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We formulate and solve a generalized inverse Navier–Stokes problem for the joint
velocity field reconstruction and boundary segmentation of noisy flow velocity images.
To regularize the problem, we use a Bayesian framework with Gaussian random fields.
This allows us to estimate the uncertainties of the unknowns by approximating their
posterior covariance with a quasi-Newton method. We first test the method for synthetic
noisy images of two-dimensional (2-D) flows and observe that the method successfully
reconstructs and segments the noisy synthetic images with a signal-to-noise ratio (SNR) of
three. Then we conduct a magnetic resonance velocimetry (MRV) experiment to acquire
images of an axisymmetric flow for low (�6) and high (>30) SNRs. We show that the
method is capable of reconstructing and segmenting the low SNR images, producing
noiseless velocity fields and a smooth segmentation, with negligible errors compared with
the high SNR images. This amounts to a reduction of the total scanning time by a factor of
27. At the same time, the method provides additional knowledge about the physics of the
flow (e.g. pressure) and addresses the shortcomings of MRV (i.e. low spatial resolution
and partial volume effects) that otherwise hinder the accurate estimation of wall shear
stresses. Although the implementation of the method is restricted to 2-D steady planar
and axisymmetric flows, the formulation applies immediately to three-dimensional (3-D)
steady flows and naturally extends to 3-D periodic and unsteady flows.
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1. Introduction

Experimental measurements of fluid flows inside or around an object often produce
velocity images that contain noise. These images may be post-processed to either reveal
obscured flow patterns or to extract a quantity of interest (e.g. pressure or wall shear
stress). For example, magnetic resonance velocimetry (MRV) (Fukushima 1999; Mantle
& Sederman 2003; Elkins & Alley 2007; Markl et al. 2012; Demirkiran et al. 2021)
can measure all three components of a time varying velocity field but the measurements
become increasingly noisy as the spatial resolution is increased. To achieve an image
of acceptable signal-to-noise ratio (SNR), repeated scans are often averaged, leading to
long signal acquisition times. To address that problem, fast acquisition protocols (pulse
sequences) can be used, but these may be difficult to implement and can lead to artefacts
depending on the magnetic relaxation properties and the magnetic field homogeneity of the
system studied. Another way to accelerate signal acquisition is by using sparse sampling
techniques in conjunction with a reconstruction algorithm. The latter approach is an active
field of research, commonly referred to as compressed sensing (Donoho 2006; Lustig,
Donoho & Pauly 2007; Benning et al. 2014; Corona et al. 2021; Peper et al. 2020).
Compressed sensing (CS) algorithms exploit a priori knowledge about the structure of the
data, which is encoded in a regularization norm (e.g. total variation, wavelet bases), but
without considering the physics of the problem. Even though the present study concerns
the reconstruction of fully-sampled, noisy MRV images, the method that we present here
can be applied to sparsely sampled MRV data.

For images depicting fluid flow, a priori knowledge can come in the form of a
Navier–Stokes (N–S) problem. The problem of reconstructing and segmenting a flow
image then can be expressed as a generalized inverse Navier–Stokes problem whose flow
domain, boundary conditions and model parameters have to be inferred for the modelled
velocity to approximate the measured velocity in an appropriate metric space. This
approach not only produces a reconstruction that is an accurate fluid flow inside or around
the object (a solution to a Navier–Stokes problem), but also provides additional physical
knowledge (e.g. pressure), which is otherwise difficult to measure. Inverse Navier–Stokes
problems have been intensively studied during the last decade, mainly enabled by the
increase of available computing power. Recent applications in fluid mechanics range from
the forcing inference problem (Hoang, Law & Stuart 2014) to the reconstruction of scalar
image velocimetry (SIV) (Gillissen et al. 2018; Sharma et al. 2019) and particle image
velocimetry (PIV) (Gillissen, Bouffanais & Yue 2019) signals, as well as the identification
of optimal sensor arrangements (Mons, Chassaing & Sagaut 2017; Verma et al. 2019).
Regularization methods that can be used for model parameters are reviewed by Stuart
(2010) from a Bayesian perspective and by Benning & Burger (2018) from a variational
perspective. The well-posedness of Bayesian inverse Navier–Stokes problems is addressed
by Cotter et al. (2009).

