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Abstract. This article studies unipotent orbital integrals on symplectic and orthogonal groups
from the point ofviewof endoscopy. It begins by partitioning stable unipotent classes into packets
and goes on to propose a transfer of these packets. It then discusses (in rough form) the associated
transfer factors. Some supporting calculations in split odd orthogonal groups are given.
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1. Introduction

Let F be a p-adic ¢eld of characteristic zero, and G a connected reductive algebraic
group de¢ned over F . A main objective for harmonic analysis on G�F � is to under-
stand the invariant distributions on G�F �. Orbital integrals and characters of
irreducible admissible representations are the two main examples of invariant dis-
tributions. The germ expansion of Shalika, as well as the local character expansion
of Howe and Harish Chandra, and the recent work of Waldspurger, all point to
the importance of the study of unipotent orbital integrals. R. Langlands was the
¢rst to recognize the implications, for local and global harmonic analysis, of the
difference between conjugacy and stable conjugacy for semi-simple elements of
G�F �. His observations were then developed, by himself and others, into the theory
of Endoscopy. The main objective of endoscopy in local harmonic analysis is to
understand the invariant distributions on G�F � by comparing them to stable
distributions on the various endoscopic groups, H�F �, associated to G. This com-
parison is dual to a conjectural map, called smooth matching, between smooth
and compactly supported functions on G�F � and H�F � which satis¢es precisely
de¢ned identities between their semisimple orbital integrals. The aim of endoscopy
in the study of unipotent orbital integrals in then to address the following problems.
The ¢rst problem is to ¢nd an explicit basis for the space of stable distributions
supported on the unipotent variety. The second problem is to explicitly describe
the endoscopic transfer of a stable distribution supported on the unipotent variety
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of a given endoscopic group. Stated differently, the second problem is to ¢nd the
transfer factors for unipotent orbital integrals (cf. [2]).

An answer to these two questions should also lead to the breaking up of the ident-
ity known as the fundamental lemma (see [L] and [W]) into an equivalent set of
identities which are at least structurally simpler.

The purpose of this article is to discuss the second problem for split classical
groups. However, it is clear that this problem cannot be addressed without an answer
to the ¢rst problem. In [2], we conjectured that every G�F �-special orbit (F �
algebraic closure of F , and special is in the sense of Lusztig (cf. [5])) can be
partitioned into disjoint sets (called packets), such that an appropriate linear com-
bination (a sum if G is split) of the integrals over the rational orbits within a given
packet (the measures on the rational orbits are assumed to be related) is a stable
distribution. Moreover, the set of stable distributions associated with all the packets
contained in the various G�F �-special orbits, forms a basis (over C) for the space of
stable distributions supported on the unipotent variety.

In Section 1, we de¢ne an explicit partitioning of every G�F �-unipotent class
(regardless whether it is special or not) into disjoint subsets which we call packets.
Here G is either a special orthogonal group (not necessarily quasi-split) or a sym-
plectic group. For special orbits, this partitioning should be the packet
decomposition predicted by the above stated conjecture. The partitioning of the
non-special orbits is necessary for the discussion of transfer of packets. Our par-
titioning is described using the classi¢cation of rational unipotent classes via the
theory of prehomogeneous spaces associated to sl2-triplets. We would like to
mention that the packets description given in Section 1 was known to us for some
time and was discussed with R. Kottwitz during a visit to the University of Chicago
in April/May 1996. A few weeks later, during a visit to the Universitë of Paris
7, J.-L. Waldspurger kindly informed us about the results he had obtained ([15]).
He described to us the packet structure and the stable linear combinations for
the unrami¢ed unitary groups and the symplectic groups. He also gave an outline
of the proof of his results. His description of the packet structure for symplectic
groups is via the standard classi¢cation of rational orbits, and turns out to be equiv-
alent to the description given in Section 1. We ¢nd this encouraging, and expect that
our packet description for orthogonal groups will turn out to be equivalent to his
packet description in his anticipated work on orthogonal groups.

Next, with an answer to the ¢rst problem, we are ready to discuss the transfer
problem. Now, the transfer of a stable distribution associated to some packet of
special rational orbits in an endoscopic group H of G, ought to be a linear com-
bination of integrals over some set of rational orbits inG�F �. Thus the transfer prob-
lem can be divided into two parts. The ¢rst part is to understand the set of rational
orbits in G�F � involved. Is there any structure to it? The second part is to understand
the nature of the coef¢cients appearing in that linear combination. In [1] we used the
map (initially introduced by Lusztig (cf. [9]), and later elaborated on by Spaltenstein
(cf. [13])), called endoscopic induction, to obtain identities between unipotent orbital
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integrals on complex semisimple groups and their `endoscopic' counterparts. In fact,
endoscopic induction can be characterized as the `unique' map de¢ned on the set of
special orbits which produces matching relations (see Proposition 5.2.2. in [2]).
In Section 2, we introduce a rational re¢nement of endoscopic induction for a classi-
cal split group G. To a packet of special orbits in an elliptic endoscopic groupH�F �,
we attach a union of packets in G�F �. Note that since endoscopic induction of a
special orbit may not be special, it is necessary to introduce the notion of a packet
for nonspecial orbits (as we did in Section 1). It can be shown, moreover, using
a descent argument analogous to Lemma 2.5.10, that it is always possible to reduce
to the situation where every single packet transfers to a single packet. Our descrip-
tion of transfer of packets is presented in three steps. The ¢rst and most critical
step makes use of the fact that for special orbits whose dual orbits (in the sense
of Spaltenstein [13]) are even, endoscopic induction, when viewed from the
Langlands dual group side, simply becomes inclusion (This is an observation of
Barbasch and Vogan (cf. [4]).) See Section 2.5 (step 1) for the precise type of orbits
involved. In order to de¢ne the transfer of packets in step 1, two intermediary
correspondences of packets between special orbits and their duals (both the order
preserving and reversing ones, see Section 2.3.) are de¢ned. We believe that the cor-
respondence of packets between special orbits and their order preserving duals will
play a role in the study of twisted endoscopy. The second and third step treats sets
of orbits of increasing generality, with each step reducing to the preceding one
via a formal argument (see Lemmas 2.5.10, and 2.5.11). Here we mention that
the idea of trying to bring in duality in some fashion was suggested to us by R.
Kottwitz. Next, we pay attention to the second part of the transfer problem, namely
the nature (and the precise de¢nition) of the transfer factors. The ¢rst real glimpses
concerning the nature of the transfer factors came from the long calculations done
in [2]. In these calculations, which dealt with symplectic groups, the transfer factors
(for the cases considered there) turned out to be character values of certain ¢nite
Abelian 2-groups. It should be noted that in [2], only orbits which are endoscopically
induced from the trivial orbit were considered. This is due to the fact that no other
`collection' of rational orbits giving rise to a stable distribution were known at
the time (except, of course, Richardson orbits). In fact, it was the transfer relations
obtained in [2], which suggested to us the notion of a `packet' of unipotent orbits.
Thus a more elaborate test was needed, where the transfer factors are obtained from
transferring stable distributions associated to `nontrivial' packets. In Section 3, we
present a transfer calculation where G � SO�2n� 1�, andOG is the orbit correspond-
ing to the partition 3312nÿ5, nX 3. These orbits are all special and contain only one
packet. We consider the situation where H � SO�2nÿ 3� � SO�5�, and OH �
�1;Osub �, where 1 denotes the trivial orbits in SO�2nÿ 3�, and Osub denote the sub-
regular orbit in SO�5�. Assuming that the residual characteristic of F is not equal
to 2, Ost

sub (the SO�5;F � subregular orbit) breaks up into four rational classes each
forming a packet (this is now a special case of a general result of Waldspurger ([15])
but can also be deduced from the Shalika germs calculations of T. Hales (see [2],
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Proposition 5.5.1)). Now for nX 4, the rational orbits within the G�F �-orbit Ost
G are

classi¢ed by the equivalence classes of quadratic forms of rank 2. The transfer
calculation alluded to above involves three pairs �f ; f H � of matching spherical
functions. These three pairs satisfy the property that the dimension of the space
obtained by restricting the integrals over the rational orbits within Ost

G (resp.
Ost

H ) to the three-dimensional space spanned by the functions f (resp. f H ), is equal
to three. The transfer factors emerging from this calculation turn out to be the four
characters of the group of square classes of F�. In Section 4, we discuss some
examples which exhibit various aspects of the transfer of packets and the transfer
factors. Our discussions are based on the calculations done in Section 3, in [2],
and various descent arguments. In all these examples, the transfer factors turn
out to be character values of Abelian 2-groups. Motivated by all these calculations,
we present a conjecture describing a rough form for the transfer factors in the
`critical cases'. By the critical cases we mean the following. Given a G�F �-unipotent
orbit Ost

G, special or not, one would like to characterize a set of pairs �H;OH �, where
H is an elliptic endoscopic group, andOH is a special orbit inHwhich endoscopically
induces toOG, such that the set of identities obtained from transferring all the stable
distributions associated to the various packets within the H�F �-orbits Ost

H forms an
invertible linear system. In Section 4.1, we introduce the notion of an elliptic
unipotent endoscopic datum relative to a given G�F �-orbit Ost

G. It consists of a pair
�H;OH � satisfying in addition to the above stated properties, the following con-
dition: If G is special odd orthogonal, then A�OH� � C�OG�, and if G is special
even orthogonal or symplectric, then A�OH � �Z=2Z � C�OG�. Here, for a
unipotent orbit O in a reductive group, C�O� denotes the group of connected com-
ponents of the centralizer of some u 2 O (the center is not being divided out).
A�O� denotes the quotient group introduced by Lusztig in [9]. We shall prove, some-
where else, that the number of such pairs is (properly counted) equal to 2Z�O

st
G�, where

Z�Ost
G�, the Z-index of Ost

G, is a certain integer associated with Ost
G which we introduce

in Section 1.3.3. We predict that the set of elliptic unipotent endoscopic data relative
to OG will lead to an invertible linear system allowing for the expression of the
integral over any rational orbit within Ost

G as a linear combination of stable
distributions on various endoscopic groups. A critical case for us is then a case
involving an elliptic unipotent endoscopic datum relative to some orbit OG. Given
a G�F �-orbit Ost

G, every packet within Ost
G can be embedded (as becomes clear from

the prehomogeneous vector space classi¢cation of rational orbits) into a common
group which is a product of several copies of F�=�F��2 and several copies of
Z=2Z. The conjectured transfer factors are then a product of three factors. The
¢rst two factors are restrictions to the transferred packet, of characters of the
appropriate powers of F�=�F��2 and Z=2Z, respectively. The third factor is a con-
stant which is independent of the packets within Ost

H and Ost
G. Unfortunately,

we do not describe the precise characters which occur, in the general situation.
However, for orbits OG in which the packets are determined by the square classes
of the discriminants of all the quadratic forms which classify the rational orbits
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within Ost
G, we give the precise transfer factors (in this case the ¢rst factor is always

trivial).
Now, we give a detailed description of the contents of each section. In Section 1,

we ¢rst present the classi¢cation of rational unipotent orbits for special orthogonal
and symplectic groups, via the theory of prehomogeneous spaces associated to
sl2-triplets, and indicate its relationship with the more standard classi¢cation
(Lemmas 1.2.5. and 1.2.9). In Section 1.3, we use the given prehomogeneous classi-
¢cation to explicitly describe the packets for any unipotent orbit O. This description
is also valid in the nonquasi-split case. We also introduce the Z-exponent, Z�Ost�. In
Section 2.1. we review the Springer correspondence and use it to classify the
unipotent orbits (over F ) into families. In Section 2.2, we discuss the quotient group
A�O� of Lusztig and indicate its relationship to packets. In Section 2.3, we discuss
two duality maps (one is order preserving and the other is order reversing) between
the lattices of special orbits in a classical group and its Langlands dual group (which
we take to be de¢ned over F , and not overC, as in usually the case). These maps are
discussed in Spaltenstein's book [13]. We give explicit formulas for these maps which
will be useful in other parts of this paper. We also de¢ne correspondences of packets
between a special orbit and its two duals. This will be needed when discussing the
transfer of packets from endoscopic groups. In Section 2.4, we review endoscopic
induction and give a direct description of it in terms of partitions (see Lemma 2.4.4).
This description is essentially due to Spaltenstein. In Section 2.5, we de¢ne the
transfer of packets of special orbits in an elliptic endoscopic group. Our de¢nition
may be viewed as a rational generalization of endoscopic induction. Our de¢nition
proceeds in three steps, each step treats a larger class of orbits than the preceding
step and reduces to it by a formal argument. The ¢rst and critical step treats a class
of special orbits whose (order reversing) dual orbits are even. Here the correspon-
dence of packets discussed in Section 2.3, is used. Section 3 is devoted to the transfer
calculation alluded to above. In Section 3.2, we use some results of Igusa to calculate
some p-adic integrals needed for the orbital integral calculations. In Section 3.3, we
use Macdonald's formulae for the Satake transform and the spherical Plancherel
measure to give a more practical formula for the endoscopic transfer, f H , of a
spherical function f . Our goal is to apply this formula to three particular functions.
In Section 3.4, we introduce three auxiliary spherical functions, and compute their
endoscopic transfer via the formula given in Section 3.3. In Section 3.5, we use these
results to calculate the transfers of the three given functions. In Section 3.6, we put
the results of the preceeding sections together to obtain the transfer factors. In Sec-
tion 3.7, we give a prediction based on our previous calculations. In Section 4.1
we introduce the notion of an elliptic unipotent endoscopic datum. In Section 4.2,
we present several examples which illustrate various aspects of the transfer factors.
Each example ends with a prediction about the precise form of the transfer factors.
In Section 4.3, we describe our general (but not completely explicit) conjecture
regarding the transfer factor. We do, however, present a precise conjecture for a
broad class of orbits.
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Preface (by R. Kottwitz, testamentary editor)

This article was submitted to Compositio Mathematica shortly before the tragically
early death of Magdy Assem. It contains his ideas on packets and transfer factors
for unipotent orbits, all in the context of orthogonal and symplectic groups. The
article omits many proofs and has to be used with considerable caution. For example,
Lemma 4.3.2 seems to be incorrect.Moreover, asWaldspurger has observed, Lemma
2.4.4 is incorrect, at least for G of type C and D. The best way to use the paper is as a
source of ideas (some of which are clearly valuable), but it is not safe to quote results
from the paper without checking them ¢rst for oneself.

One key point (see Lemma 2.2.4) that Assem emphasized in conversations with me
is that that for classical groups Lusztig's quotient group A�k� can be read off naturally
from the prehomogeneous vector space associated to the nilpotent orbit. Assem's
intuition was that transfer factors for unipotent orbital integrals should also be nat-
urally associated to the corresponding prehomogeneous vector spaces. Possibly there
is an as yet undiscovered theory of endoscopy for prehomogeneous vector spaces.

Following the suggestions of the referee, I have corrected a number of misprints
and other minor errors in the manuscript. I have also added some footnotes, often
in response to the referee's comments, as well as some additional references (these
are labeled by letters rather than numbers in the list of references at the end of
the paper). But in all essential aspects the paper is the same as the original
manuscript.

Notation and Review of Some De¢nitions

. Throughout this manuscript, F is a p-adic ¢eld of characteristic zero with odd
residual characteristic. OF will denote the ring of integers, and PF its maximal
ideal. The order of the residue ¢eld OF=PF is equal to q. We let p denote a
uniformizer of OF , and e a Teichmu« ller representative of a non-square in
the residue ¢eld; thus 1, p, e, pe are a set of representatives for the square classes
in the multiplicative group of F . The absolute value function j � j is normalized
such that jpj � qÿ1.

. For a connected reductive algebraic group G over F , we use G�F � to denote the
group of F -rational points equipped with the p-adic topology. Given x 2 G�F �,
let x � us � su be its Jordon decomposition, where u is unipotent and s
semi-simple. The stable class of x, denoted Ost�x�, or just Ost if x is understood,
is by de¢nition, (following Kottwitz) equal to fgÿ1xg : g 2 G�F � and
gÿ1gs 2 G�s �F � for all s 2 Gal �F=F �g \G�F �, whereG�s denotes the identity con-
nected component of the centralizer of s in G. In particular, if x is unipotent,
then the stable orbit of x is simply its G�F �-orbit. Given a stable unipotent
orbit in G�F �, we say that the measures on the rational orbits within it are
related if they are obtained from a single G�F �-invariant volume form, de¢ned
over F , on the G�F �-orbit. We shall always assume that the measures on

232 MAGDYASSEM

https://doi.org/10.1023/A:1001839511409 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001839511409


the rational orbit within a given stable class are related. Given a unipotent orbit
O, we shall denote the integral over O (with respect to a given measure) by:

R
O :

. Finally, recall that an invariant distribution D on G�F � is stable (in the sense of
Langlands) if the following condition is satis¢ed:

8f 2 C1c �G�F ���
Z
Ost�x�

f � 0 ; 8x semi-simple ) D�f � � 0� :

1. Packets of Unipotent Orbits and Prehomogeneous Spaces

1.1. PARTITIONS AND UNIPOTENT ORBITS

Let N denote a positive integer. A partition of N is a sequence of integers
k � �l1; l2; . . . ; lr� such that l1 X l2 X � � � X lr > 0, and

Pr
i�1 li � N. The elements

li are called parts. Sometimes, we also write k � �la11 ; . . . ; latt �, where ai > 0 denotes
the multiplicity of the part li in k. The set of all partitions of N will be denoted
by P�N�. Given k � �l1; . . . lp�; m 2 P�N�, we write kW m if l1 W m1, l1�
l2 W m1 � m2, l1 � l2 � l3 W m1 � m2 � m3 . . . ; etc. Then �P�N�; W � is a partially
ordered set. Let k 2 P�N� and A � P�N�. We say that infA k exists if there exists
a unique m 2 A satisfying

(i) lW k, and
(ii) 8m 2 A�mW k) mW l�. In this case we set m �: infA k.

Given k � �l1; . . . ; ln� 2 P�N1�, m� �m1; . . . ; mm� 2 P�N2�, with nWm, we de¢ne
k� l :� k1 � m1; . . . ; ln � mn; mn�1; . . . ; mm� 2 P�N1 �N2�. We also de¢ne k [ l
2 P�N1 �N2� to be the partition whose set of parts is fl1; . . . ln; m1; . . . ; mmg. For
eachN 2 Z�, and k 2 P�N�, we denote by tk the transpose of k. It is given as follows.
If k � �la11 ; . . . ; larr �, then

tk � ÿ�a1 � � � � � ar�lr ; �a1 � � � � � arÿ1�lrÿ1ÿlr ; . . . ; �a1 � a2�l2ÿl3 ; al1ÿl21

�
:

It is clear that if k 2 P�N1�, m 2 P�N2�, then t�k� l� � tk [ tl.
For a partition k � �la11 ; . . . ; larr �, let

jkj :�
Xr
i�1

aili and `�k� :�
Xr
i�1

ai:

Next, for an integer, nX 1, we de¢ne

P�Bn� : � fl � �la11 ; . . . ; larr � 2 P�2n� 1� :
�li even ) ai even �; 1W iW rg;

P�Cn� : � fl � �la11 ; . . . ; larr � 2 P�2n� : �li odd ) ai even �; 1W iW rg;
P�Dn� : � fl � �la11 ; . . . ; larr � 2 P�2n� : �li even ) ai even �; 1W iW rg:
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It is well known that the set of unipotent orbits over F in groups of type Tn is in
natural bijection with P�Tn� where T 2 fB;Cg. When T � D, then each k 2 P�Dn�
with at least one odd part corresponds to one unipotent orbit in a group of type
Dn, while every k 2 P�Dn� with only even parts corresponds to exactly two unipotent
orbits in such a group. For these facts see 13.3 in [5].

LEMMA 1.1.1. Let T 2 fB;C;Dg and set NTn :� 2n� 1 if Tn � Bn and NTn :� 2n if
T 2 fC;Dg. Then 8k 2 P�NTn � : infP�Tn� k exists.

Proof. See Lemme 3.6 in Ch. III of [13]. &

1.2. RATIONAL ORBITS AND PREHOMOGENEOUS SPACES

LetG denote a connected reductive algebraic group de¢ned over F , and g :� Lie �G�.
Let u 2 G�F � be a unipotent element. Let X 2 g�F � such that u � expX . Let
fX ;H;Y g denote an sl2-triplet with adH semi-simple. For i 2 Z, set
gi :� fZ 2 g : �H;Z� � iZg. Then g �Li2Z gi is a Z-grading, i.e. �gi; gj � � gi�j;
8 i; j 2 Z :

Set M :� �ZG�H��0. M acts via Ad on each gi. Moreover, a result of Vinberg [V]
states that each triple �M;Ad jM; gi� for which gi 6� �0� is a Prehomogeneous vector
space de¢ned over F . Recall that a prehomogeneous vector space de¢ned over F
is a triple �H; r;V � where H is a connected algebraic group, V a ¢nite-dimensional
vector space, and r a rational representation of H on V , all de¢ned over F , such
that V contains a Zariski dense open G-orbit. An element v 2 V such that
r�G� � v is dense is called generic. If H is reductive, then the Prehomogeneous vector
space (PVS for short) �H; r;V � is called regular if the stabilizer of a generic point
is reductive. A result of Kostant* states that the PVS �M;Ad jM; g2� is regular
and that AdM�F � � X is open (in the p-adic topology) in g2�F �. A Lemma of Ranga
Rao (cf. [11]) shows that

O�u� � exp

�
AdK�AdM�F � � X � �

M
i>2

gi�F �
�
;

where K is a `good' maximal compact subgroup of G�F � in the sense of Bruhat^Tits.
This lemma also implies that the conjugacy classes within Ost�u� are in one-to-one
correspondence** with the M�F �-open orbits in g2�F �. On the other hand, a general
result in Galois cohomology ([12]) implies that the set of M�F �-open orbits in

*The point is not only that the centralizer MX of X in M is reductive, but that it is a Levi
component of the centralizer GX of X in G. For this see Proposition 2.4 in [4], supplemented
by Corollary 3.5 of [K], which shows that MX coincides with the centralizer in G of the entire
sl2-triplet.
**The reasoning seems unclear, but the statement is correct. One can use the result stated in
the previous footnote, which gives a bijection between the first Galois cohomology of MX and
that of GX , together with the injectivity of the canonical map from the first Galois
cohomology of M to that of G.
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g2�F � is in one-to-one correspondence with the set

Ker �H1�F ;Mv�ÿ!H1�F ;M��;

where v denotes a generic point of g2, and Mv is the stabilizer of v in M. The arrow
indicates the morphism between ¢rst Galois cohomology sets induced by the
inclusion Mv,!M.

