is odd, then the exponent (d + 1)/2 gives

the best possible result on the Falconer distance problem for finite fields. On the

other hand, it has been conjectured that the exponent d/2 could be the best possible

one if the dimension d ≥ 2 is even. In the case when d = 2, the sharp exponent

(d + 1)/2 for odd dimensions was improved by 4/3 (see [3, 15]). From these facts,

one might infer that improving Theorem 6.1 is interesting only for even dimensions,

however, we shall focus on the problem in odd dimensions. The main point we want

to address is that if the dimension d ≥ 3 is odd, then the condition in Theorem 6.1,

|E| ≥ Cq
d
2 , can be relaxed. On the other hand, the condition is necessary for even

dimensions. More generally, we consider the following conjecture.

Conjecture 6.2 Let P(x) =
∑d

j=1 a jx
c
j ∈ Fq[x1, . . . , xd] with a j 6= 0, c ≥ 2. If

E, F ⊂ F
d
q and d ≥ 3 is odd, then we have

|∆P(E, F)| & min
(

q, q−
d−1

2

√
|E||F|

)
.
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Authors in [16] proved that the conclusion in Conjecture 6.2 holds for all dimen-

sions d ≥ 2 if we assume that |E||F| ≥ Cqd for a sufficiently large constant C > 0

(see Corollary 3.5 in [16]). They also introduced a simple example to show that if

the dimension d is even, then the assumption |E||F| ≥ Cqd is necessary. In addi-

tion, they pointed out that Conjecture 6.2 is true if c = 2. In this section, we shall

prove that Conjecture 6.2 is true in the case when the dimension d is three. Observe

that if Conjecture 6.2 is true, then the distance set has its nontrivial cardinality for

|E||F| ≥ Cqd−1 with d odd.

6.1 Main Result on the Erdős–Falconer Distance Problem

In this subsection, we prove the following main theorem.

Theorem 6.3 In dimension three, Conjecture 6.2 is true.

First, we derive a formula for proving Theorem 6.3. Let P(x) ∈ Fq[x1, . . . , xd] be

a polynomial with degree ≥ 2. For each t ∈ Fq, define a variety Ht ⊂ F
d
q, by the set

Ht = {x ∈ F
d
q : P(x) = t}.

Then we have the following distance formula.

Lemma 6.4 Suppose that for every m ∈ F
d
q \ {(0, . . . , 0)} and t ∈ Fq, we have

(6.1) |Ĥt (m)| . q−
d+1

2 .

Then if E, F ⊂ F
d
q, we have

|∆P(E, F)| & min
(

q, q−
d−1

2

√
|E||F|

)
.

Proof First, we consider a counting function ν on Fq given by

ν(t) =
∣∣{ (x, y) ∈ E × F : P(x − y) = t

}∣∣ =
∣∣{ (x, y) ∈ E × F : x − y ∈ Ht

}∣∣ .

Recall that ∆P(E, F) = {P(x − y) ∈ Fq : x ∈ E, y ∈ F} and notice that

(6.2) |E||F| =
∑

t∈∆P(E,F)

ν(t) ≤
(

max
t∈Fq

ν(t)
)
|∆P(E, F)|.

Thus, the estimate for the upper bound of maxt∈Fq
ν(t) is needed. For each t ∈ Fq,

applying the Fourier inversion theorem (2.1) to the function Ht (x − y), then using

the definition of the Fourier transform, we see that

ν(t) =
∑

x∈E,y∈F

Ht (x − y) = q2d
∑

m∈Fd
q

Ê(m)F̂(m)Ĥt (m).
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Now, write ν(t) by

ν(t) =q2dÊ(0, . . . , 0)F̂(0, . . . , 0)Ĥt (0, . . . , 0) + q2d
∑

m∈Fd
q\{(0,...,0)}

Ê(m)F̂(m)Ĥt (m)

=I + II.

From the definition of the Fourier transform and the Schwartz–Zippel lemma, it

follows that

|I| =
1

qd
|E||F||Ht | . q−1|E||F|.