Recently, Koltukluoğlu & Blanco (2018) treat the reduced inverse Navier–Stokes
problem of finding only the Dirichlet boundary condition for the inlet velocity that matches
the modelled velocity field to MRV data for a steady three-dimensional (3-D) flow in
a glass replica of the human aorta. They measure the model-data discrepancy using
the L2-norm and introduce additional variational regularization terms for the Dirichlet
boundary condition. The same formulation is extended to periodic flows by Koltukluoğlu
(2019), Koltukluoğlu, Cvijetić & Hiptmair (2019), using the harmonic balance method
for the temporal discretization of the Navier–Stokes problem. Funke et al. (2019) address
the problem of inferring both the inlet velocity (Dirichlet) boundary condition and
the initial condition, for unsteady blood flows and four-dimensional (4-D) MRV data,

944 A40-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

50
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.503
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with applications to cerebral aneurysms. We note that the above studies consider rigid
boundaries and require a priori an accurate, and time-averaged, geometric representation
of the blood vessel.

To find the shape of the flow domain, e.g. the blood vessel boundaries, computed
tomography (CT) or magnetic resonance angiography (MRA) is often used. The acquired
image is then reconstructed, segmented and smoothed. This process not only requires
substantial effort and the design of an additional experiment (e.g. CT, MRA), but it also
introduces geometric uncertainties (Morris et al. 2016; Sankaran et al. 2016), which, in
turn, affect the predictive confidence of arterial wall shear stress distributions and their
mappings (Katritsis et al. 2007; Sotelo et al. 2016). For example, Funke et al. (2019)
report discrepancies between the modelled and the measured velocity fields near the flow
boundaries, and they suspect they are caused by geometric errors that were introduced
during the segmentation process. In general, the assumption of rigid boundaries either
implies that a time-averaged geometry has to be used or that an additional experiment
(e.g. CT, MRA) has to be conducted to register the moving boundaries to the flow
measurements.

A more consistent approach to this problem is to treat the blood vessel geometry as
an unknown when solving the generalized inverse Navier–Stokes problem. In this way,
the inverse Navier–Stokes problem simultaneously reconstructs and segments the velocity
fields and can better adapt to the MRV experiment by correcting the geometric errors and
improving the reconstruction.

In this study, we address the problem of simultaneous velocity field reconstruction
and boundary segmentation by formulating a generalized inverse Navier–Stokes problem,
whose flow domain, boundary conditions and model parameters are all considered as
unknown. To regularize the problem, we use a Bayesian framework and Gaussian measures
in Hilbert spaces. This further allows us to estimate the posterior Gaussian distributions
of the unknowns using a quasi-Newton method, which has not yet been addressed for
this type of problem. We provide an algorithm for the solution of this generalized inverse
Navier–Stokes problem, and demonstrate it on synthetic images of two-dimensional (2-D)
steady flows and real MRV images of a steady axisymmetric flow.

This paper consists of two parts. In § 2, we formulate the generalized inverse
Navier–Stokes problem and an algorithm that solves it. In § 3, we test the method using
both synthetic and real MRV velocity images and describe the set-up of the MRV
experiment.

2. An inverse Navier–Stokes problem for noisy flow images

In this section, we formulate the generalized inverse Navier–Stokes problem and provide
an algorithm for its solution. In what follows, L2(Ω) denotes the space of square-integrable
functions in Ω , with inner product

〈·, ·〉 and norm
∥∥·∥∥L2(Ω)

, and Hk(Ω) the space
of square-integrable functions with k square-integrable derivatives in Ω . For a given
covariance operator, C, we also define the covariance-weighted L2 spaces, endowed with
the inner product

〈·, ·〉C := 〈·, C−1·〉, which generates the norm
∥∥·∥∥C . The Euclidean norm

in the space of real numbers R
n is denoted by |·|Rn . We use the superscript (·)� to denote

a measurement, (·)◦ to denote a reconstruction and (·)• to denote the ground truth.