Next, letG denote a symplectic group or a special orthogonal group of a quadratic
space. Each such group is equipped with an F -structure which induces an F -structure
on its Lie algebra and the various PVS, associated to the unipotent orbits. If G is of
rank n and type T 2 fB;C;Dg, then we shall often write Tn instead of G.

Let k 2 P�Tn� and write k � k0 [ ke where k0 consists of the odd parts of k and ke

consists of the even parts of k. We introduce prehomogeneous vector spaces
�M�k��; g2�k���, where � 2 f0; eg as follows. First note that we may (and do) write
t�k0� �: �m1; m22; . . . ; m2r �, where m1 X m2 X � � � X mr, and where m1 is odd if T � B
and is even if T � C or D; t�ke� �: �n21; � � � ; n2p�, where n1 X n2 X � � � X np, and where
n1 is even if T � B or D. Let ST�n1� denote the space of n1 � n1 skew symmetric
matrices if T � B or D, and let it denote the space of n1 � n1 symmetric matrices
if T � C. De¢ne

M�l0� :�
Yrÿ1
k�1

GL�mrÿk�1� � T�m1=2� ;

g2�l0� :�
Mrÿ1
j�1

Mat �mrÿj�1; mrÿj� ;

M�le� :�
Yp
j�1

GL�npÿj�1�;

g2�le� :�
Mpÿ1
j�1

Mat �npÿj�1; npÿj� � ST�n1�:

M�k0� acts on g2�k0� by

�g1; g2; . . . ; grÿ1; h� � �X1;X2; . . . ;Xrÿ1� :� �g1X0gÿ12 ; . . . ; grÿ1Xrÿ1hÿ1�;

gk 2 GL�mrÿk�1�; Xk 2Mat �mrÿk�1; mrÿk�; 1W kW rÿ 1; h 2 T�m1=2�;

M�le) acts on g2�ke� by

�g1; g2; . . . ; gp� � �X1;X2; . . . ;Xpÿ1;Y � :� �g1X1gÿ12 ; . . . ; gpÿ1Xpÿ1gÿ1p ; gpY
tgp�;

gj 2 GL�npÿj�1�, Xj 2Mat �npÿj�1; npÿj�, 1W jW p, Y 2 ST�n1�. Here, Mat �n;m�
denotes the space of n�m matrices, and �x� :� integer part of x.
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LEMMA 1.2.1. Let k 2 P�Tn�, T 2 fB;C;Dg. Let �M�k�; g2�k�� denote the PVS
corresponding to k. Then

M�k� �M�k0� �M�ke�; g�k� � g2�k0� � g2�ke� :

The action ofM�k� on g�k� is given by the actions ofM�k�� on g2�k��, where � 2 fo; eg.
Proof. Omitted. &

Next, we determine the fundamental relative invariants, the stabilizers of generic
points, and the M�k���F �-open orbit in g2�k���F �. In what follows we shall denote
by JT ;m1 the matrix representing the form used to de¢ne the group T�m1=2�. We start
with the PVS �M�k0�; g2�k0��. Let s denote the number of distinct parts occurring
in tk0 (or k0). We inductively de¢ne a subset fj1; j2; . . . ; jsg � f1; . . . ; rÿ 1g as follows.
Set j1 � 1. For 1 < `W s, let j` denote the smallest integer k larger than j`ÿ1 such that
mrÿk�1 < mrÿk. De¢ne the following functions on g2�l0�. For 1W kW sÿ 1, set
Qk :� XjkXjk�1 � � �Xrÿ1JT ;m1

tXrÿ1 � � � tXjk�1
tXjk , where Xi 2Mat �mrÿi�1; mrÿi� for

kW iW rÿ 1. Qk is then a mrÿk�1 � mrÿk�1 matrix.
Set

fk :� det�Qk�; if T � B or D
Pff �Qk�; if T � C;

� �
1W kW sÿ 1;

where Pff denotes the Pfaf¢an. Recall that a regular function j on a PVS �H; r;V � is
said to be a relative invariant* if there exists a non-trivial rational character w of H
such that j�r�h� � v� � w�h�j�v�, 8h 2 H, 8v 2 V .

LEMMA 1.2.2. The fundamental relative invariants for the PVS �M�k0�; g2�k0�� are
f1; . . . ; fsÿ1. &

The set of generic points of �M�k0�; g2�k0�� is the set of all v 2 g2�k0� such that
fi�v� 6� 0, 1W iW sÿ 1. Consider the following generic point of g2�l0�:
v0 :�Lrÿ1

j�1 �Imrÿj�1 ; 0�. Here, if 0 < m < n, then �Im; 0� denotes them� nmatrix, where
Im � identity m�mmatrix and the last nÿm columns are all zero. The stabilizer of
v0 in M�k0� is given as follows. If T 2 fB;Dg, then

stab M�k0��v0� � f�h1; . . . ; hr� 2 O�mr� �
Yrÿ1
j�1

O�mrÿj ÿ mrÿj�1� :
Yr
i�1

det hi � 1g;

and if T � C, then

stab M�k0��v0� � Sp�mr� �
Yrÿ1
j�1

Sp�mrÿj ÿ mrÿj�1�

(note that all the m's are even in this case).

*Recall also that the fundamental relative invariants are the irreducible polynomials on the PVS
whose zero-sets give the irreducible components of codimension 1 of the complementof the open
orbit in the PVS
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Remarks. (1) Since H1�F ;Sp�2m�� � h1i, we immediately see that if T � C, then
there is only one M�k0��F �-open orbit in g2�k0��F �.

(2) For T � B orD, write k0 � �la11 ; . . . ; lass �, ai X 1, 1W iW s. Then stab M�k0��v0� is
of type

Q
ai odd B�aiÿ1�=2 �

Q
ai even Dai=2.

(3) If T � B or D, then the group stab M�k0��v0�=�stab M�k0��v0��0 is isomorphic to
�Z=2Z�sÿ1. Moreover, using the description of stab M�k0��v0� given above one can
show that, for T � B or D, the set

Ker �H1�F ; Stab M�l0��v0��ÿ!H1�F ;M�k0���

is in one-to-one correspondence with the set of equivalence classes of quadratic
forms �qi�1W iW s, where qi is a nondegenerate quadratic form of rank ai such thatLs

i�1 qi has the same anisotropic kernel as the form used to de¢ne the orthogonal
group factor of M�k0�.

Next, we give another description of theM�k0��F �-open orbits in g2�k0��F �which is
more closely connected with the geometry of the PVS �M�k0�; g2�k0��. For each gen-
eric v 2M�k0��F �, and each 1W kW sÿ 1, Qk�v� is a mrÿk�1 � mrÿk�1 non-degenerate
symmetric matrix which we may think of as a nondegenerate quadratic form of rank
mrÿk�1. Thus, to each generic point v 2 g2�k0��F � we may attach quadratic forms
�Qk�v��1W kW sÿ1.

LEMMA 1.2.3. For each generic v1, v2 2 g2�k0��F �, v1 and v2 belong to the same
M�k0��F �-open orbit iff Qk�v1� is equivalent to Qk�v2� for all k, 1W kW sÿ 1. &

Remark 1.2.4. Not every �sÿ 1�-tuple �Qi�1W iW sÿ1 of quadratic forms with rank
Qi � mrÿi�1 does correspond to a generic point. The relationship between the
two classi¢cations of M�k0�-open orbits discussed above is given by the following
lemma (with the same notation as in the `Remarks').

LEMMA 1.2.5. Let v 2 g2�k0��F � be a generic point. Suppose that theM�k0��F �-open
orbit containing v corresponds to an s-tuple of equivalence classes of quadratic forms
�qi�1W iW s, with rank qi � ai. Then for 1W kW sÿ 1, we have Qk�v� �

Lk
i�1 qi. &

Next, we treat the PVS �M�ke�; g2�ke��. This time, let s denote the number of dis-
tinct parts occuring in tke (or ke). Inductively de¢ne fj1; j2; . . . ; jsg �
f1; 2; . . . ; pÿ 1g as follows. Set j1 � 1, for 1W `W s, let j` denote the smallest integer
k larger than j`ÿ1 such that mrÿk�1 <Mrÿk. De¢ne the following functions on g2�ke�.
For 1W kW s, set Qk :� XjkXjk�1 � � �Xpÿ1YtXpÿ1 � � � tXjk�1

tXjk , where Xi 2
Mat �npÿi�1; npÿi� for kW iW pÿ 1, Y 2 ST�n1�. Qk is then a npÿk�1 � npÿk matrix
for 1W kW s. Set

fk :� det�Qk�; if T � C;
Pff �Qk�; if T � B or D;

�
1W kW s:
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LEMMA 1.2.6. The set ff1; . . . ; fsg is a set of fundamental relative invariants for the
PVS �M�k0�; g2�ke��. &

Set v0 � �
Lpÿ1

j�0 �Inpÿj�1 ; 0�; IT �, where IT :� n1 � n1 identity matrix if T � C, and is
equal to the n1 � n1 skew symmetric matrix

0 In1=2
ÿIn1=2 0

� �
if T � B or D. If T � C, then stab M�ke��v0� � O�np� �

Qpÿ1
j�0 O�npÿj ÿ npÿj�1�, and if

T � B or D, then stab M�ke��v0� � Sp�np� �
Qpÿ1

j�1 Sp�npÿj ÿ npÿj�1�.
Remarks 1.2.7. (1) If T � B or D, then there is only one M�ke��F �-open orbit in

g2�ke��F �.
(2) If T � C, then the group stab M�le��v0�=�stab M�le��v0��0 is isomorphic to
�Z=2Z�s.

(3) Since H1�F ;Sp�2m�� � h1i, we see that the set of M�ke��F �-open orbits in
g2�ke��F �, assuming T � C, is in one-to-one correspondence with the set
H1�F ; stab M�ke��v0�� which in turn is in one-to-one correspondence with the set
of equivalence classes of non-degenerate quadratic forms �qi�1W iW s, where
rank qi � bi. Here ke :� �lb11 ; . . . ; lbss �.

We also have the following description of the M�ke��F �-open orbits on g2�ke��F �.
Assume T � C.

LEMMA 1.2.8. For each generic v1, v2 2 g2�ke��F �, v1 and v2 belong to the same
M�ke��F �-open orbit iff Qk�v1� is equivalent to Qk�v2� for all k, 1W kW s. &

The relationship between the two above classi¢cations is given by

LEMMA 1.2.9. Let v 2 g2�ke��F � be a given generic element. Suppose that the
M�ke��F �-open orbit containing v corresponds to an s-tuple of equivalence classes
of quadratic forms �qi�1W iW s with rank qi � bi. Then for 1W kW s, we have
Qk�v� �

Lk
i�1 qi : &

Remark 1.2.10. From the previous lemmas and remarks we ¢nd that the set of
G�F �-orbits within the stable orbit with corresponding partition k, correspond
bijectively to the M�k��-open orbits in g2�k���F � where � � o if T � B or D and
� � e if T � C. We may, thus, parametrize these orbits using the quadratic forms
Qk. Recall that the equivalence class of quadratic form q is determined by its dis-
criminant D�q� 2 F�=�F��2, and its Hasse-invariant Z�q� 2 f�1g.

1.3. THE EXPONENT Z�Ost� AND THE DEFINITION OF PACKETS OF ORBITS

NOTATION 1.3.1. Let k 2 P�T�. The stable unipotent orbit corresponding to k will
be denoted by Ost

l . Let k � k0 [ ke. Write k� � �ka11 ; . . . ; lass � where ai X 1, for
1W iW s. Here � � o if T � B or D and � � e if T � C. De¢ne Q1; . . . ;Qt as before,
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where t � sÿ 1 if T � B or D and t � s if T � C. Let O � Ost
l denote a rational orbit

corresponding to someM�k���F �-open orbit in g2�k���F �. Let v denote a generic point
belonging to that orbit. Set Di :� D�Qi�v��, Zi :� Z�Qi�v��, 1W iW t. We shall, then,
label O by

Ol�D1; Z1;D2; Z2; . . . ;Dt; Zt� :
Thus, the set of rational orbits within Ost

l may be parametrized by a subset of the
group �F�=�F��2�t � �Z=2Z�t : Next, we determine the adjoint classes* within
Ost

l , k 2 P�T�, where T � C or D, and is split. We keep the above notation.

LEMMA 1.3.2. Let k 2 P�T�. Let O1, O2 � Ost be two orbits. Let v1, v2 be two generic
elements contained in the M�k���F �-open orbits in g2�k���F � corresponding to O1, O2

respectively, where � � o if T � D and � � e if T � C. Then O1 is conjugate to
O2 under the adjoint group iff Qk�v2� is equivalent to Qk�sv1� 8k, 1W kW t,
8s 2 F�=�F��2. (Here sv is obtained from v by multiplying every entry of v by s.)
Proof. We use the fact that O1 is conjugate to O2 under the adjoint group iff there
exists �hj� 2 H1�F ;Z�, where Z � center of G, such that O2 � Ad hj�O1�
8j 2 Gal �F=F �. We realize G as the special isometry group of the form

In
eIn

� �
;

where e � 1 if G is orthogonal and e � ÿ1 if G is symplectic. Let t 2 f1; E; p; Epg, and
set Et :� F � ���

t
p �. For j 2 Gal �F=F �, let jt denote its restriction to Et. De¢ne

gt :� diag � ���
t
p
; . . . ;

���
t
p
;
�������
tÿ1
p

; . . . ;
�������
tÿ1
p

� 2 G. Then j 7!gjt
t gÿ1t is in H1�F ;Z�. Now,

a typical element of g2�F � has the form

X � A B
0 ÿtA

� �
;

where B is symmetric if G is symplectic, and is skew symmetric is G is orthogonal.
Then

Ad �gt�X � A tB
0 ÿtA

� �
:

The statement of the lemma can then be easily deduced. &

We now de¢ne the Z-exponent of a rational** unipotent orbit O and we also intro-
duce the concept of a packet of unipotent orbits.

1.3.3. De¢nition of Z�Ost�. Let k 2 P�T�. Following the notation in 1.2, let
O � Ol�D1; Z1; . . . ;Dt; Zt� denote a rational orbit within Ost

l . We de¢ne the
Z-exponent of Ost, denoted Z�Ost� as follows: Let k� � �la11 ; � � � ; lass �.
*The adjoint class of an element in G�F � is its orbit under the F -points of the adjoint group of
G.
**The Z-exponent only depends on the stable orbit. Its definition (see 1.3.3) involves a
partition k�; presumably k� is the partition defined in 1.3.1.
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Z�Ost� :� #fk; 1W kW s, such that ak > 1g ÿ d; if there exists at least one j, 1W jW s
such that aj > 1. Here d � 1 if T � B or D, and d � 0 if T � C.

If aj � 1 for every 0W jW t, then we set Z�Ost� � 0.

1.3.4. De¢nition of packets. Let k 2 P�T�. Let I�k� :� f1; . . . ; tg, write I�k� �
I0�k� [ Ie�k� ;where

I0�k� :� fi 2 I�k� : rankQi is odd g; Ie�k� :� fi 2 I�k� : rankQi is even g:

Let

I��k� � I0�k�; if T = B,
Ie�k�; if T = C or D .

�
Let c : I�ÿ!F�=�F��2. We associate a packet

Q�k;c� of unipotent orbits within Ost
k

as follows:Y
�l;c� :� fOk�D1; Z1; � � � ;Dt; Zt� � Ost

k : Da � c�a� if a 2 I��k�g

Remark 1.3.5. For split even orthogonal groups and symplectic groups, each
packet is a union of adjoint orbits.

2. The Springer Correspondence and Transfer of Packets

2.1. THE SPRINGER CORRESPONDENCE

Let G denote a connected reductive algebraic group over F . Let W denote the
abstract Weyl group of G. Let u 2 G be a unipotent element and let Bu denote
the variety of Borel subgroups of G containing u. Set e�u� :� dimBu, and de¢ne
the group A�u� :� ZG�u�=�ZG�u��0Z�G�, where ZG�u� is the centralizer of u in G
and �ZG�u��0 denotes the identity connected component of ZG�u�, and Z�G� :� center
of G. The group A�u� acts naturally on the set of irreducible components of Bu, and
hence on the ëtale cohomology space H��Bu;Q`�, ` 6� p. Springer has de¢ned a rep-
resentation of W on H2e�u��Bu;Q`� which commutes with the action of A�u�. For
every irreducible representation f of A�u�, let Eu;f :� Hom A�u��f;H2e�u��Bu;Q`��
regarded as a W -module. Springer has shown that Eu;f is either �0� or is an
irreducible module of W , and that every irreducible W -module is obtained in this
way. Moreover, Eu1;f1

� Eu2;f2
iff �u1;f1� and �u2;f2� are conjugated in G. Thus

one obtains an injection, called the Springer correspondence, between the set of
irreducible representations of W and the set of pairs �O;j� where O is a unipotent
conjugacy class and j 2 dA�u�, where u 2 O. The pairs �O; 1�, where 1 denotes the
trivial character, are always in the image of the Springer correspondence. Assume
now that G is of type Bn or Cn. The irreducible representations of W can then
(following Lusztig) be parameterized by symbols of rank n and defect 1, i.e. tableaux
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of the form

L � a1a2 � � � am�1
b1b2 � � � bm

� �
;

where

0W a1 W a2 < . . . < am�1; 0W b1 < b2 < � � � < bm

are all integers with
P

ai �
P

bi � n�m2. An irreducible representation is special if
its corresponding symbol satis¢es the conditions

a1 W b1 W a2 W b2 W � � � W bm W am�1 :

If G is of type Dn, then the irreducible representations of W can be (again following
Lusztig) parametrized using symbols of rank n and defect 0 (in which the ¢rst
and second rows can be interchanged), i.e. tableaux of the form

L � a1a2 � � � am
b1b2 � � � bm

� �
� b1b2 � � � bm

a1a2 � � � am

� �
;

where

0W a1 < a2 < � � � < am; 0W b1 < b2 < � � � < bm

are integers and
P

ai �
P

bi � n�m2 ÿm. If fa1; . . . ; amg 6� fb1; . . . ; bmg, then L
corresponds to only one irreducible representation of W . If fa1; . . . ; amg �
fb1; � � � ; bmg, the n is necessarily even and L corresponds to a direct sum of two
irreducible representations of W . An irreducible representation of W is special
if the corresponding symbol satis¢es the conditions

a1 W b1 W a2 W b2 W � � � W am W bm

or

b1 W a1 W b2 W a2 W � � � W bm W am :

Here, we understand that if fa1; . . . ; ang � fb1; . . . ; bng, then each of the irreducible
components of the representation of W corresonding to L is special.

In all cases discussed above, irreducible representations which are not special are
called nonspecial. Symbols corresponding to special representations will be called
special symbols. Lusztig has partitioned bW into certain families (cf. [9]). Each family
contains a unique special irreducible representation of W . The families can be
described using symbols as follows. Two irreducible characters of W belong to
the same family if and only if they possess symbols for which the unordered sets
fa1; . . . ; am�1; b1; . . . ; bmg (resp. fa1; . . . ; am; b1; . . . ; bmg) are the same if G is of type
B or C (resp. D). When G is of type D and fa1; . . . ; amg � fb1; . . . ; bmg, then each
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irreducible component of the character corresponding to the given symbol consti-
tutes one family. The Springer correspondence gives rise to a map O 7!Eu;1; where
O is a unipotent orbit, u 2 O, and 1 2 dA�u� is the trivial character. This map allows
us to transfer the notions of special, nonspecial and families to unipotent orbits.

DEFINITIONS 2.1.1. (i) O is said to be special (resp. nonspecial) if Eu;1 is special
(resp. nonspecial).

(ii) O1 and O2 are said to belong to the same family if Eu1;1 and Eu2;1 belong to the
same family of irreducible characters. Here ui 2 Oi, i � 1; 2.

Next, we give a description of the mapO 7!Eu;1 in terms of partitions and symbols.
We shall employ the following notation: If l � �m1; . . . ; mp� is a partition, we set

�12 l� :� ��mp=2�; . . . ; �m1=2�� ;
�12 l� � 1 :� ��mp=2� � 1; . . . ; �m1=2� � 1� ;

(note the change in order).
Now, let k � �l1; . . . ; lr� 2 P�Tn�, T 2 fB;C;Dg, and de¢ne k� :� �l1 � rÿ 1; l2�

rÿ 2; . . . ; lrÿ1 � 1; lr� �: k0� [ ke�. If T � B or D, then the orbit corresponding to

k gets mapped to the character with symbols �12k0��
�12ke��

� �
. If T � C, then the orbit cor-

responding to k gets mapped to the character with symbol �12ke��
�12k0��

� �
if `�k� is odd,

and gets mapped to the character with symbol 0;�12k0���1
�12ke��

� �
if `�k� is even. This follows

easily from results in Sections 11.4 and 13.3 of [5].