On the other hand, our hypothesis (6.1) and the Cauchy–Schwarz inequality yield

|II| . q2dq−
d+1

2

(∑

m

∣∣ Ê(m)
∣∣ 2
) 1

2

(∑

m

∣∣ F̂(m)
∣∣ 2
) 1

2

.

Applying the Plancherel theorem (2.2), we obtain

|II| . q
d−1

2 |E|
1
2 |F|

1
2 .

Thus, it follows that

max
t∈Fq

ν(t) . q−1|E||F| + q
d−1

2 |E|
1
2 |F|

1
2 .

From this fact and (6.2), a direct calculation completes the proof.

It seems that the assumption (6.1) in Lemma 6.4 is too strong. For example, if

dimension d is even, Ht = {x ∈ F
d
q : xc

1 + · · · + xc
d = t}, c ≥ 2, and uc

= −1 for

some u ∈ Fq, then this case cannot satisfy the assumption (6.1). This follows from

a simple observation that if E = F = {(t1, ut1, . . . , td/2, utd/2) ∈ F
d
q : t j ∈ Fq},

then |E| = |F| = qd/2 and |∆P(E, F)| = |{0}| = 1, which does not satisfy the

conclusion of Lemma 6.4. However, observe that if the dimension d is odd, then the

similar example does not exist. For this reason, Conjecture 6.2 appears to be true.

In fact, the following lemma says that only H0 in the previous example violates the

assumption (6.1).

Lemma 6.5 ([4, 4.4.19]) Let

P(x) =

d∑

j=1

a jx
s
j ∈ Fq[x1, . . . , xd]

with s ≥ 2, a j 6= 0 for all j = 1, . . . , d. In addition, assume that the characteristic of Fq

is sufficiently large so that it does not divide s. Then

|Ĥt (m)| =
1

qd

∣∣∣∣
∑

x∈Ht

χ(−x ·m)

∣∣∣∣ . q−
d+1

2 for all m ∈ F
d
q \ {(0, . . . , 0)}, t ∈ Fq \ {0},

and

(6.3) |Ĥ0(m)| . q−
d
2 for all m ∈ F

d
q \ {(0, . . . , 0)},

where Ht = {x ∈ F
d
q : P(x) = t}.
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6.2 Complete Proof of Theorem 6.3

From Lemmas 6.5 and 6.4, it suffices to prove that for every m 6= (0, 0, 0), |Ĥ0(m)| .
q−2, where H0 = {x ∈ F

3
q : a1xc

1 + a2xc
2 + a3xc

3 = 0} with a j 6= 0, j = 1, 2, 3, c ≥ 2.
From Corollary 2.5, it is enough to show that H0 does not contain any plane passing

through the origin in F
3
q. By contradiction, assume that H0 contains a plane Πm =

{x ∈ F
3
q : m · x = 0} for some m 6= (0, 0, 0). Without loss of generality, assume that

Πm = {x ∈ F
3
q : x3 = m ′

1x1 + m ′
2x2} for some m ′

1,m ′
2 ∈ Fq. Then |H0 ∩ Πm| =

|Πm| = q2. However, this is impossible if q is sufficiently large. To see this, notice that

|H0 ∩Πm| =
∣∣{ (x1, x2,m ′

1x1 + m ′
2x2) ∈ F

3
q : a1xc

1 + a2xc
2 + a3(m ′

1x1 + m ′
2x2)c

= 0
}∣∣

=
∣∣{ (x1, x2) ∈ F

2
q : a1xc

1 + a2xc
2 + a3(m ′

1x1 + m ′
2x2)c

= 0
}∣∣ . q,

where the last inequality follows from the Schwartz–Zippel lemma, because one can

check that a1xc
1 + a2xc

2 + a3(m ′
1x1 + m ′

2x2)c is a nonzero polynomial for c ≥ 2 and

a j 6= 0, j = 1, 2, 3. Thus, we complete the proof of Theorem 6.3.