NOTATION. Given T 2 fB;C;Dg, we shall denote by Psp�Tn� the set of partitions
corresponding to the special orbits in groups of type Tn. The following description
of Psp�Tn� is well known (cf. 13.4 in [5], supplemented by 3.9 and 3.11 in Ch. III
of [13]).

Let k � �l1; . . . ; lr�.
(i) k 2 Psp�Bn� , l2i and l2i�1 have the same parity for all i with 1W iW �r=2� ,

tk 2 P�Bn�.
(ii) k 2 Psp�Cn� , l2iÿ1 and l2i have the same parity for all i with 1W iW �r=2� ,

tk 2 P�Cn�.
(iii) k 2 Psp�Dn� , l2iÿ1 and l2i have the same parity for all i with 1W iW �r=2�.

Next, we describe the families of orbits alluded to above. Let k 2 Psp�Tn�,
T 2 fB;C;Dg. Write

k � k0 [ ke Set k� :� k0; if T � B or D
ke; if T � C

�
:

Assume that k� �: �ma11 ; . . . ; marr �, and de¢ne k�1, k
�
2 by

k� �: k�1 [ k�2 and k�1 :� �me11 ; . . . ; merr � �: �n1; n2; . . . ; nk�;
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where ei � ai ÿ 2 if ai > 2 and ei � ai otherwise �1W iW r�. If T � C and `�k� is even
we add a zero entry nk�1 � 0 to k�1. Now de¢ne Al as follows.

(i) If T � B, Ak :� f unless n2iÿ1 ÿ n2i � 0 or 2 for all i with 1W iW �k=2�, and
nk � 1. If these conditions are satis¢ed then we set Al :� f1W iW �k=2� :
n2iÿ1 ÿ n2i � 2g.

(ii) If T � C, Al :� f unless v2i ÿ v2i�1 � 0 or 2 for all i with 1W iW �k=2�, and
vk � 2. If these conditions are satis¢ed then we set Al :� f1W iW �k=2� :
n2i ÿ n2i�1 � 2g.

(iii) If T � D, Al :� f unless n2i ÿ n2i�1 � 0 or 2 for all i with 1W iW �k=2�, and
nk � 1. If these conditions are satis¢ed then we set Al :� f1W iW �k=2� :
n2i ÿ n2i�1 � 2g.

For any subset J � Al, de¢ne the partition k�1�J� � �n�1; . . . ; n�k� as follows.

(i) If T � B, then for all i with 1W iW �k=2�

�n�2iÿ1; n�2i� :�
�n2iÿ1; n2i� ; if i 62J,
�n2iÿ1 ÿ 1; n2i � 1� ; if i2J.

�
(ii) If T � C or D, then for all i with 1W iW �k=2�

�n�2i; n�2i�1� :�
�n2i; n2i�1� ; if i 62J,
�n2i ÿ 1; n2i�1 � 1� ; if i2J.

�
Now for J � Il, set k�J� :� k�1�J� [ k�2 [ k��, where

k�� � ke if T = B or D,
k0 if T = C.

�
LEMMA 2.1.2. The assignment J � Al 7!Ol�J� establishes a bijection between the
power set of Al and the family containing the special orbit Ol.

Proof. Using the prescription given above for the map O 7!Eu;1 one checks that
the symbols corresponding to k�J�, J � Al, belong to the same family. One then
observes that every partition is of the form k�J� for some k 2 Psp�Tn� and some
J � Ak. &

2.2. THE GROUP A�u� AND THE PACKETS

Assume that Eu;f is an irreducible character of the Weyl group of some reductive
group, where u is a unipotent element and f 2 dA�u�. Lusztig has de¢ned a integer
aEu;f by requiring that taEu;f is the highest power dividing the generic degree of
Eu;f (see [9]).

DEFINITION 2.2.1 ([9]) Let u 2 G be a special unipotent element. SetdA�u�0 :� ff 2 dA�u� : Eu;f 6� �0�, and aEu;f � dimBug. The group A�u� is the largest
quotient of A�u� through which all f 2 dA�u�0 do factor.
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NOTATION 2.2.2. We will occasionally write A�O� ifO � O�u� or A�k� ifO�u� � Ok

in place of A�u�. Similar conventions will be applied to A�u� as well as
C�u� :� ZG�u�=�ZG�u��0.

Remark 2.2.3. For orthogonal and symplectic groups, the group A�u� is
isomorphic to �Z=2Z�k for some k 2N which can be calcluated from the symbol
attached to k as follows (see [5]). IfG is of type B orC, then the set of entries occuring
only once in the symbol has cardinality 2k� 1. IfG is of typeD, then the set of entries
of the symbol which appear in just one row has cardinality 2k. The integer k can also
be calculated directly from the partition as follows. Let k 2 P�Tn�, and
k� �: �la11 ; . . . ; lass �, where k� �: k0 if T � B or D and k� � ke if T � C. Let
t � sÿ 1 if T � B or D and t � s if T � C. Let I��k� be as de¢ned in 1.3.4.

LEMMA 2.2.4. Let l 2 Psp�Tn�. Then rank A�k� � #�I��k��. &

Remark 2.2.5. (i) If G is a symplectic, or a unrami¢ed quasi-split orthogonal
group, and k a special partition such that Ost

l 6� f, then the number of packets par-
titioning Ost

l is equal to the number of irreducible unipotent characters of G�Fq�
which are associated with k (see [5]).

(ii) If G is symplectic or quasi-split orthogonal, then for any k such that Ost
k 6� f,

we may parametrize the set of packets partitioning Ost
l using the set

Hom Z=2Z�A�u�;F�=�F��2� :

2.3. DUALITYAND PACKETS

Let G be of type Tn, T 2 fB;C;Dg and let Ĝ denote the dual group which we take to
be de¢ned over the ¢eld F .

In [13], Spaltenstein de¢nes two duality maps. The ¢rst map is an order preserving
isomorphism dTn � d : Psp�Tn� ! Psp�T̂n�(T̂ is the type dual to T). The second map is
an order reversing isomorphism

DTn � D : Psp�Tn� ! Psp�T̂n�:

When G is odd orthogonal or symplectic then the map D is related to the map d by:
D�k� � t�d�k�� for every special k. WhenG is even orthogonal, then d�k� � k for every
special k.

NOTATION 2.3.1. We shall often write k̂ instead of d�k� and Lk instead ofD�k�. The
above duality maps have a simple meaning in terms of the Springer correspondence.
The map d regarded as a map between special symbols, via the correspondence
O�u�7!Eu;1, is just the identity map. The map D is obtained from d by tensoring
the irreducible character corresponding to d�k� by the sign character. It thus follows
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that we get isomorphisms

A�k� � A�k̂� � A�Lk�; k special.

As a consequence, the sets I��k�, I��k̂�, I��Lk� (see 1.3.4.) do all have the same
cardinality. These sets, as subsets of N, are equipped with a natural order* which
allows us to de¢ne two order-preserving bijections il̂ : I��k� ! I��k̂� and
iLl

: I��k� ! I��Lk�, where k is special. These bijections induce the following
correspondences of packets.

DEFINITION 2.3.2. Let
Q�k;c� be the packet associated to the special partition k

and c: I��k�ÿ!F�=�F��2. De¢ne bQ�k;c� :�Q�k̂;c��il̂�ÿ1� and LQ�k;c� :�Q�Lk;c�iLl
�ÿ1�.

For later purposes we shall need to explicitly describe the duality maps d and D.

(i) G is of type Bn.
Let k 2 Psp�Bn� with k � k0 [ ke. k0 has an odd number of parts, so we may (and
do) write k0 :� �m1; . . . ; m2r�1�. Now de¢ne k0 :� �m�1; . . . ; m�2r; m2r�1 ÿ 1�, where
for 1W iW r

�m�2iÿ1; m�2i� �
�m2iÿ1; m2i�; if m2iÿ1 � m2i;
�m2iÿ1 ÿ 1; m2i � 1�; if m2iÿ1 > m2i:

�
Set k :� k0 [ ke. Note that k 2 Psp�Cn�.

(ii) G is of type Cn.
Let k 2 Psp�Cn� with k � k0 [ ke. Assume ¢rst that `�ke� is even. In this case
assume that ke �: �m1; m2; . . . ; m2r�. Set ke :� �m1 � 1; m�2; . . . ; m�2rÿ2; m

�
2rÿ1;

m2r ÿ 1; 1�, where for 1W iW rÿ 1

�m�2i; m�2i�1� :� �m2i; m2i�1�; if m2i � m2i�1;
�m2i ÿ 1; m2i�1 � 1�; if m2i > m2i�1:

�
Set k :� k0 [ ke.
Next, assume that `�ke� is odd and that ke �: �m1; . . . ; m2r�1�.
De¢ne ke :� �m1 � 1; m�2; . . . m�2r�1� , where for 1W iW r

�m�2i; m�2i�1� :� �m2i; m2i�1�; if m2i � m2i�1;
�m2i ÿ 1; m2i�1 � 1�; if m2i > m2i�1:

�
In this case set k :� k0 [ ke.
In both cases considered above, we have k 2 Psp�Bn�.

(iii) G is of type Dn.

*The referee requested a clarification of this natural order. Each of the sets I��k�, I��k̂�, I��Lk�
is a subset of N and hence inherits a total ordering from the standard total ordering on N.
Presumably this is what is meant by the natural order.
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Let k 2 Psp�Dn� with k � k0 [ ke. Then `�k0� is even and we will write
k0 �: �m1; . . . ; m2r�, and de¢ne k0 :� �m1 � 1; m�2; . . . ; m�2rÿ1; m2r ÿ 1�, where for
1W iW rÿ 1,

�m�2i; m�2i�1� :� �m2i; m2i�1�; if m2i � m2i�1;
�m2i ÿ 1; m2i�1 � 1�; if m2i > m2i�1:

�
Set k :� k0 [ ke.

LEMMA 2.3.3. (i) If G is of type B or C, then d�k� � k for any special k.
(ii) If G is of type B, C or D, then D�k� � tk for any special k.
Here k is the partition de¢ned in the preceding discussion. &

2.4. ENDOSCOPIC INDUCTION

DEFINITION 2.4.1. Let G denote a connected reductive algebraic group G de¢ned
over F , and H an endoscopic group of G. Let OH be a unipotent orbit in H. By
the Springer correspondence, the pair �OH ; 1� is associated to an irreducible rep-
resentation s of W �H�, the Weyl group of H. The Weyl group W �Ĥ� of the dual
group Ĥ of H can be identi¢ed with a re£ection subgroup of the Weyl group
W �Ĝ� of Ĝ. On the other hand W �H� and W �G� can be identi¢ed with W �Ĥ�
and W �Ĝ� respectively* up to inner automorphisms. Using truncated induction (cf.
[5]), s gives rise to an irreducible representation r of W �G�. If r corresponds to
a pair �OG; 1� for some unipotent orbit OG in G, then we declare that OH is in
the domain of endoscopic induction and that OG is its image. We then write
OG � IndG

HOH .

Remark 2.4.2. (i) The domain of endoscopic induction contains all special orbits.
(ii) Endoscopic induction was, basically, ¢rst introduced by Lusztig in ([9]), who

regarded it as a map from the special orbits in the dual group Ĥ to orbits in G.
Endoscopic induction is the composition of the map de¢ned by Lusztig and the
duality map.

(iii) In [1], we proved that (over C) endoscopic induction is the unique map
between the set of special orbits in H�C� and the set of unipotent orbits in G�C�
which produces matching unipotent orbital integrals.

Next, recall (cf. [5]) that the unipotent orbits in G can also be parameterized using
weighted Dynkin diagrams and that a unipotent orbit is said to be even if all the
weights on the associated diagram are even.

The next lemma is stated as an observation in ([4], p. 105).

*As the referee points out, these identifications are only canonical modulo inner
automorphisms.
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LEMMA 2.4.3. Let G be a connected semisimple algebraic group =F. Let OG be a
special unipotent orbit in G. Assume that the dual orbit LOG is even. Let H be an
endoscopic group of G, and OH a special orbit in H. Assume further that
OG � IndG

HOH. Then LOG \ Ĥ � LOH. &

Let G be type B, C or D. A direct description* of endoscopic induction in terms of
partitions is given as follows. Recall that the endoscopic groups of G are of the
following types:

G H
ÿÿ ÿÿÿÿÿÿÿÿÿ
Bn Bk � Bnÿk; 0W kW �n=2�;
Cn Ck �Dnÿk; 0W kW n;
Dn Dk �Dnÿk; 0W kW �n=2�:

LEMMA 2.4.4. LetG be as above andH � H1 �H2 be an endoscopic group ofG. Let
Oi be a special orbit in Hi, i � 1; 2 and OG a unipotent orbit in G such that
OG � IndG

H1�H2
O1 �O2. Then

k�OG� � infP�G��k�O1� � k�O2�� :

Proof. In ([13], p. 219) Spaltenstein introduced a set of axioms describing a system
of maps fjH;Gg de¢ned on the set of special orbits in endoscopic groups (and gen-
eralized versions thereof) H of G. He proved the existence and uniqueness of such
systems, and that the recipe given in the statement of the lemma is such a solution
for groups of type B, C, D. On the other hand it is well known that endoscopic
induction, as de¢ned in 2.4.1, satis¢es all the Spaltenstein axioms.** &

2.5. TRANSFER OF PACKETS

Our aim here is to de¢ne the endoscopic transfer of the Packets (see De¢nition 1.3.4)
contained in a stable special orbit in an elliptic endoscopic group of a symplectic or
split special orthogonal group. The de¢nition will be introduced in three steps of
increasing levels of generality. The main step is the ¢rst; each of the next two steps
reduces to the preceding step. To be more precise, let G denote a symplectic or split
orthogonal group, andH an elliptic endoscopic group of G. Let OH denote a special
orbit in H, and set OG :� IndG

HOH and let k denote the partition with Ol :� OG.

*The description given in Lemma 2.4.4 is incorrect in cases C and D, as Waldspurger has
observed. The error arises from a misunderstanding of Spaltenstein's map jH;G. What follows
from Spaltenstein's work is that k�OG� � infP�G��k�O1� � k�O2��, with k defined as in the
discussion preceding Lemma 2.3.3. This is true for G of all three types (B, C, D); note that
when G is of type Cn the numbering of O1 and O2 must be chosen so that O2 comes from the
factor Dnÿk of H. It is interesting that when G is of type Bn Assem's version, while different
from Spaltenstein's, is also correct.
**Section 12.6 in Ch. III of [13] is useful at this point.
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Assume that Ost
H 6� f. (Since G is split, we then have Ost

G 6� f). The ¢rst step deals
with the situation where the set of parts of k is of the special form f2; 4; . . . ; 2rg
if G is symplectic, or of the form f1; 3; . . . ; 2r� 1g if G is orthogonal. These orbits
are all special and enjoy the property that their dual orbits LOl are even. In the
second step we consider the situation where k consists only of even (resp. odd) parts
when G is symplectic (resp. orthogonal). This situation is reduced to the situation
handled in the ¢rst step via Lemma 2.5.10. In the third step we treat the general case.

Before we proceed we need to introduce a certain set associated to any partition
k 2 P�Tn�.

DEFINITION 2.5.1. Let k 2 P�Tn�, T 2 fB;C;Dg with k � k0 [ ke. Set k� :� k0 if
T � B or D and set k� � ke if T � C. The set S�k�, of segments associated with
k, is de¢ned as follows. Let k� �: �la11 ; . . . ; lass �. Then
(i) S�k� :� f�la11 ; . . . ; lak1 � : 1W kW s ^Pk

i�1 ai is odd g if T � B;
(ii) S�k� :� f�la11 ; . . . ; lak1 : 1W kW s ^Pk

i�1 ai is even g if T � C or D.

DEFINITION 2.5.2. If T � B or D, then #S�k� � #I��k� � 1, and if T � C, then
#S�k� � #I��k� (recall defn. 1.3.4.). If T � B or D, we de¢ne S��k� :�
S�k� ÿ f�la11 �g, and if T � C, we de¢ne S��k� :� S�k�. Thus #S��l� � #I��l�. The sets
S�k� will be ordered using the natural order on partitions, thus �la11 ; . . . ; lakk �W
�la11 ; . . . ; la`` � iff kW `.

DEFINITION 2.5.3. Let bk : S��k�ÿ!I��k� denote the unique order reversing
bijection, where I��l� is equipped with the natural the ordering (as a subset
of N).
EXAMPLE 2.5.4. Let k :� �91; 82; 72; 64; 53; 31; 22; 14�. Then k� � k0 � �91; 72; 53;
31; 14�. Note that rankQ1 � 1, rankQ2 � 3, rankQ3 � 6, rankQ4 � 7. Hence,
I��k� � f1; 2; 4g. On other hand, S��k� � f�91; 72�, �91; 72; 53; 31�, �91; 72; 53; 31; 14�g.

Now, we proceed to de¢ne the transfer of stability packets in the following con-
text:

. G � symplectic or split special orthogonal group.

. H � H1 �H2, an elliptic endoscopic group of G.

. l1, l2 two special partitions corresponding to the orbits Om1 , Om2 in H1, H2

respectively. We set OH :� Om1 �Om2 , and OG :� IndG
HOH . Let k be the par-

tition with OG :� Ol. We further assume that Ost
H 6� f.

De¢nition of transfer of packets (Step 1)
Assume that the set of distinct parts of k is of the form f1; 3; . . . ; 2r� 1g if G is
orthogonal and is of the form f2; 4; . . . ; 2rg if G is symplectic. Then Ol is necessarily
special and its dual LOl is even, as can be easily checked using Lemma 2.3.3. Since
H is necessarily quasi-split, it splits over some quadratic extension of F . Let
t 2 f1; e; p; epg such that F � ���

t
p �=F is the minimal extension over which H is split.

Let
Q

i �
Q

i�li;ji� � Ost
mi
, denote the packets associated to ji : I��li�ÿ!
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F�=�F��2, i � 1; 2 (see De¢nition 1.3.4.). We shall use duality (see De¢nition 2.3.2.)
to reduce the problem of `transferring'

Q
H :�Q1�

Q
2 into that of transferring

the dual packet LQ
H :� LQ

1�LQ
2 � Ost

Lm1
�Ost

Lm2
� Ĥ1�F � � Ĥ2�F �. At this point,

and before we proceed, we have to be clear about the meaning of Ĥi�F �, i � 1; 2. We
do regard Ĥi as a group de¢ned over F which splits over the same ¢eld as does Hi.
Now, if A�l� � h1i, then Ost

l contains only one packet, namely Ost
l itself, in which

case we always de¢ne the transfer of
Q

H to be Ost
l . Thus, we shall assume that

A�l� 6� h1i. This assumption is equivalent to the condition S��Ll� 6� f.
Consider now the following eight (mutually exclusive) conditions that may be

satis¢ed by an element z 2 S��Lk�:
(i) 9x 2 S��Ll1� such that z � x,
(ii) 9y 2 S��Ll2� such that z � y,
(iii) 9�x; y� 2 S��Ll1� � S��L l2� such that z � x [ y,
(iv) 9x 2 S��Ll1� ^ 9y 2 S�Ll2�nS��Ll2� such that �z � x [ y ^ every part of y is

smaller than every of x�,
(v) 9x 2 S��Ll1� ^ 9y 2 S�Ll2�nS��Lm2� such that �z � x [ y^ some part of y is

larger than some part of x�,
(vi) 9x 2 S�Ll1�nS��Ll2� ^ 9y 2 S��Lm2� such that �z � x [ y^ every part of x is

smaller than every part of y�,
(vii) 9x 2 S�Ll1�nS��Ll1� ^ 9y 2 S��Lm2� such that �z � x [ y^ some part of x is

larger than some part of y�.
(viii) 9�x; y� 2 ÿS�Ll1�nS��Ll1��� ÿS�Ll2�nS��Ll2�� such that z � x [ y.

Remark 2.5.5. IfG is odd orthogonal, then S�Lli� � S��Lli�, i � 1; 2, hence the last
¢ve conditions are vacuous.
Now de¢ne

S��Lk; Ll1; Ll2� :� fz 2 S��Ll� : z satisfies one of the conditions (i)-(viii) g :

For i � 1; 2, denote the yi the composition of the following maps

S��Lli� ÿÿÿ!
bLmi I��Lli�ÿÿÿ!

�iLmi
�ÿ1

I��li�ÿÿÿ!
ji F�=�F��2 ;

and de¢ne y : S��Lk; Ll1; Ll2�ÿÿÿ!F�=�F��2 by

y�z� :�

y1�x� , if (i)
y2�y� , if (ii)
y1�x�y2�y� , if (iii)
1 mod �F��2 , if (iv)
y1�x� , if (v)
1 mod �F��2 , if (vi)
y2�y� , if (vii)
1 mod �F��2 , if (viii) .

8>>>>>>>>>><>>>>>>>>>>:
Set yt�z� :� t � y�z� (recall that Et is the minimal extension of F over which H splits).
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DEFINITION 2.5.6. Under the above given assumption on k, we de¢ne the transfer
of the packet

Q
1�l1;j1� �

Q
2�l2;j2�, denoted by TranG

H
Q

1�l1;j1� �
Q

2�l2;j2� to
be the union

`
yt

Q�k; yt � bÿ1Ll � iLl�, where the union is taken over all
yt : S��Lk� ! F�=�F��2 which extend yt.

De¢nition of transfer of packets (Step 2)
Now, assume that k � �la11 ; . . . ; larr � contains only odd parts if G is orthogonal, or
contains only even parts if G is symplectic. This situation can be reduced to the
one discussed in step 1 via descent as will be discussed below. First we recall the
de¢nition of induction of rational orbits from a Levi subalgebra.

DEFINITION 2.5.7. Let g denote a reductive Lie algebra, and let p � m� n be a
Levi decomposition of some parabolic subalgebra. Let O denote a nilpotent orbit
in m�F �. De¢ne Indg

mO to bet the set of all nilpotent orbits in g�F � which intersect
O� n�F � in an open set.

Next, let k be as given above. De¢ne the Levi subgroup Ml by Ml :� GLl �G0l ;
where

GLl :�
Yrÿ1
i�1
�GL�a1 � � � � � ai��liÿli�1ÿ2=2 ;

and G0k :� unique group of the same classical type as G such that 2 rankG0l�Prÿ1
i�1 �a1 � � � � � ai��li ÿ li�1 ÿ 2� � 2 rankG.
Let k0 denote the partition obtained from k by replacing each lrÿi by either 2i � 2 if

G is symplectic or by 2i � 1 if G is orthogonal, where 0W iW rÿ 1. Note then k0

satis¢es the conditions of step1 and corresponds to an orbit Ol0 in G0. Moreover,
we have

LEMMA 2.5.8. There exists a one-to-one correspondence O0 ! O between
Ost

l0 � G0l�F � and Ost
l � G�F � given by

O � IndG
Ml
�1;O0� ;

where, here 1 denotes the trivial orbit in GLl�F �.
Proof. This follows easily from comparing the Prehomogeneous spaces associated

to Ol and Ol0 and then applying the de¢nition of induction. For more details, see the
argument in Lemma 1.3.1. in [2]. &

COROLLARY 2.5.9. The correspondence established in Lemma 2.5.8. gives rise to a
1-1 correspondence between the packets within Ost

l0 and those within Ost
l .

Proof. Clear. &

LEMMA 2.5.10. For i � 1; 2, there exists a Levi subgroup Mmi � Hi of the form
Mmi � GLmi �H0mi and partition l0i corresponding to an orbit Om0i in Hi such that
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(i) H0m1 �H0m2 is an elliptic endoscopic group of G
0
l which splits over the same extension

Et=F as does H.
(ii) GLm1 �GLm2 � GLl.

(iii) Ol0 � Ind
G0l
H 0m1�H 0m2

�Om01 ;Om02�.
(iv) The map U 0i 7!Ui between Ost

m0i
and Ost

mi
given by

Ui :� Ind
H 0mi
Mmi
�1;U 0i �

is a one-to-one correspondence which preserves packets. Here, again 1 is the appro-

priate trivial orbit (a convention which we shall adhere to).

Proof. Since Ol � IndG
H1�H2

Om1 �Om, we have k � infP�G��l1 � l2�. The proof
then consists of writing down the parts of l1 and l2, then using the above relation
and the de¢nition of k0. The details are straightforward. &

Thus we have the following situation

�1;Ol0 � � GLl �G0l �Ml
�ÿÿÿÿÿÿ! Ol � G

TranMl
Mm1�Mm2

x????
x????TranG

H1�H2

�1; 1;Om01 ;Om02 � � GLm1 �GLm2 �H0m1 �H0m2 �Mm1 �Mm2
� ÿÿÿÿÿÿ! �Om1 ;Om2 � � H1 �H2;

where the study of the right vertical arrow can be reduced to the study of the left
vertical arrow, which then reduces to the study of the transfer of the packets in
Ost

m01
�Ost

m02
to Ost

l . This observation leads to the following de¢nition:

DEFINITION 2.5.11. Let k, l1, l2 be as above, and let
Q

i � Ost�li�, i � 1; 2, be two
given packets. Let

Q0
i � Ost�l0i� denote the packets corresponding to m0i as assured by

Lemma 2.5.10. De¢ne the transfer of
Q

1�
Q

2 to Ost
l , denoted by TranG

H
Q

1�
Q

2,
to be IndG

Ml

h
TranMl

Mm1�Mm2

ÿ�f1g �Q01� � �f1g �Q02��i.
De¢nition of transfer of packets (Step 3)

Let k denote any partition in P�Tn�, and let k� be as usual (see Notation 1.3.1).
Then, of course, I��k� � I��k��, hence there exists a natural one-to-one correspon-
dence between the packets within Ost

l and those within Ost
l� . Let Tn� denote the group

containing Ol� . The following lemma is not dif¢cult to prove.

LEMMA 2.5.11. Let l1, l2, be the two special partitions with corresponding orbits
Om1 � H1, Om2 � H2 such that OG � IndG

H1�H2
�Om1 ;Om2 �. Then there exists a pair

��l1; �l2� of special partitions such that

(i) #I���mi� � #I��mi�, for i � 1; 2,
(ii) infP�Tn� ���m1 � �m2� � l�. &
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By (i) of Lemma 2.5.11, there exists a natural bijection,
Q 7!�Q, between the

packets within Ost
li
and those within Ost

li
, induced by the order preserving bijection

between I���li� and I��li�, i � 1; 2. As noted above, we also have a natural bijection
between the packets within Ost

l and those within Ost
l� .

DEFINITION 2.5.12. Let
Q

i � Ost
mi
, i � 1; 2, be two given packets. De¢ne the

transfer of
Q

1�
Q

2, denoted TranG
H
Q

1�
Q

2, to be the union of all packets within
Ost

l which correspond (under the natural bijection discussed above) to the packets
within Ost

l� obtained by transferring �
Q

1��
Q

2 to Ost
l� according to the de¢nition

of transfer in step 2.

3. A Transfer Calculation

3.1. NOTATION AND SOME UNIPOTENT ORBITS

Let nX 1 be an integer. Consider the following partitions k�n; k� of 2n� 1:

k�n; k� :�
ÿ
nÿ 2k; nÿ 2k; 14k�1

�
; if 0W kW nÿ1

2 ; n odd;ÿ
nÿ 2kÿ 1; nÿ 2kÿ 1; 14k�3

�
; if 0W kW nÿ2

2 ; n even :

(

The unipotent orbit in SO�2n� 1� corresponding to k�n; k� will be denoted, in this
section, by O�n; k� instead ofOl�n;k�. Note that k�n; k� corresponds to the trivial orbit
when k � �nÿ 1�=2, n odd; or when k � �nÿ 2�=2, n even. Next, we discuss some
basic properties of these orbits.

LEMMA 3.1.1. Assume that 0W kW �nÿ 1�=2 for n odd, and 0W k < �nÿ 2�=2 for n
even, nX 4. Then

(i) A�k�n; k�� � Z=2Z, A�k�n; k�� � h1i
(ii) O�n; k� is a Richardson orbit, induced from the trivial orbit in
�GL�2���nÿ2kÿ1�=2 � SO�4k� 3�, if n is odd, and is induced from the trivial orbit
in �GL�2���nÿ2kÿ2�=2 � SO�4k� 5� is n is even.

Proof. Clear. &

Let �M�n; k�; g2�n; k�� denote PVS associated with k�n; k�. Then we have

Mn;k �
�GL�2���nÿ2kÿ1�=2 � SO�4k� 3� ; 0W k < nÿ1

2 ; n odd;

�GL�2���nÿ2kÿ2�=2 � SO�4k� 5� ; 0W k < nÿ2
2 ; n even

(

and

g2�n; k� �
�Mat �2; 4k� 3� ; 0W k < nÿ1

2 ; n odd;

�Mat �2; 4k� 5� ; 0W k < nÿ2
2 ; n even

(

Mn;k acts on g2�n; k� by g1; . . . ; g`; h� � X :� g`Xth, where gi 2 GL�2�, 1W iW `,
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h 2 SO�2m� 1�, and X 2Mat �2;m�. Here we used `;m for the appropriate integers
given in the descriptions of Mn;k and g2�n; k� above.

Assume now that

k 6�
nÿ1
2 ; n odd

nÿ2
2 ; n even

�

i.e. O�n; k� is not the trivial orbit. Then X 2 g2�n; k� is a generic point iff
det�XJ4k�3�etX � 6� 0: Here, Jp is the form used to de¢ne SO�p�, and

e � 0; if n odd
1; if n even

�

Thus to each generic point 2 g2�n; k��F �, there is an F -rank 2 quadratic form
attached to it, namely, the quadratic form determined by the 2� 2 symmetric matrix
XJ4k�3�etX . The next Lemma is then obvious.

LEMMA 3.1.2. Fix an orbit O�n; k� as above.

(i) If k � 0and n is odd, then Ost�n; k� splits into four SO�2n� 1;F �-conjugacy classes.
Moreover, if X1, X2 2 g2�n; k��F � are generic, then X1 is conjugate to X2 under
SO�2n� 1;F � i¡ det�X1J4k�3�etX1� � det�X2J4k�3tX2�mod �F��2.

(ii) If otherwise, then Ost�n; k� splits into seven SO�2n� 1;F �-conjugacy classes.
Moreover, if X1, X2 2 g2�n; k��F � are generic, then X1 is conjugate to X2 under
SO�2n� 1;F � i¡ the quadratic forms determined by X1 and X2 are equivalent.

NOTATION 3.1.3. We shall label the F -rational orbits in Ost�n; k� as follows. If
k � 0, and n odd, then for each t 2 f1; E; p; Epg, we let Ot�n� denote the rational orbit
containing a generic pointX 2 g2�n; k��F � satisfying: det�XJ4k�3tX � � tmod �F��2. If
k > 0, t 2 fE; p; Epg, and Z 2 f�1g, then we let Ot;Z�n; k� denote the rational orbit
containing a generic X 2 g2�n; k��F � such that the quadratic form corresponding
to XJ4k�3�e has discriminant t and Hasse-invariant Z; the orbit corresponding to
�F��2 will be denoted by O1�n; k�.

We shall be interested in the stable orbits Ost�n; k0�, where k0 :� �nÿ 3�=2 if n odd
X 3, and k0 :� �nÿ 4�=2 if n even X 4, in other words, we are dealing with the
partition 3312nÿ5, nX 3.

Next, we review some facts about the sub-regular orbits in SO�5;F �. The PVS
associated with the subregular orbit by SO�5� is given by the pair
�GL�1� � SO�3�;Mat �1; 3��, where the action is given by: �g; h� � X :� gXtg,
g 2 GL�1�, h 2 SO�3�, X 2Mat �1; 3�. Let X � �x; y; z� 2Mat �1; 3��F �. The sub-
regular orbits in SO�5;F � are then in one-to-one correspondence with the square
classes of the relative invariant D�x; y; z� :� 2xyÿ z2. We shall denote the stable
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subregular orbit in Ost
sub . The subregular orbit de¢ned by the condition:

D � tmod �F��2, t 2 f1; E; p; Epg, will be denoted by Osub �t�.
The next lemma will be needed.

LEMMA 3.1.4.

(i) Ind
SO�5�
GL�1��SO�3�1 � Ost

sub .

(ii) Ind
SO�5�
GL�2�1 � Osub �1�.

(iii) Let Omin denote the (unique) F-rational orbit in SO�2nÿ 1;F � with corresponding
partition 22 12nÿ5. Then Ind

SO�2n�1�
GL�1��SO�2nÿ1��1;Omin� � O1�n; k0�. &

Next, we introduce more notation. Let nX 1 be an integer. Let Gn �
G :� SO�2n� 1�. The identity connected component of the Langlands dual group
is

Ĝn � Ĝ � Sp�2n;C� � fg 2 SL�2n;C� : tgJ 0ng � J 0ng;

where

J 0n :� In
ÿIn

� �
; In :� n� n identity matrix:

Then T̂n :� fdiag �t1; . . . ; tn; tÿ11 ; . . . ; tÿ1n � : ti 2 C�; 1W iW ng is a maximal torus of
Ĝ.

Let KGn � KG :� G�OF �, a hyperspecial maximal compact subgroup of G�F �. Let
H�G;KG� denote the corresponding spherical Hecke algebra, i.e. the convolution
algebra consisting of all complex valued, compactly supported, and KG-bi-invariant
functions on G�F �. Let W �Bn� �W :� Weyl group of G. Thus W �
Sn j� �Z=2Z�n, where Sn is the symmetric group on n letters. It is known that the
dominant integral weights of Ĝn can be indexed by the set P��n � fm �
�m1;m2; . . . ;mn� 2 Zn : m1 Xm2 X � � � X 0g. Let m � �m1; . . . ;mn� 2 P��n . Set
fm :� characteristic function of the double coset

KGdiag �1; pm1 ; . . . ; pmn ; pÿm1 ; . . . ; pÿmn�KG :

Then ffm : m 2 P��n g is a C-basis for H�G;KG�. The Hecke algebra H�G;KG� is
isomorphic to C�z1; zÿ11 ; . . ., zn, zÿ1n �W , via the Satake transform. If f 2 H�G;KG�,
then �f will denote the Satake transform of f .

3.2. SOME ORBITAL INTEGRAL CALCULATIONS

Next we start by recalling some results of Igusa. Let mX rX 1 be integers. Let
X �M�r;m� :�Mat �r;m�. For x 2 X, we denote by pi1...ir �x� the determinant of
the r� r matrix with the i1-th, . . ., ir-th column of x as its 1-st, . . ., r-th columns.
Following Igusa (cf. [7], page 220), we let iX denote the morphism from X to
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Ap, where p � m
r

ÿ �
is de¢ned by

iX �x� :� ÿpi1;...;ir�x��1W i1<���<ir Wm ; x 2 X ;

and set

X0 :� Xÿ iÿ1X �0�; I�X� :� iX �X�; I�X�0 :� iX �X0�

GL�m� acts naturally onX andAm. The latter action de¢nes one on the spaceLr�Am�
of alternating forms of rank r, which in turn induces an action of GL�m� on I�X�.
Note that the actions of GL�m� on X0 and I�X�0 are equivariant relative to iX .
Moreover, the action of GL�m� on I�X�0 is transitive.

LEMMA 3.2.1. There is a volume form di on I�X�0 satisfying d�g � i� � �det g�r � di,
which de¢nes a measure on I�X�0�F �, denoted also by di, which can be normalized
so that for any continuous function f on I�X��OF � and for U :� I�X��OF �ÿ
pI�X��OF �, we haveZ

X�OF �
f�iX �x��dx �

Y
2W iW r

�1ÿ qÿi� �
X

j1;...;jr X 0

�
Y

1W kW r

qÿ�mÿk�1�jk

0@ 1A � Z
U
f�pj1�...�jr � i�di :

Here, the measure dx on X�F � is normalized so that vol�X�OF �; dx� � 1.

Proof. This is Lemma 8 in [7]. &

Next, consider the prehomogenous vector space �GL�r� � SO�m�;M�r;m��, where
the action is given by �g; h� � x � gxth; x 2M�r;m� : Recall, from Section 3.1 that
the fundamental relative invariant, f , is given by f �x� � det�xJtx�; x 2M�r;m�:
Here J is the form used to de¢ne SO�m�. In this section, we shall be interested only
in the case where r � 2;mX 3 and odd. The measure dx onM�2;m��F � is normalized
as in Lemma 3.2.1.

LEMMA 3.2.2. For s 2 C, Re�s�X 0, and t :� qÿs, we have

Z
M�2;m��OF �

jf �x�jsdx � �1ÿ qÿ1��1ÿ qÿ3t��1ÿ qÿm�1�
�1ÿ qÿ1t��1ÿ qÿ3t2��1ÿ qÿm�1t2�

Proof. This is a special case of the formula given in ([6], page 236). &

De¢ne O :� fx 2M�2;m��OF � : min1W i1<i2 Wm�val�pi1;i2 �x��� � 0g.
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LEMMA 3.2.3. For s 2 C, Re�s�X 0, and t :� qÿs, we haveZ
O
jf �x�jsdx � �1ÿ qÿ1��1ÿ qÿ3t��1ÿ qÿm�1��1ÿ qÿmt2�

�1ÿ qÿ1t��1ÿ qÿ3t2� :

Proof. First note that f �x� � j�iX �x��; x 2M�2;m��F �; where j is a quadratic
homogeneous polynomial in the m

2

ÿ �
variables: pi1;i2 �x�, 1W i1 < i2 Wm. Next, note

that O is equal to the GLm�OF �-orbit of the matrix �aij� 2M�2;m��F �, where
a11 � a22 � 1, and aij � 0 otherwise. The arguments given in ([7], p. 225), show then
that Z

O
jf �x�jsdx � �1ÿ qÿ2�

Z
U
jj�i�jsdi : ���

Using the formula given by Lemma 3.2.1., and the homogeneity of j, we getZ
M�2;m��OF �

jf �x�jsdx � �1ÿ qÿ2�
X

j1;j2 X 0

qÿmj2 � q�ÿm�1�j2 �
Z
U
jj�pj1�j2 i�jsdi

� �1ÿ qÿ2�
X

j1;j2 X 0

�qÿmt2�j1 � �qÿm�1t2�j2
Z
U
jj�i�jsdi

� �1ÿ qÿ2�
�1ÿ qÿmt2��1ÿ qÿm�1t2�

Z
U
jj�i�jsdi

����

Combining ��� and ����, we getZ
O
jf �x�jsdx � �1ÿ qÿmt2��1ÿ qÿm�1t2� �

Z
M�2;m��OF �

jf �x�jsdx :

The desired result follows now from Lemma 3.2.2. &

LEMMA 3.2.4. Let w : F�=�F��2! C� denote the character de¢ned by: w�t� :�
�ÿ1�val�t�, t 2 F�=�F��2. Then for Re�s�X 0

(i) Z
M�2;m��OF �

jf �x�js � w�f �x��dx � �1ÿ qÿ1��1� qÿ3t��1ÿ qÿm�1�
�1� qÿ1t��1ÿ qÿ3t2��1ÿ qÿm�1t2�

(ii) Z
O
jf �x�js � w�f �x��dx � �1ÿ qÿ1��1� qÿ3t��1ÿ qÿm�1��1ÿ qÿmt2�

�1� qÿ1t��1ÿ qÿ3t2�
Proof. Let Y denote any nonempty compact open subset of M�2;m��OF �. ThenZ

Y
jf �x�jsdx �

X1
n�0

tn � vol�fx 2 Y : jf �x�j � qÿng; dx�; ���
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whileZ
Y
jf �x�js � w�f �x��dx �

X1
n�0
�ÿ1�ntn � vol�fx 2 Y : jf �x�j � qÿng; dx� ����

Thus ���� is obtained from ��� by changing t to ÿt (which amounts to changing s to
sÿ �ip= ln q). Our result follows now from Lemma 2.2. and 2.3. upon specializing
Y to M�2;m��OF � and O, respectively. &

We are interested in integrals of certain spherical functions over the rational orbits
contained within the stable unipotent orbitsOst�n; k0�. Recall, from Section 3.1, that
Ost�n; k0� is a union of 4 orbits: Ot�n; k0�, t 2 F�=�F��2, if n � 3; and is a union of 7
orbits: O1�n; k0�, Ot;Z�n; k0�, if nX 4. One easily checks that for i > 0, we have
gi 6� �0� , i � 2 or 4. Moreover, dim g2 � 4nÿ 6, and g4 � hE2;n�3 ÿ E3;n�2i. A gen-
eral element X 2 g2 � g4 will be represented in matrix form as following:

X �

0 0 0 ÿx ÿa
x 0 0 y1 ynÿ2 0 t z1 znÿ2
a 0 0 b1 bnÿ2 ÿt 0 c1 cnÿ2

ÿz1 ÿc1

ÿznÿ2 ÿcnÿ2
0 0
0 0
ÿy1 ÿb1

ÿynÿ2 ÿbnÿ2

26666666666666666666666664

37777777777777777777777775
Note that

exp�X � � I2n�1 � X � X 2

2

� I2n�1 ÿ P
2
E2;n�2 � tÿQ

2

� �
E2;n�3 � ÿtÿQ

2

� �
E3;n�2 ÿ R

2
E3;n�3:

Here

P � P�X � :� x2 � 2
Xnÿ2
j�1

yjzj ;

Q � Q�X � :� a2 � 2
Xnÿ2
j�1

bjcj ;
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and

R � R�X � :� ax�
Xnÿ2
j�1

cjyj �
Xnÿ2
j�1

bjzj :

Set D�X � :� PQÿ R2, and note that D is a fundamental relative invariant for the
Prehomogeneous space �GL�2� � SO�2nÿ 3�;M�2; 2nÿ 3��.

Next, consider the two spherical functions f�1;1;0;...;0� and f�2;0;...;0� on SO�2n� 1;F �,
nX 3.

LEMMA 3.2.5. Let X 2 g2 � g4. Then

(i) X 2 supp �f�1;1;0;...;0�� exp� t supp �f�2;0;...;0�� exp�
, �X 2 O4nÿ5

F ^ val�t� � ÿ1�_
�minfval�x�; val�a�; val�bi�; val�ci�; val�yi�; val�zi�; 1W iW nÿ 2g � ÿ1 ^ val�t�
X ÿ 1 ^ val�D�X ÿ 2�

(ii) X 2 supp �f�2;0;...;0�� exp� , �minfval�x�; val�a�; val�bi�; val�ci�; val�yi�; val�zi�;
1W iW nÿ 2g � ÿ1� _ �minfval�P�; val�Q�; val�R�g � ÿ2 ^ val�t�X ÿ 1^
val�D�X ÿ 2�.

(iii) supp �f�1;0;...;0�� exp� u g2 � f.
(iv) supp �f�2;1;0;...;0�� exp� u g2 � f. Here `supp ' stands for s̀upport', and qÿval�t� � jtj,

t 2 F .