7 Note on Problems for Homogeneous Varieties in Higher Odd
Dimensions

We have seen that the Fourier decay estimates on homogeneous varieties have a key

role in the study of the problems in this paper. We have been mentioning that one

could obtain good Fourier decay estimates on homogeneous varieties in odd dimen-

sions, but fail in even dimensions. For the reader’s convenience, we give the follow-

ing explicit computations to indicate that the estimates of the Fourier transform on

quadratic homogeneous varieties are different between odd and even dimensions.

We now give two examples. First, suppose that V = {x ∈ F
3
q : x2

1 + x2
2 + x2

3 = 0}.
Then, for each m 6= (0, 0, 0), we have

V̂ (m) = q−4
∑

s6=0

3∏

j=1

∑

x j∈Fq

χ(sx2
j − m jx j).

Completing the square and making a change of variables, we observe that

∑

x j∈Fq

χ(sx2
j − m jx j) =

∑

x j∈Fq

χ(sx2
j )χ

( m2
j

−4s

)
= Gη(s)χ

( m2
j

−4s

)
,

where G denotes the Gauss sum, η denotes the quadratic character, and we use the

fact that
∑

x j∈Fq
χ(sx2

j ) = Gη(s). Thus, we see that for m 6= (0, 0, 0),

V̂ (m) = q−4G3
∑

s6=0

η3(s)χ
( m2

1 + m2
2 + m2

3

−4s

)
.
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Since η is the quadratic character, η3
= η, and so the sum over s 6= 0 is a Salié sum

[20], which is always . q1/2. Thus, we get a good Fourier decay estimate on V for all

m 6= (0, 0, 0). Namely, we have that for m 6= (0, 0, 0),

|V̂ (m)| . q−2
= q−

d+1
2 ,

which is what we want.

However, now consider V = {x ∈ F
4
q : x2

1 + x2
2 + x2

3 + x2
4 = 0}. Using the above

method, we see that for each m 6= (0, 0, 0, 0),

V̂ (m) = q−5G4
∑

s6=0

η4(s)χ
( m2

1 + m2
2 + m2

3 + m2
4

−4s

)
.

Since η4
= 1, the sum over s 6= 0 is (q− 1) if m2

1 + m2
2 + m2

3 + m2
4 = 0. Thus, for some

m 6= (0, 0, 0, 0), we have

|V̂ (m)| ∼ q−2
= q−

d
2 ,

which is worse than q−
5
2 = q−

d+1
2 . Therefore, the question we want to address first is

whether the estimate (6.3) in Lemma 6.5 can be improved in all odd dimensions. If

the dimension is even, then the above estimates say that we cannot expect to improve

it (at least for the case s = 2). However, we have already observed that in three

dimension the estimate (6.3) can be improved to |Ĥ0(m)| . q−
d+1

2 = q−2 for m 6=
(0, 0, 0). From these facts, one may have the following question.

Question 7.1 Let

P(x) =

d∑

j=1

a jx
s
j ∈ Fq[x1, . . . , xd]

with s ≥ 2, a j 6= 0 for all j = 1, . . . , d. If we assume that the characteristic of Fq is

sufficiently large and the dimension d ≥ 3 is odd, then does the conclusion

|Ĥ(m)| . q−
d+1

2 for all m ∈ F
d
q \ {(0, . . . , 0)},

where H = {x ∈ F
d
q : P(x) = 0}, always hold?

If the answer to Question 7.1 is positive, then this would yield the standard Tomas-

Stein exponents on the extension problem related to diagonal polynomials in odd

dimensions. Moreover, the averaging problem on homogeneous varieties in odd di-

mensions would be completely understood. As an attempt to answer Question 7.1,

one may invoke some powerful results from algebraic geometry such as [13] and [4].

However, it seems that such theorems do not explain that the Fourier decays of ho-

mogeneous varieties in odd dimensions are better than those in even dimensions. We

close this paper with a desire to see the answer to Question 7.1 in the near future.
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