Proof. Given g 2 G�F �, and m � �m1; . . . ;mn� 2 P��n , we have* g 2 supp �fm� ,
ÿm1 ÿ � � � ÿm` � minf valuation of all `� ` subdeterminants of gg, 8`; 1W `W n.

Apply this to g � expY for Y 2 g2 � g4, and note that for m � �1; 1; 0; . . . ; 0� or
�2; 0; . . . ; 0�, only the relations corresponding to ` � 1; 2 do matter. The others
are redundant. A careful and lengthy analysis of these two relations gives the claimed
result. We omit the details. &

DEFINITION 3.2.6. Let nX 3, and O�n; k0� as above. Let f 2 C1c �G�F ��. We say
that f satis¢es condition �Cn� if:R

Op�3;0� f �
R
Ope�3;0� f ; if n � 3 ;P

Z2f�1g
R
Op;Z�n;k0� f �

P
Z2f�1g

R
Ope;Z�n;k0� f ; if nX 4 :

LEMMA 3.2.7.

(i)
R
O1�3;0� f�2;0;0� �

R
Oe�3;0� f�2;0;0� � q

R
Op�3;0� f�2;0;0�, if n � 3,R

O1�n;k0� f�2;0;...;0� �
P

Z2f�1g
R
Oe;Z�n;k0� f�2;0;...;0� � q �PZ2f�1g

R
Op;Z�n;k0� f�2;0;...;0�,

if nX 4.
(ii) The spherical functions f�0;...;0�, f�2;0;...;0�, and f�2;0;...;0� � f�1;1;0;...;0� satisfy condition
�Cn�, nX 3.

*In other words one can tell which K-double coset g is in by looking at the norms of the
exterior powers of the matrix g. This is well-known for the general linear group and works
essentially the same way for split odd orthogonal groups.
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Proof. If n � 3, let Vt�3; 0�, t 2 F�=�F��2, denote the �GL�2� � SO�3��-open
orbit in M�2; 3��F �, corresponding to Ot�3; 0�. If nX 4, let V1�n; k0�, Vt�n; k0�,
t 2 fe; p; epg, Z 2 f�1g, denote the �GL�2� � SO�2nÿ 3���F �-open orbit in
M�2; 2nÿ 3��F �, corresponding to O1�n; k0� and Ot;Z�n; k0�, we use the Ranga
Rao integral formula to getZ

O?�n;k0�
f � vol�fX 2 V?�n; k0� � g�4� : expX 2 supp �f �g; dX �; f 2 H�Gn;Kn�:

Here, the question marks are reserved for the subscripts indicated above. We now
consider the case n � 3, and f � f�2;0;0�. The arguments for nX 4 and f � f�2;0;...;0�
are similar, and will not be given. We shall write an element X 2 g2�3; 0��
g4�3; 0� as following: X � �x; y; z; a; b; c; t� 2 F 7. Then for t 2 F�=�F��2, we have
(using Lemma 3.2.5.):

vol�fX 2 Vt�3; 0� : expX 2 supp �f�2;0;0��g; dx� � q7vol�fX 2 O6
F ÿ pO6

F

: �P�X �;Q�X �;R�X �� 2 O3
F ÿ pO3

F ^ val�D�X 2 ^D�X �
� tmod �F��2g :

To proceed, we need to recall the following general fact. Let nX kX 1 be integers,
and

f � �f1; . . . ; fk� : Fn�)Fk ;

fj 2 F �x1; . . . ; xn�, 1W jW k. The critical set Cf of f is, by de¢nition, the set

fx 2 Fn : rank
@fj
@xi

� �
1W jW k
1W iW n

< k:g

Let t 2 Fk ÿ Cf , and let dx=df
�� ��

t denote the measure on the ¢ber f ÿ1�t� constructed in
the standard way. Next, let F denote a Bruhat^Schwartz function on Fn, whose
support is disjoint from Cj. Then the ¢ber integral: t 7! R

f ÿ1�t� F dx=df
�� ��

t is locally
constant, andZ

Fn
F�x�dx �

Z
Fk

Z
f ÿ1�t�

F
dx
df

���� ����
t

� �
dt ;

where dx, dt are the normalized Lebesgue measures on Fn and Fk, respectively.
Apply now the above discussed generality to the following situation:

n � 6; k � 3; f � �f1; f2; f3� :� �P;Q;R�; and

Ft : � 1Y1Zt ; t 2 F�=�F��2

where

Y :� f�x; y; z; a; b; c� 2 O6
F ÿ pO6

F : �P;Q;R� 2 O3
F ÿ pO3

F g ;
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and

Zt : � f�x; y; z; a; b; c� 2 O6
F ÿ pO6

F : D � PQÿ R2

� tmod �F��2; and val�PQÿ R2�X 2g :

Here 1A denotes the characteristic function of A. ThusZ
Ot�3;0�

f�2;0;0� � q7
Z
F 6

1Y1ZtdX

� q7
Z
F 3

Z
f ÿ1�t�

1Y1Zt

dX
df

���� ����
t
dt

� q7
Z
F 3

1Zt

Z
f ÿ1�t�

1Y
dX
df

���� ����
t
dt

The last identity follows from the observation that 1Zt is constant on each ¢ber
f ÿ1�t�. Now, the ¢ber integral: c�t� :� Rf ÿ1�t� 1Y dX=df

�� ��
tdt is a locally constant func-

tion supported onO3
F ÿ pO3

F . Write c�t� �Pl2L al1Ul , where the sum is taken over a
countable set L, and �Ul�l2L is a mutually disjoint family of compact open subsets of
O3

F ÿ pO3
F , and al X 0, 8l 2 L. Thus, for t 2 F�=�F��2, we haveZ

Ot�3;0�
f�2;0;0� � q7

X
l2L

al

Z
F 3

1Zt � 1Uldt

� q7
X
l2L

al � vol�Ul \Dÿ1�t�F��2 \ P2
F �; dt�

Now, using ([1], Proposition 2.2.), 8l 2 L, 8t 2 F�=�F��2, we have

vol�Ul \Dÿ1�t�F��2 \ P2
F �; dt� �

Z
t�F��2\P2

� lim
e!1 qÿ2eN�e;Ul��i��di ;

where, for any i 2 OF , and any e 2N, eX 1,N�e;Ul��i� is de¢ned to be the order of the
set f�z1; z2; z3� 2 Ul : D�z1; z2; z3� � ig, where the overbars indicate reductionmodulo
Pe
F . For l 2 L, let N0�l� :� order of the set f�z1; z2; z3� 2 Ul :� D�z1; z2; z3� � 0g,

where, this time, the overbars indicate reduction modulo PF . Since Ul �
O3

F ÿ pO3
F , it follows, as can be easily checked that for i 2 P2

F , e 2N, eX 1, we have

N�e;Ul��i� � N0�l� � qÿ2�eÿ1� :

In other words,N�e;Ul��i� is independent of i 2 P2
F . The claimed result follow now from

the above discussions, and the fact that for each n 2N,

vol��F��2 \ P2n
F ÿ P2n�1

F �

� vol�e�F��2 \ �P2n
F ÿ P2n�1

F �� � 1ÿ qÿ1

2
q2n ;
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and

vol�p�F��2 \ P2n�1
F ÿ P2n�2

F �

� vol�ep�F��2 \ �P2n�1
F ÿ P2n�1

F �� � 1ÿ qÿ1

2
qÿ�2n�1� :

This concludes the proof of part (i) of the Lemma. Part (ii) can be proven using
similar arguments and we omit the details. &

The next Lemma reviews some results, needed later, about some subregular orbital
integrals in SO�5;F �.

LEMMA 3.2.8.

(i) The dimension of the complex vector space of linear forms on H�SO�5;F �;
SO�5;OF �� spanned by integration over the four subregular orbits Osub �t�,
t 2 F�=�F��2 is three dimensional.

(ii)
R
Osub �p� f �

R
Osub �ep� f ; f 2 H�SO�5;F �;SO�5;OF ��

(iii) Let m � �m1;m2� 2 P��2 . Then
(a)

R
Osub �1� f�0;0� � 1

2,R
Osub �e� f�0;0� �

1
2
�1ÿ qÿ1��1� qÿ3�
�1� qÿ1��1ÿ qÿ3�,R

Osub �p� f�0;0� �
1
2
qÿ1�1ÿ qÿ1�

1ÿ qÿ3
.

(b)
R
Osub �1� f�m;m� �

R
Osub �e� f�m;m� � 1

2 q
2mqÿ1�1ÿ qÿ1�R

Osub �p� f�m;m� � 1
2 q

2mqÿ1�1ÿ qÿ1�, if m is odd.

(c)
R
Osub �1� f�m;0� � 1

2 q
3m
2 �1� qÿ1�,R

Osub �e� f�m;0� � 1
2 q

3m
2 1ÿ qÿ1�,R

Osub �p� f�m;0� � 0, if m > 0, and even.

(d)
R
Osub �t� fm � 0, t 2 F�=�F��2, if m1 and m2 have di¡erent parity.

Proof. See Section 2 in [1]. &

3.3. A DESCENT LEMMA

LEMMA 3.3.1. Consider the following two arrows between connected unrami¢ed
groups de¢ned over F.

MG ÿ! G
MH ÿ! H

where the source groups are Levi subgroups of the target groups, and the lower source
(resp. target) group is an endoscopic group of the upper source (resp. target) group.
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Assume that DG, DH, DMG, DMH are all tempered invariant distributions on G�F �,
H�F �, MG�F �, MH�F �, respectively. Assume further that

(i) DG � IndG
MG

DMG , DH � IndH
MH

DMH,
(ii) DMG �g� � DMH �gMH �, g 2 H�MG;KMG�. Here `Ind' indicates parabolic induction

of invariant distributions, and gMH 2 H�MH;KMH � is the `transfer of g'. Then
DG�f � � DH �f H�, f 2 H�G;KG�, where f H is the transfer of f.

Proof. From (i) and (ii), we have, for f 2 H�G;KG�

DG�f � � DMG �f MG � � DMH

ÿ�f MG �MH
�
;

and

DH �f H � � DMH

ÿ�f H �MH
�
:

Now, for any unrami¢ed group L, and tempered invariant distribution DL on L�F �,
there exists a measure* mDL

on the space L̂unr:, of tempered unrami¢ed principal
series, such that, for f 2 H�L;KL�

D�f � �
Z
L̂unr:

�f �z�dmDL
�z� ��� ;

where f 7!�f denotes the Satake transform of f . Now, set L :�MH , and note that the
Satake transforms of �f MG �MG and �f H �MH are the same for all f 2 H�G;K�. Applying
��� to DMH and using the above stated identities, we obtain the claimed result. &

COROLLARY 3.3.2. LetG :� SO�2n� 1�,H :� SO�5� � SO�2nÿ 3�, nX 3. For all
f 2 H�G;KG� we have

(i)
R
�Ost

sub
;1� f

H � a0
R
O1�n;k0� f ,

(ii)
R
�Osub �1�;1� f

H � 1
2

R
Ost�n;k0� f .

Here 1 denotes the trivial orbit in SO�2nÿ 3;F �, and a0 is a non-zero constant (which
will be computed in Section 3.6).

Proof. In case (i), apply Lemma 3.3.1 to the following data: MH :�
GL�1� � SO�3� � SO�2nÿ 3�, MG :� GL�1� � SO�2nÿ 1�, DG :� RO1�n;k0� �, DH :�R
�Ost

sub
;1� � DMG :� ROmin

�, where Omin denotes the (unique) F -rational orbit in
MG�F � with corresponding partition 2 2 12nÿ5, and DMH :� Dirac delta measure
at the identity inMH�F �. Thanks to Lemma 3.1.4, and ([1], Theorem 3.2), the hypoth-
esis of Lemma 3.3.1 are satis¢ed, up to a nonzero constant a0. Hence the result.

*The referee points out that, in general, one needs distributions not just measures.
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(ii) In this case, we apply Lemma 3.3.1 to the following data: MH �MG �
GL�2� � SO�2nÿ 3�,

DMH � DMG :� Dirac delta measure at the identity ;

DG : �
Z
Ost�n;k0�

� ; and DH :�
Z
�Osub �1�;1�

� :

The hypothesis of Lemma 3.3.1. are satis¢ed, up to a nonzero constant, by virtue of
Lemma 3.1.4. The constant can be calculated by evaluating DG and DH at the iden-
tity elements of the Hecke algebras, using Lemma 3.1.4. (iiia). &

3.3. A FORMULA FOR f H

Fix an integer nX 3. Let G :� SO�2n� 1� and H1 :� SO�5� � SO�2nÿ 3�. H2 �
SO�2nÿ 1� � SO�3�. H1�F � and H2�F � are both elliptic endoscopic groups of
G�F �. We are interested in calculating the endoscopic transfer map: f 7!f Hi ,
i � 1; 2, for certain functions f 2 H�G;KG�.

First we recall some de¢nitions and facts. For k 2N, kX 1, the Harish-Chandra
spherical c-function cBk is de¢ned by

cBk�z1; . . . ; zk�

:�
Y

1W i<jW k

1ÿ qÿ1zÿ1i zj
1ÿ zÿ1i zj

�
Y

1W i<jW k

1ÿ qÿ1zÿ1i zÿ1j

1ÿ zÿ1i zÿ1j
�
Y

1W iW n

1ÿ qÿ1zÿ2i

1ÿ zÿ2i

(the empty products equal 1 in the case k � 1). Following the notation of 3.1, let
Gk :� SO�2k� 1�, and f 2 H�Gk;Kk�. The Satake transform �f of f , is explicitly given
by Macdonald's formula (cf.[10]) as follows. If m � �m1; . . . ;mk� 2 P��k , then

�f m�z1; . . . ; zk� � q
1
2��2kÿ1�m1��2kÿ3�m2�����mk�

Qm�qÿ1�
X

s2W �Bk�
�cBk �z1; . . . ; zk�zm1

1 � � � zmk
k �s ;

where Qm�qÿ1� denotes the Poincarë polynomial of the stabilizer of m in the Weyl
group W �Bk� � Sk �Z=2Z�k. Next, we recall a suitable version of the Plancherel
Theorem for Gk�F �.

PROPOSITION 3.3.1. Let m;m0 2 P��k . Then

Qk�qÿ1�
jW �Bk�j

1
2pi

� �kZ
T̂k;0

�f m�z��f m0 �z�dmk�z�

� q��2kÿ1�m1��2kÿ3�m2�����mk� Qk�qÿ1�
Qm�qÿ1� ; ifm � m0;

0; otherwise

(

�
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Here

T̂k;0 :� fz � �z1; . . . ; zk� 2 Ck : jz1j � � � � � jzkj � 1g ;
dmk�z� :� jcBk �z�jÿ2

dz1
z1
� � � dzk

zk
; z � �z1; . . . ; zk� 2 T̂k;0 ;

Qk�qÿ1� :� Poincare polynomial of W �Gk� ;

and the overbar denotes complex conjugation.

Proof. See [10]. &

Now, as before, we ¢x n 2N, nX 3, and set G :� SO�2n� 1�. Fix k; ` 2N such
that k� ` � n. Set H :� SO�2k� 1� � SO�2`� 1�. Let f 2 H�G;KG�. Recall that
f H 2 H�H;KH � is de¢ned by �f H :� �f ;where �f H is the Satake transform of f H de¢ned
on H�H;KH �, and �f is the Satake transform of f de¢ned on H�G;KG�. Write

f H �
X

m2P��k
n2P��`

am;ngm 
 hn; am;n 2 Q :

Here gm 2 H�SO�2k� 1;F �, SO�2k� 1;OF ��, and hn 2 H�SO�2`� 1;F �, SO�2`�
1;OF �� are the basic spherical functions corresponding to m and n respectively (see
3.1). The following Lemma provides a formula for calculating the coef¢cients am;n.

LEMMA 3.3.2. The coef¢cient am;n is given by

am;n � qÿ
1
2���2kÿ1�m1��2kÿ3�m2�����mk����2`ÿ1�n1��2`ÿ3�n2�����n`�� �

� 1
2pi

� �nZ
T̂n;0

cBk �zÿ11 ; . . . ; zÿ1k � � cB` �zÿ1k�1; . . . ; zÿ1n � �f �z1; . . . ; zn��

� zm1
1 � � � zmk

k zn1k�1 � � � zn`n
dz1
z1
� � � dzn

zn
:

Proof.Using the Plancherel Theorem (Proposition 3.3.1) forH�F �, and the explicit
formulae for �gm and �hn, we get the identity

am;n � q
1
2��2kÿ1�m1��2kÿ3�m2�����mk� � q1

2��2`ÿ1�n1��2`ÿ3�n2�����n`� � 1
jW �Bk�jjW �B`�j �

� 1
2pi

� �nZ
T̂n;0

X
s2W �Bk�

X
s2W �B`�

�cBk�z1; . . . ; zk�zm1
1 � � � zmk

k �s

� �cB` �zk�1; . . . ; zn�zn1k�1 � � � zn`n �t�
� jcBk �z1; . . . ; zk�jÿ2jcB` �zk�1; . . . ; zn�jÿ2 �f �z1; . . . ; zn� dz1z1

� � � dzn
zn

:

Now, note that �f is invariant under the Weyl group W �Bk� �W �B`�, and that for
z 2 T̂n;0, �f �z1; . . . ; zn� � �f �zÿ11 ; . . . ; zÿ1n � � �f �z1; . . . ; zn�. An appropriate change of
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variables applied to each term in the above double sum will give the integrand in the
formula stated in the lemma. The rest is clear. &

3.4. SOME AUXILIARY SPHERICAL FUNCTIONS AND THEIR TRANSFERS

Let G,H1 andH2 be as in Section 3.3. Our aim is to explicitly calculate the functions
f Hi
�1;1;0;...;0�, f

Hi
�2;0;...;0�, i � 1; 2. In principle this can be accomplished using Lemma 3.3.2.

In practice, however, it is easier to work ¢rst with certain auxiliary functions in
H�G;KG� which we now introduce. Let j1, j2, j3 2 H�G;KG� be de¢ned as follows.

�j1�z1; . . . ; zn� :� 1
2nÿ1�nÿ 1�!

X
s2W �Bn�

zs1 � z1 � � � � � zn � zÿ11 � � � � � zÿ1n ;

�j2�z1; . . . ; zn� :� 1
2nÿ1�nÿ 2�!

X
s2W �Bn�

�z1z2�s �
X

ei;ej2f�1g

X
1W i<jW n

zeii z
ej
j ;

�j3�z1; . . . ; zn� :� 1
2nÿ1�nÿ 1�!

X
s2W �Bn�

�z2i �s � z21 � � � � � z2n � zÿ21 � � � � � zÿ2n :

Next, for any positive integer r, de¢ne the following subsets of P��r .

Ar�1� :� f�0; . . . ; 0�; �1; 0; . . . ; 0�g ;
Ar�2� :� f�0; . . . ; 0�; �1; 0; . . . ; 0�; �1; 1; 0; . . . ; 0�g ;
Ar�3� :� f�0; . . . ; 0�; �1; 0; . . . ; 0�; �1; 1; 0; . . . ; 0�; �2; 0; . . . ; 0�g :

LEMMA 3.4.1. For i � 1; 2; 3, we have

[a] ji �
P

m2An�i�
aim fm, where aim 2 Q.

[b] a1�1;0;...;0� � qÿ
�2nÿ1�

2 , a2�1;1;0;...;0� � qÿ�2nÿ2�,
a3�2;0;...;0� � qÿ�2nÿ1�, a3�1;1;0;...;0� � ÿ�1ÿ qÿ1�qÿ�2nÿ1�.

Proof. Write ji �
P

m2P��n
bimfm, b

i
m 2 C, 1W iW 3. Applying Lemma 3.3.2. we get

bim � �
1
2pi

� �nZ
T̂n;0

Y
1W jW kW n

1ÿ zÿ1j zk
1ÿ qÿ1zÿ1j zk

�
Yn
j�1

1ÿ z2j
1ÿ qÿ1z2j

� ji�z1; . . . ; zn��

�
Yn
j�1

zmjÿ1
j � dz1 . . . dzn ;

where � is some nonzero constant which does not concern us at the moment. Note
that the integrand can have a z1-pole only at z1 � 0, and only when 0Wm1 W i. Next,
we ¢rst consider the case where i � 1, and m1 � 1. Then 0Wm2 W 1. Assume that
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m2 � 1. Then

b1m � �
1
2pi

� �n X
ek2f�1g

X
1W kW n

Z
T̂n;0

Y
1W i<jW n

1ÿ zizÿ1j

1ÿ qÿ1zizÿ1j

Y
1W i<jW n

1ÿ zizj
1ÿ qÿ1zizj

�

�
Yn
i�1

1ÿ z2i
1ÿ qÿ1z2i

�

� zmk�ekÿ1
k zm1ÿ1

1 zm2ÿ1
2 zm3ÿ1

3 � � � ẑk � � � zmnÿ1
n dz1 � � � dzn :

Note that all the integrals vanish except when k � 1 and e � ÿ1 (otherwise there is
no z1-pole). Thus for m � �1; 1;m3; . . .mn�, we have

b1m � �
1
2pi

� �nZ
T̂1

Y
1W i<jW n

1ÿ zizÿ1j

1ÿ qÿ1zizÿ1j
�

Y
1W i<jW n

1ÿ zizj
1ÿ qÿ1zizj

�
Yn
i�1

1ÿ z2i
1ÿ qÿ1z2i

�

� zÿ11 zm3ÿ1
3 � � � zmnÿ1

n dz1 � � � dzn :

Taking the residue at the only z1-pole, namely z1 � 0, we get a contour integral of a
function which has no z2-poles. Thus b1m � 0 in this case. The same reasoning shows
that if m � �1; 0; . . . ; 0�, then

b1m � qÿ
�2nÿ1�

2
1
2pi

� �nZ
T̂1

Y
1W i<jW n

1ÿ zizÿ1j

1ÿ qÿ1zizÿ1j
�

Y
1W i<jW n

1ÿ zizj
1ÿ qÿ1zizj

�

�
Yn
i�1

1ÿ z2i
1ÿ qÿ1z2i

� dz1
z1
� � � dzn

zn
:

Successively, taking the residues at z1 � 0; . . . ; zn � 0, we get b1m � qÿ
�2nÿ1�

2 as desired.
The proof of the remaining part of statement [a], as well as the identities
a2�1;1;0;...;0� � qÿ�2nÿ2�, and a3�2;0;...;0� � qÿ�2nÿ1� is similar and we omit the details.
So, it remains only to check the identity a3�1;1;0;...;0� � ÿ�1ÿ qÿ1�qÿ�2nÿ2�. Set
m � �m1;m2; . . . ;mn� � �1; 1; 0; . . . ; 0�. Then, using Lemma 3.3.2., we get

a3m � qÿ�2nÿ2�
X

ek2f�1g

X
1W kW n

1
2pi

� �nZ
T̂n;0

Y
1W i<jW n

1ÿ zizÿ1j

1ÿ qÿ1zizÿ1j
�

�
Y

1W i<jW n

1ÿ zizj
1ÿ qÿ1zizj

�
Yn
i�1

1ÿ z2i
1ÿ qÿ1z2i

� zmkÿ1�2ek
k zm1ÿ1

1 . . . ẑk � � � zmnÿ1
n dz1 � � � dzn :

Note that the integrand has no z1-pole unless k � 1 and ek � ÿ1. In this case, z1 � 0
is a z1-pole of order 2, and there are no other z1-poles. Thus, taking the residue at
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z1 � 0 (using logarithmic differentiation), we get:

a3�1;1;0;...;0� � qÿ�2nÿ2�
1
2pi

� �nÿ1Z
jz2j�����jznj�1

Y
2W i<jW n

1ÿ zizÿ1j

1ÿ qÿ1zizÿ1j

�
Y

2W i<jW n

1ÿ zizj
1ÿ qÿ1zizj

�

�
Yn
i�2

1ÿ z2i
1ÿ qÿ1z2i

�
X

2W jW n

ÿ�1ÿ qÿ1��zj � zÿ1j �dz2
dz3
z3
� � � dzn

zn
:

Taking the residue at z2 � 0 gives

a3�1;1;0;...;0� � ÿ�1ÿ qÿ1�qÿ�2nÿ2� 1
2pi

� �nÿ2Z
jz3j�����jznj�1

Y
3W i<jW n

1ÿ zizÿ1j

1ÿ qÿ1zizÿ1j
�

�
Y

3W i<jW n

1ÿ zizj
1ÿ qÿ1zizj

�
Yn
j�3

1ÿ z2j
1ÿ qÿ1z2j

dz3
z3
� � � dzn

zn
:

Now, successively taking the residues at z3 � 0; . . . ; zn � 0, we get the desired
identity. &

The next two lemmas will provide formulae (suf¢ciently explicit for our purposes)
for the function jHi

j , 1W iW 2, 1W jW 3.

LEMMA 3.4.2. For j � 1; 2; 3, we have

(a) jH1 �P�k;`�2A2�j��Anÿ2�j� a
j
k;`gk 
 h`, where ajk;` 2 Q.

(b) a2�1;1�;�0;...;0� � qÿ2, a3�1;1�;�0;...;0� � q2�1ÿ qÿ1�, a3�2;0�;�0;...;0� � qÿ3.

Here, gk and h` denote basic spherical functions associated to k 2 P��2 and
` 2 P��nÿ2, respectively.

Proof. The veri¢cations are similar to those of the preceeding Lemma,and are
omitted. &

LEMMA 3.4.3. For j � 1; 2; 3, we have

(a) jH2
j �

P
�k;`�2Anÿ1�j��A1�j� a

j
k;`gk 
 h`, a

j
k;` 2 Q.

(b) b2�1;1;0;...;0� � qÿ�2nÿ4�, b3�1;1;0;...;0� � ÿ�1ÿ qÿ1�q�2nÿ4�, b3�2;0;...;0� � qÿ�2nÿ3�.

Here, gk and h` denote the basic spherical functions associated to k 2 P��nÿ1 and
`2 P��1 , respectively.

Proof. Omitted. &
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3.5. THE FUNCTIONS f Hi
�1;1;0;...;0� AND f Hi

�2;0;...;0�, i � 1; 2.

The purpose of the next two lemmas is to compute, using Lemmas 3.4.2. and Lemma
3.4.3., suf¢ciently explicit expressions for the transferred maps f Hi

�1;1;0;...;0� and f Hi
�2;0;...;0�,

i � 1; 2.

LEMMA 3.5.1
.

(i) There exist constants a, am, bm �m 2 A2�2��, such that

f H1
�1;1;0;...;0� � �1� qÿ2��1ÿ qÿ�2nÿ4��q2nÿ2g�0;0� 
 h�0;...;0��

� q2nÿ4g�1;1� 
 h�0;...;0� � ag�1;0� 
 h�0;...;0��
�

X
m2A2�2�

gm 
 �amh�1;0;...;0� � bmh�1;1;0;...;0�:

(ii) There exist constants cm, dm, em �m 2 A2�3��, such that

f H1
�2;0;...;0� � q2nÿ4g�2;0� 
 h�0;...;0��

�
X

m2A2�3�
gm 
 �cmh�1;0;...;0� � dmh�1;1;0;...;0� � emh�2;0;...;0��

Proof. (i) By Lemma 3.4.1. [a], there exist l; m 2 Q such that

j2 � lf�0;...;0� � qÿ�2nÿ2�f�1;1;0;...;0� � mf�1;0;...;0� :

Thus

jH1
2 � lf H1

�0;...;0� � qÿ�2nÿ2�f H1
�1;1;0;...;0� � mf H1

�1;0;...;0� : ���

On the other hand, using Lemma 3.4.2, there exist constants n, am, bm 2 Q,
m 2 A2�2�, such that

jH1
2 � qÿ2g�1;1� 
 h�0;...;0� � ng�0;0� 
 h�0;...;0�

�
X

m2A2�2�
gm 
 �amh�1;0;...;0� � bmh�1;1;0;...;0�� ����

Now, by Lemma 3.4.1.[a], j1 is in the linear span of f�0;...;0� and f�1;0;...;0�, and by
Lemma 3.4.2.[a], jH1

1 is in the linear span of the function g�0;0� 
 h�0;...;0�,
g�0;0� 
 h�0;...;0�, g�1;0� 
 h�0;...;0�, and g�1;0� 
 h�1;0;...;0�. Since f H1

�0;...;0� � g�0;0� 
 h�0;...;0�,
we deduce that f H1

�1;0;...;0� is in the linear span of the four functions mentioned above.
Now substituting into ��� and comparing the result with ����, we see that
f H1
�1;1;0;...;0� is now in the linear span of the eight basic functions appearing in ����.
Let g denote the coef¢cient of g�1;1� 
 h�0;...;0� in f H1

�1;1;0;...;0�. Note that, from the dis-
cussion above, the coef¢cient of g�1;1� 
 h�0;...;0� in f H1

�1;0;...;0� (and obviously in
f H1
�0;...;0�) is zero. Thus substituting into ��� and comparing the coef¢cient of
g�1;1� 
 h�0;...;0� with that in ����, we get: gqÿ�2nÿ2� � qÿ2. Thus g � q2nÿ4. The
coef¢cient d, say, of g�0;0� 
 h�0;...;0� in f H1

�1;1;0;...;0� is obtained from the results of ([3],
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Proposition 1.3.5.) In fact d is equal to cÿ1
R
O f�1;1;0;...;0�;where the integral is over the

unipotent orbit O in SO�2n� 1;F � parametrized by the partition 2412nÿ7 (the stable
orbit contains only one F -rational orbit), and c= value of the Igusa zeta function
associated to the prehomogeneous vector space �GL�4�;Alt�4�� at s � 2nÿ 7. Note
that the measures used in calculating the above orbital integral and the Igusa zeta
function are the same, so d does not depend on the normalization of measure.

(ii) We argue as in (i). First, note that the coef¢cient of g�0;0� 
 h�0;...;0� in f H1
�2;0;...;0� is

equal to zero. This follows from the fact that the orbital integral of f�2;0;...;0� over the
orbit O, indicated in (i) above, is equal to zero (see [3], Proposition 1.3.5.) Next,
using Lemma 3.4.1., there exists constants l, m such that

j3 � lf�0;...;0� � mf�1;0;...;0� ÿ �1ÿ qÿ1�qÿ�2nÿ2�f�1;1;0;...;0� � qÿ�2nÿ1�f�2;0;...;0� :

Thus

jH1
3 � lg�0;...;0� 
 h�0;...;0� � mf H1

�1;0;...;0� ÿ �1ÿ qÿ1�ÿ�2nÿ2�f H1
�1;1;0;...;0��

� qÿ�2nÿ1�f H1
�2;0;...;0� :

���

On the other hand, using Lemma 3.4.2., there exists constants m, am, bm, gm,
m 2 A2�3� such that

jH1
3 � mg�0;0� 
 h�0;...;0� ÿ qÿ2�1ÿ qÿ2�g�1;1� 
 h�0;...;0� � qÿ3g�2;0� 
 h�0;...;0��
�

X
m2A2�3�

gm 
 �amh�1;0;...;0� � bmh�1;1;0;...;0� � gmh�2;0;...;0�� ����

As in (i), one then argues that f H1
�2;0;...;0� is in the linear span of the basic functions

appearing in the right hand side of ����. Suppose that the coef¢cient of
g�1;1� 
 h�0;...;0� (resp. g�2;0� 
 h�0;...;0�) in f H1

�2;0;...;0� is g (resp. d). Substituting into ���,
and using the formula for f H1

�1;1;0;...;0� established in (i), we then compare the
coef¢cients of g�1;1� 
 h�0;0;...;0� and g�2;0� 
 h�0;...;0� appearing in ��� and ����, and ¢nd

ÿqÿ2�1ÿ qÿ2� � ÿ�1ÿ qÿ2�qÿ�2nÿ2� � q�2nÿ4� � gqÿ�2nÿ1�; and qÿ3 � dqÿ�2nÿ1�

Thus g � 0, and d � q2nÿ4. &

LEMMA 3.5.2.

(i) There exist constants a; am, m 2 Anÿ1�2�, such that

f H2
�1;1;0;...;0� � �1ÿ qÿ�2nÿ2��q2nÿ2g�0;...;0� 
 h�0��

� q2g�1;1;0;...;0� 
 h�0� � ag�1;0;...;0� 
 h�0� �
X

m2Anÿ1�2�
gm 
 amh�1� :

(ii) There exist constants bm, cm , m 2 Anÿ1�3�, such that

f H2
�2;0;...;0� � q2g�2;0;...;0� 
 h�0� �

X
m2Anÿ1�3�

gm 
 �bmh�1� � cmh�2�� :
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Proof. The proof is entirely similar to that of Lemma 3.5.1., and we
omit it. &

3.6. THE TRANSFER FACTORS

Fix an integer nX 3. Set G � SO�2n� 1�, and H � SO�5� � SO�2nÿ 3�. Our ¢rst
goal is study the transfer of the integrals over �Osub �t�; 1�, t 2 F�=�F��2, from
H�F � to G�F �.

We begin by evaluating the constant a0 appearing in Corollary 3.3.2 (i).

LEMMA 3.6.1. a0 � 2.
Proof. We shall evaluate both sides of Corollary 3.3.2(i) at the function f�2;0;...;0�.

We compute the integral
R
O1�n;k0� f�2;0;...;0� as follows. By Lemma 3.2.7(i), we haveR

Ost�n;k0� f�2;0;...;0� � 2�1� qÿ1� RO1�n;k0� f�2;0;...;0�. On the other hand, by virtue of Lemma
3.5.1(ii) and Lemma 3.2.8 (d), f H�2;0;...;0� is the sum of q2nÿ4g�2;0� 
 h�0;...;0� and other
functions whose integrals over �Ost

sub ; 1� vanish. Thus, using Corollary 3.3.2(ii)
and Lemma 3.2.8(iii) (c) (with m � 2), we get

1
2
q2nÿ1�1� qÿ1� �

Z
�Osub �1�;1�

f H�2;0;...;0� � �1� qÿ1�
Z
�Osub �1�;1�

f H�2;0;...;0�

� �1� qÿ1�
Z
O1�n;k0�

f�2;0;...;0� :

Thus
R
O1�n;k0� f�2;0;...;0� � 1

2 q
2nÿ1. Now, evaluating both sides of Corollary 3.3.2(ii) at

f�2;0;...;0�, and using Lemma 3.2.8. (c) (with m � 2), we get

q2nÿ1 �
Z
�Ost

sub
;1�

f H�2;0;...;0� � a0

Z
�O1�n;k0�

f�2;0;...;0� � a0
1
2
q2nÿ1:

Thus a0 � 2. &

PROPOSITION 3.6.2. Let t 2 F�=�F��2, and set Et :� F � ���
t
p �. Let kt denote the

character of F� associated to Et via local class ¢eld theory. The following identities
are satis¢ed:

(i)
R
�Osub �t�;1� f

H � 1
2

P
s2�F�=F��2 kt�s�

R
Ot�3;0� f , if n � 3,

(ii)
R
�Osub �t�;1� f

H � 1
2 �
R
O1�n;k0� f �

P
s2F�=�F��2

s 6�1
Z2f�1g

kt�s�
R
Os;Z�n;k0� f �, if nX 4,

where f 2 ff�0;...;0�, f�1;1;0;...;0�, f�2;0;...;0�g.
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Proof. For t 2 F�=�F��2, and g 2 C1c �H�F ��, we set at�g� :� R�Osub �t�;1� g. For
f 2 C1c �G�F ��, set

A1�f � :�
Z
O1�n;k0�

f ; and for t 2 F�=�F��2 ; t 6� 1 ; we set

At�f � :�
Z
Ot�n;k0�

f ; if n � 3 ; and

At�f � :�
X

Z2f�1g

Z
Ot;n�n;k0�

f ; if nX 4 :

Using this notation, the statement of the may be formulated as following:

a1�f H �
ae�f H �
ap�f H�
aep�f H �

2664
3775 � 1

2

1 1 1 1
1 1 ÿ1 ÿ1
1 ÿ1 1 ÿ1
1 ÿ1 ÿ1 1

2664
3775

A1�f �
Ae�f �
Ap�f �
Aep�f �

2664
3775 ;

where f 2 ff�0;...;0�; f�1;1;0;...;0�; f�2;0;...;0�g. First, note that it follows from Corollary 3.3.2
and Lemma 3.6.1, that for all f 2 H�G;KG�, we have

a1�f H� � 1
2

X
t2F�=�F��2

At�f �; ���

X
t2F�=�F��2

at�f H � � 2A1�f �: ����

We now treat each of the above three functions separately. Since, in each case, the
function f is understood, we shall simplify the notation by dropping f and f H ; thus
we shall write at and At instead of at�f H � and At�f �, etc.
(1) The case f � f�0;...;0�.

In this case we get the following system of identities:

A1 � Ae � Ap � Aep � 1; clear;
A1 � Ae ÿ Ap ÿ Aep � �1ÿqÿ1��1�qÿ3��1�qÿ1��1ÿqÿ3� ; Lemma 3.2.4 (i) �sets � 0�;
A1 � 1

2 ; ����;
Ap � Aep; Lemma 3.2.7 (ii)

Solving the above system, and using Lemma 2.7, we get

a1 � A1 � 1
2
; ae � Ae � 1

2
�1ÿ qÿ1��1� qÿ3�
�1� qÿ1��1ÿ qÿ3� ; ap � aep � Ap � Aep

� 1
2
qÿ1�1ÿ qÿ1�

1ÿ qÿ3
:

The claimed result follows in this case.
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(2) The case f � f�2;0;...;0�.

In this case it is enough to use ��� and ����, together with the identities:

ap � aep � 0 (Lemma 2.7) ;
A1 � Ae; and Ap � Aep (Lemma 3.2.7 (ii));

to obtain the same result in this case.
(3) The case f � f�1;1;0;...;0�.

By case [2], it is su¤cient to prove the claimed identities for f0 :�
f�2;0;...;0� � f�1;1;0;...;0�. Set

L1 : � fX 2 �Pÿ1F �4nÿ6 ÿ p�Pÿ1F �4nÿ6 :
ÿ
P�X �;Q�X �;R�X �� 2 �Pÿ2F �3ÿ

ÿ p�Pÿ2F �3 ^D�X � 2 P2
F g ;

and L2 :� O4nÿ6
F :

According to Lemma 3.2.5 (i), we have

supp �f0�� exp � L1 � Pÿ1F t L2 � �Pÿ1F ÿOF � : �1�
Next, for t 2 F�=�F��2, letUt :� union of all �GL�2� � SO�2nÿ 3���F � ^ open orbits
in M�2; 2nÿ 3��F � which are parametrized by the (equivalence classes of) quadratic
forms with discriminant t.

Set Li�t� :� Li \Ut, i � 1; 2. Using (1), and the Ranga Rao formula, we get, for
t 2 F�=�F��2:

At�f0� � qvol�L1�t�� � �qÿ 1�vol�L2�t��
� qvol�L1�t� t L2�t�� ÿ vol�L2�t��
� q4nÿ5vol�p�L1�t� t L2�t�� ÿ vol�L2�t��

�2�

Next, recall the set O de¢ned before (and used) in Lemma 3.2.3. For t 2 F��F��2, set
O�t� :� O \U�t� :It is clear, for t 2 F�=�F��2, we have

�O4nÿ6
F \U�t�� ÿ O�t� � p�L1�t� t L2�t�� ; i.e.

A2�t� ÿ O�t� � p�L1�t� t L2�t�� :

Thus, by (2), we get , for t 2 F�=�F��2:

At�f0� � q4nÿ5�vol�L2�t�� ÿ vol�O�t��� ÿ vol�L2�t��
� �q4nÿ5 ÿ 1�vol�L2�t�� ÿ q4nÿ5vol�O�t��
� �q4nÿ5 ÿ 1�At�f�0;...;0�� ÿ q4nÿ5vol�O�t�� :

�3�

On the other hand, by Lemma 3.5.1., we have

f H0 � �1� qÿ2��1ÿ qÿ�2nÿ4��q2nÿ2g�0;0� 
 h�0;...;0��
� q2nÿ4g�1;1� 
 h�0;...;0� � q2nÿ4g�2;0� 
 h�0;...;0��
� other functions whose supports do not meet �Ost

sub ; 1� :
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Since f H�0;...;0� � g�0;0� 
 h�0;...;0�, we get for t 2 F�=�F��2:
at�f H0 � � �1� qÿ2��1ÿ qÿ�2nÿ4��q2nÿ2at�f H�0;...;0��

� q2nÿ4
Z
Osub �t�

g�1;1� � q2nÿ4
Z
Osub �t�

g�2;0� :
�4�

Using case [1], and identities (1), (2), the claimed identities (for f0) are then equivalent
to

�q4nÿ5 ÿ q2nÿ2 ÿ q2nÿ4 � q2�at�f H�0;...;0��

� 1
2

X
s

kt�s�q4nÿ5vol�O�t�� � q2nÿ4
Z
Osub �t�

�g�1;1� � g�2;0��
" # �5�

where t 2 F�=�F��2 and the sum ranges over s 2 F�=�F��2. Now, by Corollary
3.3.2, Lemma 3.6.1, Lemma 3.2.8(i), and Lemma 3.2.7(ii), we see that it is suf¢cient
to prove (5) only for t � e. But now we get, using Lemma 3.2.4(ii) (setting
s � 0, and m � 2nÿ 3):X

t2F�=�F��2
�ÿ1�val�t�vol�O�t�� � �1ÿ qÿ1��1� qÿ3�

�1� qÿ1��1ÿ qÿ3� �1ÿ qÿ�2nÿ4���1ÿ qÿ�2nÿ3��:

�7�
Next, using Lemma 3.2.8., the left-hand side of (5) (with t � e) is equal to

1
2
�q4nÿ5 ÿ q2nÿ2 ÿ q2nÿ4 � q2� ÿ �1ÿ qÿ1��1� qÿ3�

�1� qÿ1��1ÿ qÿ3� : �8�

On the other hand, using (7) and Lemma 2.7, the right-hand side of (5) (with t � e) is
equal to

1
2

�
q4nÿ5

�1ÿ qÿ1��1� qÿ3�
�1� qÿ1��1ÿ qÿ3� �1ÿ qÿ�2nÿ4���1ÿ qÿ�2nÿ3���

� q2nÿ4
ÿ
q3�1ÿ qÿ1��1ÿ qÿ1 � qÿ2��� �9�

The equality between the terms in (8) and (9) readily follows. This concludes the
proof of Proposition 3.6.2. &

3.7. SOME REMARKS

We predict that the identities obtained in 3.6 will extend to all f 2 C1c �G�F ��. Note
that each given orbit corresponding to some partition of the form l�n; k�, kX k0
is induced from an orbit of the form �1;O�, where 1 is the trivial orbit in some general
linear group, and O is an orbit of the type we have just treated. Moreover, there is a
one-to-one correspondence between the rational orbits within Ost, and those within
the given stable orbits. This one-to-one correspondence is obtained by induction
of F -rational orbits. Thus, our prediction carries over to that larger class.
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4. Examples and a Conjecture on Transfer Factors for Unipotent Orbital
Integrals

4.1. ELLIPTIC UNIPOTENT ENDOSCOPIC DATUM

In this section we ¢rst analyze some examples which suggest various features of the
transfer factors for the unipotent orbital integrals. Our analysis is based on using
the matching results established in [1^3], and the preceding section. These results
deal only with certain spherical functions. However, we take our lead from the prin-
ciple that any identity between unipotent orbital integrals of spherical functions
should have a `natural' extension to all compactly supported and smooth functions.
Moreover, these extended indentities have analogues in the rami¢ed situation,
by which we mean that the endoscopic group is nonsplit but splits over a rami¢ed
extension of the base ¢eld. We do not prove any essentially new identities, but
we predict, based on our analysis, what the transfer factors should look like in each
discussed example. We then present a rough form of the transfer factors, which
we then make precise for several families of orbits.

Next, we introduce the concept of elliptic unipotent endoscopic datum relative to
OG in a classical split group G.

DEFINITION 4.1.1. An elliptic unipotent endoscopic datum consists of a pair
�H;OH � where

. OH is a special unipotent orbit in H, with Ost
H 6� f.

. OG is a unipotent orbit in G.

such that the following conditions are satis¢ed

(i) OG � IndG
HOH (see def. 2.4.1);

(ii) A�OH � � C�OG�, ifG is of type B, and A�OH � �Z=2Z � C�OG�, if G is of type C
orD (recall thatC�OG� is the group of connected components of the centralizer of
some u 2 OG).

Remark 4.1.2. Since G is assumed to be split, we have Ost
G 6� f.

4.2. EXAMPLES

EXAMPLE 1. Let G � SO�9�, k � �5; 3; 1�. Then Ol is a special orbit. The PVS
associated to k is given by

M�k� � GL�1� �GL�2� � SO�3�;
g2�k� �Mat �1; 2� �Mat �2; 3�:

Let X � �X1;X2� 2 g2�k��F �, and de¢ne

Q1�X � :� X1X2J3tX2
tX1; Q2�X � :� X2J3tX2:
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X is generic , det�Q1� 6� 0 6� det�Q2�. Note that for X generic, rank �Q1�X �� � 1,
rank �Q2�X �� � 2, hence I0�k� � f1g, Ie�k� � f2g. Thus, there exist four packets within
Ost

l determined by the condition detQ1�X � � t mod �F��2. Using Lemma 1.2.5 and
Remark 3 (preceeding Lemma 1.2.3), we ¢nd that Ost

l contains 10 rational orbits
corresponding to 10 pairs of quadratic forms as follows. For s 2 f1; e; p; epg, let
Es :� F � ���

s
p �, and let NEs=F denote the corresponding norm map. Then the ten pairs

are �hsi; hr; 1i�; where s 2 f1; e; p; epg, and r 2 NEs=F �E�s � mod �F��2. Let us denote
the rational orbit corresponding to the pair �hsi; hr; 1i� by Ol�s;r�.

Then the four packets within Ost
l areY

s

:� fOl�s; r� : r 2 NEs=F �E�s � mod �F��2g; s 2 f1; e; p; epg:

The following lemma shows that each
Q

s gives rise to a stable distribution.

LEMMA 4.2.1. The distribution

f 7!
X

O2
Q

s

Z
O

f ; s 2 f1; e; p; epg; f 2 C1c �G�F ��

is stable.
Proof. Let M :� GL�2� � SO�5�, and t 2 F�=�F��2. Let OM�t� :� �1;Osub �t��,

where 1 is the trivial orbit in GL�2;F � and Osub �t� is the subregular orbit in
SO�5;F � corresponding to t (see 3.1.3). Then by Proposition 5.5.1 in [2] the integral
over OM�t� is a stable distribution. One then checks that IndG

M OM�t� �
Q

t,
t 2 f1; e; p; epg. Now, the parabolic induction of a stable distribution is again a stable
distribution, and we are done.

Next, we ¢nd that there is only one pair �H;OH � consisting of an endoscopic group
of G, and a special orbit OH � H, satisfying A�OH � � A�Ol� � C�Ol�, namely

H � SO�5� � SO�5�;OH � �Osub ;Osub � � �O311;O311�:

Thus Ost
H contains 16 orbits forming 16 packets:X
t;s

:� fÿOsub �t�;Osub �s�
�g; t; s 2 f1; e; p; epg:

The formalism discussed in Section 2 suggests that these 16 packets will transfer to
the four packets

Q
t as follows. Note that Lk � f�2; 2; 2; 2�g, S��Ll� � f�2; 2�g. Thus

De¢nition 2.5.6. tells us that the packet
P

t;s transfers to
Q

ts. Thus, one expects
that the integral of f H over

P
t;s should be equal to a linear combination of integrals

of f over the various orbits within
Q

ts, the coef¢cients being the transfer factors. We
wish to get some understanding of the transfer factors involved.

LEMMA 4.2.2. Let f be an element of the three-dimensional space spanned by the
spherical functions f�0;0;0�, f�1;1;0�, f�2;0;0� (which we considered in Section 3). Then
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for each s 2 F�=�F��2, 9� 6� 0, such thatX
t2F�=�F��2

Z
�Osub �t�;Osub �s��

f H � �
X

t;r2F�=�F��2
hr; si

Z
Ol�ts;r�

f :

Here, h ; i denotes the Hilbert pairing on F�=�F��2, (not to be confused with rank 2
quadratic forms notation).

Proof. Let MH :� GL�1� � SO�3� � SO�5�, MG :� GL�1� � SO�7�. Then the
following relations are satis¢ed:

(i)
R
�1;Osub �s�� j

MH � �Pt2F�=�F��2
R
�Osub �t�;Osub �s�� j, j 2 C1c �H�F ��, s 2 F��F��2

(ii)
R
�1;Osub �s�� f

MH � �Pt2F�=�F��2hs; ti
R
O331�t� f ,

for all f in the three dimensional space indicated in the statement of the lemma,
and every s 2 F��F��2.

(iii)
R
O331�t� c

MG � �Pr2F�=�F��2
R
Ol�r;t� c, c 2 C1c �G�F ��, t 2 F�=�F��2.

Here, and below, � is used as a `generic' constant which depends only on the
normalization of measure. Identity (ii) follows from the work done in Section 3.
Identities (i) and (iii) are consequence of a descent argument.

Remark 4.2.3. Note that since GL�2� � SO�5� may be embedded in both H and G
as a Levi subgroup, we immediately see from the proof of Lemma 4.2.1 that we
have the identityZ

�Osub �1�;Osub �t��
f H � �

X
s2F�=�F��2

Z
Ol�s;t�

f ;

for all f 2 C1c �G�F ��, and all t 2 F�=�F��2. Lemma 4.2.2, and Remark 4.2.3 suggest
that the following matching result will hold: 8f 2 C1c �G�F ��, and 8s; t 2 F�=�F��2,
we haveZ

�Osub �s�;Osub �t��
f H1 � �

X
r2F�=�F��2

hr; ti
Z
Ol�st;r�

f :

Note that if r 6� NEst=F �E�st�, then Ol�st; r� � f. This observation can be used to
show that the right hand side is in fact symmetric in s and t.

EXAMPLE 2. In this example we try to argue that there is another ingredient con-
tributing to the transfer factors which appears when the Z-exponent of O, Z�O�,
is larger than 0. Note that in Example 1, we had Z�O� � 0.

Let G � SO�9�, k � �3; 3; 1; 1; 1�. Ol has been studied in Section 3. It splits into
seven orbits, corresponding to the seven equivalence classes of quadratic forms
of rank 2. By Lemma 3.1.1, the Lusztig quotient group A�Ol� is trivial, hence
Ost

l is a packet. The seven orbits within Ost
l are denoted by Ol�t; Z�, where
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t 2 F�=�F��2, and Z 2 f�1g. Here, of course, we understand that Ol�1;ÿ1� � f if
q � 1 mod 4, and that Ol�1; 1� � f if q � 3 mod 4. In Section three we considered
the pair �H1;OH1 �, where H1 :� SO�5� � SO�5�, OH1 :� �1;O311� � �1;Osub �. The
result obtained there can be phrased as following:Z

�1;Osub �t�
f H1 � �

X
r2F�=�F��2

Z2f�1g

ht; ri
Z
Ol�r;Z�

f ;

where f is spherical function belonging to a certain three dimensional space. This
identity is expected to hold for all f 2 C1c �G�F ��. There is, however, another pair
�H2;OH2 � with IndG

H2
OH2 � OG, namely: H2 :� SO�3� � SO�7�, OH2 :�

�1;O31111�. Note that Ost
31111 breaks up into four orbits, denoted O31111�s�,

s 2 F�=�F��2, forming four packets. In this situation, we expect the following
matching result to holdZ

�1;O31111�t��
f H2 � �

X
r2F�=�F��2

Z2f�1g

sgn �Z�ht; ri
Z
Ol�r;Z�

f ;

for all f 2 C1c �G�F ��, and all t 2 F�=�F��2.
This prediction is consistent with the following considerations:

(i)
P

t2F�=�F��2 f H2 � � ROl�1;1� f , f spherical.

This identity follows from the following facts:

(1) Ost
31111 is induced from the trivial orbit in L :� SO�3;F � � SO�5;F �.

(2) The trivial orbit in SO�3� � SO�5� endoscopically induces to the orbitOst
22111

in SO�7;F �, and moreover, by the results of [3], we have f L�1� � � ROst
22111

f ,
for f spherical on SO�7;F �

(3) Ind
SO�9�
GL�1��SO�7� O

st
2211� Ol�1; 1�.

(ii) The transfer factors in the two identities suggested above, if true, will allow for the
expression of the integral over each rational class within Ost

l to be expressed as a
linear combination of stable unipotent orbital integrals over the packets within
Ost

H1
and Ost

H2
.

(iii) In [14] Waldspurger poses a question (Question 3.1) regarding the dimension of
spaces of unipotent orbital integrals, restricted to the Iwahori^Hecke algebra.
He then suggests that the similar question with the spherical^Hecke algebra
replacing the latter should have the same answer. An a¤rmative answer to
his question(s) implies the following:

(1) The space spanned by the restrictions to the spherical Hecke algebra of
SO�9;F � of the integrals over the seven rational orbits within Ost

l is
four-dimensional, and, moreover, one has the following identities:

(i)
R
Ol�p;1� f �

R
Ol�ep;1� f ;

R
Ol�p;ÿ1� f �

R
Ol�ep;ÿ1� f , for any spherical f on

SO�9;F �.
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(2) It is known from [1] that the space spanned by the restrictions to the
spherical Hecke algebra of SO�7;F � of the integrals over the four rational
orbits within Ost

31111 is three-dimensional, and moreover, one has the
following identity:Z

O31111�p�
f �

Z
O31111�ep�

f ; for any spherical f on �SO�7;F �� :

Our third consideration is that the above identities are consistent with the
suggested transfer factors.

EXAMPLE 3. In this example, expectedly, only the ingredient related to the
Hasse-invariant will make a contribution to the transfer factor.

Let G � SO�11�, k � �3; 3; 3; 1; 1�. The PVS associated with k is given by
M�k� � GL�3� � SO�5�, g2�k� �Mat �3; 5�, with the usual action. It is clear then that
A�k� � A�k� � Z=2Z (see Remark 2.2.3). Moreover, Ost

l splits into seven rational
orbits which will be denoted by Ol�t; Z�, t 2 F�=�F��2 and Z 2 f�1g. Here we
are following the convention that Ol�1;�1� � f if q � �1mod �F��2. Let
H :� SO�3� � SO�9�,OH :� �1;O32211�. The next lemma contains information about
OG and OH which we shall use.

LEMMA 4.2.4.

(i) Ol is a Richardson orbit with respect to two Levi subgroup, namely, M1 :�
GL�4� � SO�3�, and M2 :� GL�3� � SO�5�. Moreover, we have (assuming
q � 1mod 4, for simplicity).
[1] IndG

M1
1 � Ol�1; 1�,

[2] IndG
M2

1 � Ost
l ,

(ii) IndG
H �1;O32211� � Ol. &

Note thatOst
32211 splits into four orbitsO32211�t�, t 2 F�=�F��2, forming four packets.

On the other hand Ost
l splits into four packets

Q
t :� fO�t; Z� : Z � �1g,

t 2 F�=�F��2. According to the formalism explained in Section 2, each packet
f�1;O32211�t��g transfers to

Q
t. In fact, this can be proven for t � 1. Indeed, since

GL�4� � SO�3� embeds into both H and G as a Levi subgroup, it follows from
Lemma 4.2.4(i),(ii), thatZÿ

1;O32211�1�
� f H � �

Z
Ol�1;1�

f ; f 2 C1c �G�F ��

and we expect the following identities to holdZÿ
1;O32211�t�

� f H � �
X

Z2f�1g
sgn �Z�

Z
Ol�t;Z�

f ; f 2 C1c �G�F ��

This prediction is further supported by the following two considerations:
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(i) This prediction allows, us in a natural way, to express the integral over any rational
orbit within Ost

l , as a linear combination of stable unipotent orbital integrals over
Ost

G and Ost
H.

(ii) An a¤rmative answer to Waldspurger's question (see consideration (iii) in
Example 2) would imply the following:

(1) The space spanned by the restrictions to the spherical Hecke algebra of
SO�11;F � of the integrals over the seven rational orbits within Ost

l is four
dimensional and, moreover, one has the following identities:

Z
Ol�p;1�

f �
Z
Ol�ep;1�

f ;
Z
Ol�p;ÿ1�

f �
Z
Ol�ep;ÿ1�

f ;

for any spherical f on SO�11;F �.
(2) The space spanned by the restrictions to the spherical Hecke algebra of

SO�9;F � of the integrals over the four rational orbit within Ost
32211 is

three-dimensional, and moreover, one gets the following identity:R
O31111�p� �

R
O31111�ep� f ;for any spherical f on SO�9;F �.

Note, then, that the suggested transfer factors are consistent with the above
identities.

EXAMPLE 4. Let G � SO�11�, and k :� �3; 3; 2; 2; 1�. ThenOl is a nonspecial orbit,
and Ost

l breaks up into four rational orbits: Ol�t�, t 2 F�=�F��2. Note that Ost
l is one

whole packet. We wish to give evidence to the effect that the transfer of any stable
unipotent orbital integral to Ost

l will involve a linear combination of integrals over
every rational class within Ost

l . The only pair �H;OH � with IndG
HOH � Ol, and

A�OH � � A�Ol� is the following: H :� SO�5� � SO�7�, OH :� �1;O31111�. Now,
Ost

31111 contains four rational orbits forming four packets. The rational classes within
Ost

31111 will be denoted byO31111�t�, t 2 F�=�F��2. We shall make use of the following
lemma. (For simplicity, we assume q � 1 mod 4.)

LEMMA 4.2.5.

(i) Let O22221 denote the unique rational orbit within Ost
22221 � SO�9;F �. Then

Ind
SO�11�
GL�1��SO�9��1;O22221� � Ol�1�.

(ii) Let H0 :� SO�5� � SO�5�. Then H0 is an endoscopic group of G0 :� SO�9�, and
IndG0

H 0 1 � O22221. Moreover, we have f H
0 �1� � � RO22221

f , for any spherical f on
G0�F �.

(iii)
P

s2F�=�F��2
R
Ol�s� f � �

R
O31111�1� f

H, for any spherical f on G�F �.
Proof.

(i) Omitted.
(ii) This is a special case of the main result proven in [3].
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(iii) This follows from (i), (ii), and the fact that Ost
31111 is induced from the trivial orbit

in GL�1;F � � SO�5;F �. &

We predict the following identities to holdZ
�1;O31111�t��

f H � �
X

s2F�=�F��2
hs; ti

Z
Ol�s�

f ;

for all f 2 C1c �G�F ��.
We base our prediction on the following considerations:

(i) The given prediction allows us to express the integral over each rational orbit
within Ost

l in terms of stable orbital integrals over Ost
H.

(ii) It is consistent with Lemma 4.2.5.
(iii) An a¤rmative answer toWaldspurger's question would imply that the restrictions

of the four integrals over Ol�t� to the spherical Hecke algebra do span a
three-dimensional space. Moreover, one has

R
Ol�p� f �

R
Ol�ep� f , for all spherical

f on G�F �. Similarly, it was shown in [1], that the space spanned by restricting the
four integrals over O31111�s� to the spherical Hecke algebra is three- dimensional.
Moreover, one has

R
Ol�p� f �

R
Ol�ep� f , for all spherical f on SO�7;F �. Our third

consideration is that the above two relations are consistent with the given transfer
factors.

EXAMPLE 5. LetG :� SO�13�, and k :� �4; 4; 3; 1; 1�. ThenOl is a nonspecial orbit,
andOst

l splits into four rational orbits, denoted byOl�t�, t 2 F�=�F��2, forming four
packets. LetH :� SO�3� � SO�11�, andOH :� �1;O33311�. Note thatO33311 is special,
and that Ost

33311 splits into four rational orbits:O33311�t�, t 2 F�=�F��2, forming four
packets. The formalism is Section 2 predicts that the packet f�1;O33311�t��g will
transfer to the packet fOl�t�g, 8t 2 F�=�F��2.

We expect the following identities to holdZ
�1;O33311�t��

f H � �
Z
O44311�t�

f ; f 2 C1c �G�F �� :

We offer the following consideration as a support for the above prediction:

(i) The ¢rst consideration is the following Lemma (we assume q � 1mod 4).

LEMMA 4.2.6. For any spherical function f on G�F �, we have
(a)

R
�1;O33311�1�� f

H � � RO44311�1�� f ,

(b)
P

t2F�=�F��2
R
�1;O33311�t�� f

H � �Pt2F�=�F��2
R
O44311�t� f

Proof. Identity (a) follows from applying the descent Lemma 3.3 to the data
(1)^(3) below
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(1) Ind
SO�13�
GL�4��SO�3��1; 1� � O33311�1�.

(2) Set G0 � SO�5�, and H0 � SO�3� � SO�3�. Then
R
O221

f � �f H 0 �1�, for all
spherical f on G0�F �, (see [1]). Here O221 is the unique rational orbit within
the stable orbit Ost

221.

(3) Ind
SO�13�
GL�4��SO�5� �1;O221� � O44311�1�.

Indentity (b) follows from applying Lemma 3.3 to the following to the data (4)^(6)
below

(4) Ind
SO�11�
GL�3��SO�5� �1; 1� � Ost

33311.

(5) Set G00 :� SO�7�, and H00 :� SO�3� � SO�5�. Then R
O22111

f � �f H 00 �1�, for all
spherical f on G0�F �, (see [1]). Here, O22111 is the unique rational orbit contained
in Ost

22111.

(6) Ind
SO�13�
GL�3��SO�7� �1;O22111� � Ost

44311. &

(ii) As a second piece of evidence, we observe that an a¤rmative answer to
Waldspurger's question would imply the following identities which are consistent
with the predicted identity:R
O33311�p� f �

R
O33311�ep� f , for all spherical f on SO�11;F �;R

O44311�p� f
0 � RO44311�p� f

0, for all spherical f 0 on SO�13;F �.

EXAMPLE 6. Let G :� Sp�12�, and k :� �4; 4; 2; 2�. Then Ol is a special orbit. The
PVS associated to k is given by

M�k� � GL�2� �GL�4�; g2�k� �Mat �2; 4� � sym�4�;

�g; h� � �X ;S� � �gXhÿ1; hSth�; �g; h� 2M�k�; �X ;S� 2 g2�k�:

For �X ;S� 2 g2�k��F �, de¢ne

Q1�X ;S� :� XStX ; Q2�X ;S� :� S;

and set Di�X ;S� :� detQi�X ;S�, i � 1; 2. The set fD1;D2g is then a set of fundamental
relative invariants for the PVS �M�k�; g2�k��. The stable orbit Ost

l splits in 49 rational
orbits determined by the equivalence classes of pairs of quadratic forms: �Q1�X ;S�;
Q2�X ;S��, �X ;S� a generic point in g2�k��F �. The pairs of quadratic forms obtained
in this way can be easily found using Lemma 1.2.9. Let q1, q2 be two quadratic forms
of rank 4 and 2 respectively, and assume that they arise from some generic point in
g2�l��F �. Let d1, d2 denote the discriminant of q1, q2, respectively, and let z1, z2 denote
the Hasse-invariant of q1, q2, respectively. The rational orbit O � Ost

l corresponding
to �q1; q2� will be denoted by Ol�d1; z1; d2; z2�. Note that A�k� � A�k� �
C�k� � �Z=2Z�2. The stable orbit Ol, therefore, breaks up into 16 packets

Q
s;t

where, �t; s� 2 �F�=�F��2�2, as follows.
Q

s;t :� fOl�s; Z; t; z� � Ost
l : Z; z 2 f�1gg.
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Next, it can be shown that there exists four pairs �H;OH � such that: (a) H is an
elliptic endoscopic group ofG, (b) IndG

HOH � Ol, (c) A�OH � �Z=2Z � C�Ol�. They
are given by the following list:

(1) H1 � G, OH1 :� Ok.
(2) H2 � Sp�10� � SO�2�, OH2 :� �O3322; 1�:
(3) H3 � Sp�6� � SO�6�, OH3 :� �O2211;O2211�:
(4) H4 � Sp�4� � SO�8�, OH4 :� �1;O3311�.
Of course, when studying the transfer of packets, we need to consider all quasi-split
inner forms of Hi, i � 2; 3; 4.

Next, we need to study the transfer factor for each of the four cases above. There is
no mystery about �1�. So, we consider only the last three data. Let us ¢rst explicate (in
these cases) the packet transfer explained in Section 2.

First we have

Lk � �5; 3; 3; 1; 1� � k̂; S�Lk� � f�5�; �5; 3; 3�; �5; 3; 3; 1; 1�g;
S��Lk� � f��533�; �53311�g:

Next, write Hi � Hi
1 �Hi

2 (i � 2; 3; 4), where Hi
1 is the symplectic component of Hi

and Hi
2 is the orthogonal component of Hi. We also write �li1; li2� to denote the pair

of partitions corresponding to the orbit OHi which endoscopically transfers to Ol.
Now, we have the following data:

. Ost
3322 splits into four rational orbits, denoted O3322�t�, t 2 F�=�F��2, forming

four packets.

Ll21 � �5; 3; 3�; S�Ll21� � f�5�; �5; 3; 3�g; S��Ll21� � f�5; 3; 3�g;
Ll22 � �1; 1�; S�Ll22� � f�1; 1�g; S��Ll22� � f:

. O2211 (as an orbit in Sp�6�) splits into four orbits: O2211�t�, t 2 F�=�F��2,
forming four packets.

Ll31 � �5; 1; 1�; S�Ll31� � f�5�; �5; 1; 1�g; S��Ll31� � f�5; 1; 1�g:
Ll32 � �3; 3�; S�Ll32� � f�3; 3�g; S��Ll32� � f:

. O3311 splits into four rational orbits: O3311�t�, t 2 F�=�F��2, forming four
packets.

Ll41 � �5�; S�Ll41� � f�5�g; S��Ll41� � f: Ll42 � �3; 3; 1; 1�;
S�Ll42� � f�33�; �3; 3; 1; 1�g; S��Ll42� � f�3; 3; 1; 1�g:

Now, for i � 2; 3; 4 and s 2 F�=�F��2, let Hi;s denote the inner quasi-split form
of Hi which splits over Es

(but not over F if s 6� 1 mod �F��2 ).
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Now, using the above data, and the recipe for transfer given in Section 2, we get,
for s 2 F�=�F��2

ÿ If H � H2;s, then the packet f�O3322�t�; 1�g transfers to the packet
Q

s;ts,
t 2 F�=�F��2.

ÿ If H � H3;s, then the packet f�O2211�t�;O2211�g transfers to the packet
Q

ts;s,
t 2 F�=�F��2.

ÿ If H � H4;s, then the packet f�1;O3311�t��g transfers to the packet
Q

ts;s,
t 2 F�=�F��2.
We predict the following identities to hold (with q � 1 mod 4)

(1) If H � H2;s and t 2 F�=�F��2, then

Z
�O3322�t�;1�

f H � �
X

z;Z2f�1g
sgn �Z�

Z
Ol�s;Z;ts;z�

f ;

f 2 C1c �G�F ��, s 2 F�=�F��2.
(2) If H � H3;s and t 2 F�=�F��2, then

Z
�O2211�t�;O2211�

f H � �
X

z;Z2f�1g
sgn �Z�sgn �z�

Z
Ol�ts;Z;s;z�

f ;

f 2 C1c �G�F ��, s 2 F�=�F��2.
(3) If H � H4;s and t 2 F�=�F��2, then

Z
�1;O3311�

f H � �
X

z;Z2f�1g
sgn �z�

Z
Ol�ts;Z;s;z�

f ;

f 2 C1c �G�F ��, s 2 F�=�F��2.
The above predictions are motivated by two following considerations:

LEMMA 4.2.7. Let s 2 f1; eg and Hs � H2;s. Then for any spherical f on G�F �, we
have

(a)
R
�O3322�1�;1� f

Hs � �Pz;Z2f�1g sgn �Z� ROl�s;Z;s;z� f ;

(b)
P

t2F�=�F��2
R
�O3322�t�;1� f

Hs � �P z;Z2f�1g
t2F�=�F��2

sgn �Z� ROl�s;Z;st;z� f :

Proof. Identity [a] follows from applying the descent lemma 3.3. to the following
data:

(i) Ind
Sp�10�
GL�3��Sp�4� 1 � O3322 �1�,
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(ii) Let G0 :� Sp�6�, andH0s :� Sp�4� �UEs�1�, s � 1 or 2.Then we form a spherical
f on G0�F �, we have ([2])

f H
0
s�1� �

X
Z2f�1g

sgn �Z�
Z
O2211�s;Z�

f ;

(iii) Ind
Sp�10�
GL�3��Sp�6� �1;O2211�s; Z�� � Ol�s; Z;s; z�, s; t 2 F�=�F��2. Identity [b]

follows from Lemma 3.3 and the following data:

(iv) Ind
Sp�10�
GL�4��SL�2� 1 � Ost

3322,

(v) Let G00 � Sp�4�,H00s :� SL�2� �UEs �1�, s � E; 1.Then for a spherical f on G00�F �,
we have (see [2])

f H
00 �1� �

X
Z2f�1g

sgn �Z�
Z
O22�s;Z�

f

(vi) Ind
Sp�12�
GL�4��Sp�4� �1;O22�s; Z�� �

F
z;Z2f�1g

t2F�=�F��2
Ol�s; Z; s; t; z�, s 2 F�=�F��2. &

LEMMA 4.2.8. Let s 2 f1; eg, and H :� H4;s. Then for any spherical f on G�F �, we
have

(a)
R
�1;O3311�1;1�� f

Hs � �Pz;Z2f�1g sgn �z� ROl�s;Z;s;z� f ;

(b)
P

t2F�=�F��2
R
�1;O3311�t�� f

Hs � �P z;Z2f�1g
t2F�=�F��2

sgn �z� ROl�s;Z;st;z� f :

Proof. The proof is similar in spirit to the one given to Lemma 4.2.7. We omit it.&

4.3. A CONJECTURE ON TRANSFER FACTORS

In this section we shall present a conjecture which partially describes the transfer
factors for the unipotent orbital integrals in classical split groups. First we recall
some notation and introduce some conventions which will facilitate our
presentation.

Let G be a symplectic or a split special orthogonal group. Let k be a partition
corresponding to a unipotent orbit Ol (not necessarily special) in G. Let
k � k� [ ke be the decomposition of k into odd and even parts, and set k� :� k�

ifG is orthogonal, and k� � ke ifG is symplectic. Write k� �: �la11 ; . . . ; lass �. In Section
1, we associated to the PVS �M�k��; g2�k���, a set of functions Q1; . . . ;Qt de¢ned on
the set of generic points of g2�l���F �. Here t � sÿ 1 if G is orthogonal, and
t � s if G is symplectic. These functions were used to classify the rational orbits
within Ost

l as follows. If O � Ost
l , and v is a generic point in g2�k���F � whose

M�k���F � orbit intersects O non-trivially, then the set Q1�v�; . . . ;Qt�v� may be
regarded as a set of quadratic forms whose equivalence classes do not depend
on the choice of v. The equivalence classes of these form determine O. In 1.3.1,
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we denoted the discriminant of Qi�v� by Di, and Hasse-invariant of Qi�v� by Zi,
1W iW t. The orbit O was then denoted by Ol�D1; Z1; . . . ;Dt; Zt�:

As we noted in Remark 1.2.4, it is not true that for any choice D0i 2 F�=�F��2,
Z0i 2 f�1g, there exists a rational orbit O0 � Ost

l such that O0 �
O0l�D01; Z01; . . . ;D0t; Z

0
t�. However, it will be very convenient to use the group structure

on the set �F�=�F��2�t � �Z=2Z�t when discussing transfer factors. This leads to
the notion of ghosts (as in Shelstad's work) by which we mean a symbol
Ol�D1; Z1; . . . ;Dt; Zt� where �D1; . . . ;Dt� 2 �F�=�F��2�t and �Z1; . . . ; Zt� 2 f�1gt,
which does not correspond to any rational orbit within Ost

l . We shall treat ghosts
as empty `orbits', and agree that any `integral',

R
O, over a ghost to be zero by con-

vention. Recall also that I�k� :� f1; . . . ; tg � I0�k� [ Ie�k�, where
I0�k� � fi 2 I�k� : rankQi is oddg, and Ie�k� � fi 2 I�k� : rankQi is even g, and that
I��k� :� I�k� if G is odd orthogonal and I��k� :� Ie�k� if G is symplectic or even
orthogonal. To each map c : I��k� ! F�=�F��2, we associated a packetQ�k;c� � fOl�D1; Z1; . . . ;Dt; Zt� � Ost

l : Da � c�a�mod �F��, 8a 2 I��k�g. We shall
allow for all ghosts satisfying the de¢ning condition of a packet to be formally
included in that given packetg.

Next, let �H;OH� denote an elliptic unipotent endoscopic datum. Thus, if
H � H1 �H2, then OH is equal to Om1 �Om2 , where l1 and l2 are special
partitions. Let

Q
H :� Q�l1;j1� �

Q�l2;j2�, for some maps ji : I��li� !
F�=�F��2, i � 1; 2. It can be checked that the transfer of

Q
H to Ost

G, is a single
packet denoted by

Q
G. Let w : I��k� ! F�=�F��2 denote the map corresponding

to
Q

G (see def. 2.5.6), i.e.,
Q

G �
Q�k;w�. We need one more piece of notation

before we state our conjecture. Set I���k� :� I�k�nI��k�. Let h; i : F�=�F��2�
F�=�F��2! f�1g denote the Hilbert pairing. In the following conjecture, the
measures on the F -rational orbits within a stable orbit are related in the sense
described after the introduction.

CONJECTURE 4.3.1. There exist

(i) Constants aO 2 Z, one for each O 2QH. If H is split then aO :� 1, O 2QH,
(ii) Two maps (depending on

Q
H and

Q
G):

wd : I�k� ! F�=�F��2, such that wd�a� � 1 mod �F��2, 8a 2 I��l�
wh : I�k� ! f�1g^ (= the Pontryagin dual of f�1g),

(iii) A nonzero constant � which depends only on Ost
G and Ost

H, i.e. is independent of the
packets

Q
H,
Q

G,
such that the following is satis¢ed:

(1) The distribution

j7!
X

O2
Q

H

aO

Z
O
j ; j 2 C1c �H�F ��
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is stable.
(2) For any f 2 C1c �G�F ��, we haveX

O2
Q

H

aO

Z
O

f H � �
X

Da�c�a�
8a2I��k�

Di2F�=�F��2
8i2I���k�
Zk2f�1g
8k2I�k�

b�D1; Z1; . . . ;Dt; Zt�
Z
Ol�D1;Z1;...;Dt;Zt�

f

where b�D1; Z1; . . . ;Dt; Zt� :� hwd�1�;D1i � � � hwd�t�;Dti � wh�1��Z1� � � � wh�t��Zt�.
Remarks 4.3.2.

(i) Statement (1) in the above conjecture is not new. It is, in fact, part of Conjecture
(C) presented in ([2]).

(ii) The main content of statement (2) is the following:

(a) It asserts that the transfer of the stable distributions associated to the packetQ
H , is a linear combination, with nonzero coe¤cients, of integrals taken

over only the rational orbits within the packet
Q

G.
(b) The transfer factors, i.e., the coe¤cients appearing in the linear combination

alluded to in (a) are values of characters of a group isomorphic to
�F��F��2�jI���k�j � �Z=2Z�jI�k�j, into which every packet is embedded nat-
urally (as a subset).

(iii) The general de¢nition of the maps wd and ws will not be given.What we have to
o¡er (see below) is a precise de¢nition for these maps for some special, although
broad classes, of orbits OG.

The class of orbits which we wish to discuss consists of those special orbits which
correspond to partition k satisfying the following two properties:

(A) The set of distinct parts of k� is a set of the form f1; 3; . . . ; 2k� 1g if G is
orthogonal, and is a set of the form f2; 4; . . . ; 2`g if G is symplectic. (Recall that
k� consists of all the even parts of k if G is symplectic, and consists of all
odd parts of k if G is orthogonal.)

(B) A�k� � A�k� � C�k�, ifG is of type B, andA�k� �Z=2Z � C�k�, ifG is of typeG*
or D.

The next lemma** classi¢es these orbits.

LEMMA 4.3.2. A partition k satis¢es conditions (A) and (B) iff the partition Lk is of
the following form:

. Type Bn: Either

*This is clearly a misprint and presumably should read type C rather than type G. The
condition (B) shows up in the lemma that follows it, but as this lemma seems to be incorrect, it
cannot be used to settle the question of how to correct the misprint.
**This lemma seems to be incorrect.

286 MAGDYASSEM

https://doi.org/10.1023/A:1001839511409 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001839511409


Lk � �l1; l2; . . . ; l2rÿ1; l2r�, for some rX 1, where ki is even for all 1W iW 2r, and
l2j 6� l2j�1 for all 1W jW rÿ 1, or
Lk � �l1; l2; . . . ; l2r; l2rÿ1�, for some rX 1, where ki is even for all 1W iW 2r� 1,
and l2j 6� l2j�1 for all 1W jW r.

. Type Cn:
Lk � �l1; l2; . . . ; l2r�1�, for some rX 1, where ki is odd for all 1W iW 2r� 1, and
l2iÿ1 6� l2i for all 1W iW r.

. Type Dn:
Lk � �l1; l2; . . . ; l2r�, for some rX 1, where li is odd for all 1W iW 2r, and
l2i 6� l2i�1 for all 1W jW rÿ 1.

Proof. The proof is an exercise in using the formulae for the duality mapD given in
Section 2.3. &

Remark 4.3.3. Note that Lk is always even. So, we may then use Lemma 2.4.3.,
when discussing endoscopic induction for k.

Fix a partition k satisfying conditions (A) and (B) above, and let Ol denote the
corresponding orbit in the classical split group G. The next lemma will describe
all the pairs �H;OH � satisfying the following conditions:

(1) H is an elliptic endoscopic group of G,
(2) IndG

H OH � OG,
(3) A�OH � � C�Ol� if G is an odd special orthogonal group, or

A�OH � �Z=2Z � C�Ol� � A�Ol� if G is an even orthogonal group or a sym-
plectic group.

LEMMA 4.3.9. Let k be as above. The pairs �H;OH � satisfying the conditions
(1)^(3) above, are given as follows. (Recall that Lk is of the form described by
Lemma 4.3.2.)

. Type Bn:
(a) Let Lk � �l1; l2; . . . ; l2r�.
Let J1 � f1; 2; . . . ; rg, and J2 :� f1; 2; . . . ; rgnJ1. De¢ne a partition LlJi, i � 1; 2;
corresponding to J1, and J2, respectively, as following: LlJi :� W

k2Ji �l2kÿ1; l2k�,
i � 1; 2. In other words, LlJi is the union of all partitions �l2kÿ1; l2k� where
k 2 Ji. Set HJ1;J2 :� SO�jLlJ1 j � 1�� SO�jLlJ2 j � 1� and OJ1;J2 :� �OmJ1

;OmJ2
�.

(b) Let Lk � �l1; l2; . . . ; l2r; l2r�1�.
Let J1 � f1; 2; . . . ; rg and J2 :� f1; 2; . . . ; rgnJ1.
Associate to Ji, i � 1; 2, two partitions Ll0Ji,

Ll0Ji as following:

Ll00Ji :�
_
k2Ji
�l2kÿ1; l2k� ; Ll00Ji :�

_
k2Ji
�l2kÿ1; l2k� [ �l2r�1� :

TRANSFER FACTORS FOR UNIPOTENT ORBITAL INTEGRALS 287

https://doi.org/10.1023/A:1001839511409 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001839511409


In other words, Lm00Ji is obtained from Ll0Ji by adding the part l2r�1 at the end. Set

H1
J1;J2 :� SO�jLl0J1 j � 1� � SO�jLl00J2 j � 1� ;

H2
J1;J2 :� SO�jLl00J2 j � 1� � SO�jLl0J2 j � 1� ;

O0J1;J2 :� �Om0J1
;Om00J2

� ;
O00J1;J2 :� �Om0J1

;Om0J2
� :

. Type Cn:
Let Lk � �l1; l2; . . . ; l2r; l2r�1�.
Let J1 � f1; 2; . . . ; rg, and J2 :� f1; 2; . . . ; rgnJ1.
De¢ne LlJi, i � 1; 2, as following:
LlJ1 :� �l1� [

W
k2J1�l2k; l2k�1�,

LlJ2 :� W
k2J2
�l2k; l2k�1�.

Set HJ1;J2 :� Sp�jLlJ1 j ÿ 1� � SO�jLlJ2 j�, and OJ1;J2 :� �OmJ1
;OmJ2

�.
. Type Dn:

Let Lk � �l1; l2; . . . ; l2r�.
Let J1 � f1; 2; . . . ; rg, and J2 :� f1; 2; . . . ; rgnJ1.
De¢ne LlJi, i � 1; 2, as following:
LlJi :� Wk2Ji �l2kÿ1; l2k�.
Set HJ1;J2 :� SO�jLlJ1 j� � SO�jLlJ2 j�, and OJ1;J2 :� �OmJ1

;OmJ2
�.

Proof. The proof is a combinatorial exercise in applying the formulae for duality
given in 2.3, together with Lemma 2.4.3 and Lemma 2.4.4. We omit the (elementary)
details. &

Lemma 4.3.4 allows us to count the number of `distinct' pairs �H1 �H2;OH1�
OH2 � satisfying conditions (1)^(3). Here, of course, we count pairs up to a switch
of factors when G is orthogonal.

COROLLARY 4.3.5. Let k be a special partition satisfying conditions (A) and (B).
The number of `distinct' pairs �H;OH � satisfying conditions (1)^(3) is equal to 2Z�Ost�.

Next, note that, for the orbits under consideration, we have I�k� � I��k�. Thus
I���k� � f, and the formula given by Conjecture 4.3.1. (2), indicates that (aside from
the constant) only the ingredient depending on the map wh will appear. In order to
de¢ne wh, it will be suf¢cient to work on the dual group side, and de¢ne a map
ŵh : S��Lk� ! f�1g^. The map wh will then be de¢ned to be the composition
ŵh�bÿ1lL �ilL . We shall de¢ne ŵh in a case by case fashion. Fix a pair J1, J2 as in Lemma
4.3.4. This pair then determines an elliptic endoscopic group H and a special orbit
OH . ŵh (and, hence, wh) are de¢ned relative to the pair �H;OH �. In de¢ning ŵh,
we shall only work with J2. By an interval in J2 we shall mean a subset of J2 consisting
of consecutive integers and which is maximal (in the sense of set theoretic inclusion)
with respect to that property. J2 is then a disjoint union of intervals. To each interval
we associate at most two segments in S��Lk� as follows. Fix an interval and let jmin
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and jmax denote the minimum and maximum elements of the ¢xed interval. Consider
now the following cases:

. Let G be odd orthogonal. If jmin � 1, then we associate the segment
�l1; . . . ; l2jmax

� to the given interval. If jmin > 1, then we associate the two
segments �l1; . . . ; l2jmax

� and �l1; . . . ; l2jminÿ2� to the given interval.
. Let G be symplectic. If jmin � 1, we associate the segment �l1; . . . ; l2jmax�1�. If

jmin > 1, we associate the two segments �l1; . . . ; l2jmax�1� and �l1; . . . ; l2jminÿ1�.
. Let G be even orthogonal. Then by switching factors if necessary, we may

assume that jmax > 1. If jmin � 1, then we associate the segment
�l1; . . . ; l2jmax

�. if jmax > 1, then we associate the two segments �l1; . . . ; l2jmax
�

and �l1; . . . ; l2jminÿ2�. Repeating this process for each interval, we get a subset
S � S��Lk�. De¢ne now ŵh : S��Lk� ! f�1g^ by

ŵh�z� :� the nontrivial character of f�1g , if z2 S
the trivial character of f�1g , if z 62 S.

�
To illustrate the above construction, we give some examples.

EXAMPLE 4.3.5. Let k � �7; 5; 5; 3; 3; 1; 1�. Then Lk � �6; 6; 4; 4; 2; 2� and r � 3.
S��Lk� � f�6; 6; 4; 4; 2; 2�, �6; 6; 4; 4�, �6; 6�g. Aside from �G;Ol�, there are three other
pairs �H;OH � satisfying conditions (1)^(3) above. They are given by the following
data:

(a) Ĥ � Sp�6� � Sp�6�, Ll1 � �4; 4; 2; 2�, Ll2 � �6; 6�. Thus J2 � f1g.
(b) Ĥ � Sp�4� � Sp�8�, Ll1 � �4; 4�, Ll2 � �6; 6; 2; 2�. Thus J2 � f1; 3g.
(c) Ĥ � Sp�2� � Sp�10�, Ll1 � �2; 2�, Ll2 � �6; 6; 4; 4�. Thus J2 � f1; 2g.

In case (a) we have only one interval to which the segments �6; 6� is associated. In
case (b) we have two intervals: f1g and f3g, to which the segments �6; 6�,
�6; 6; 4; 4; 2; 2� and �6; 6; 4; 4� are associated. Finally, in case (c) we get the segments
�6; 6; 4; 4� and �6; 6�. The map ŵh is given as follows: Let sgn denote the nontrivial
character of f�1g, and let denote the trivial character. Then

In case (a): ŵh�z� :� sgn; if z � �6; 6�;
id; otherwise:

�
In case (b): ŵh�z� :� sgn; if z � �6; 6�; �6; 6; 4; 4; 2; 2�; or �6; 6; 4; 4�;

id; otherwise:

�
In case (c): ŵh�z� :� sgn ; if z � �6; 6; 4; 4�; or �6; 6�;

id; otherwise:

�
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