2.1. The inverse Navier–Stokes problem
An n-dimensional velocimetry experiment usually provides noisy flow velocity images
on a domain I ⊂ R

n, depicting the measured flow velocity u� inside an object Ω ⊂ I
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Γ i

Γ o

ΓI ⊂ ℝ
2

u� u� – Su°u°

Ω

Figure 1. Given the images of a measured velocity field u�, we solve an inverse Navier–Stokes problem to
infer the boundary Γ (or ∂Ω), the kinematic viscosity and the inlet velocity profile on Γi. The solution to this
inverse problem is a reconstructed velocity field u◦, from which the noise and the artefacts (u� − Su◦) have
been filtered out.

with boundary ∂Ω = Γ ∪ Γi ∪ Γo (figure 1). An appropriate model is the Navier–Stokes
problem

u · ∇u− ν�u+∇p = 0 in Ω,
∇ · u = 0 in Ω,

u = 0 on Γ,
u = gi on Γi,

−ν∂νu+ pν = go on Γo

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.1)

where u is the velocity, p �→p/ρ is the reduced pressure, ρ is the density, ν is the
kinematic viscosity, gi is the Dirichlet boundary condition at the inlet Γi, go is the natural
boundary condition at the outlet Γo, ν is the unit normal vector on ∂Ω and ∂ν ≡ ν · ∇ is
the normal derivative.

We denote the data space by D and the model space by M , and assume that both
spaces are subspaces of L2. In the 2-D case, u� = (u�x, u�y) and we introduce the covariance
operator

Cu = diag(σ 2
ux

I, σ 2
uy

I), (2.2)

where σ 2
ux
, σ 2

uy
are the Gaussian noise variances of u�x, u�y, respectively, and I is the identity

operator. The discrepancy between the measured velocity field u� ∈ D and the modelled
velocity field u ∈M is measured on the data space D using the reconstruction error
functional

E (u) ≡ 1
2

∥∥u� − Su
∥∥2
Cu

:= 1
2

∫
I
(u� − Su)C−1

u (u� − Su), (2.3)

where S : M → D is the L2-projection from the model space M to the data space D.
(Since the discretized space consists of bilinear quadrilateral finite elements (see § 2.7),
this projection is a linear interpolation.)

Our goal is to infer the unknown parameters of the Navier–Stokes problem (2.1)
such that the model velocity u approximates the noisy measured velocity u� in the
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covariance-weighted L2-metric defined by E . In the general case, the unknown model
parameters of (2.1) are the shape of Ω , the kinematic viscosity ν and the boundary
conditions gi, go. This inverse Navier–Stokes problem leads to the nonlinearly constrained
optimization problem

find u◦ ≡ argmin
Ω,x

E (u(Ω; x)) such that u satisfies (2.1), (2.4)

where u◦ is the reconstructed velocity field and x = (gi, go, ν). Like most inverse
problems, (2.4) is ill-posed and hard to solve. To alleviate the ill-posedness of the problem,
we need to restrict our search of the unknowns (Ω, x) to function spaces of sufficient
regularity.

2.2. Regularization
If x(t) ∈ L2(R) is an unknown parameter, one way to regularize the inverse problem (2.4)
is to search for minimizers of the augmented functional J ≡ E +R, where

R(x) =
k∑

j=0

∫
R

αj

∣∣∣∂ j
x (x− x̄)

∣∣∣2 (2.5)

is a regularization norm for a given (and fixed) prior assumption x̄(t) ∈ Hk(R), weights
αj ∈ R and positive integer k. This simple idea can be quite effective because by
minimizing R, we force x to lie in a subspace of L2 having higher regularity, namely
Hk, and as close to the prior value x̄ as αj allow. (The regularization term, given
by (2.5), can be further extended to fractional Hilbert spaces by defining the norm∥∥x
∥∥

Hs(R)
:= ∥∥(1+ |t|s)Fx

∥∥
L2(R)

for non-integer s, with 0 < s <∞, and where F denotes
the Fourier transform. Interestingly, under certain conditions, which are dictated by
Sobolev’s embedding theorem (Evans 2010, Chapter 5), these Hilbert spaces can be
embedded in the more familiar spaces of continuous functions.) However, as Stuart (2010)
points out, in this setting, the choice of αj, and even the form of R, is arbitrary.

There is a more intuitive approach that recovers the form of the regularization norm R
from a probabilistic viewpoint. In the setting of the Hilbert space L2, the Gaussian measure
γ ∼ N (m, C) has the property that its finite-dimensional projections are multivariate
Gaussian distributions, and it is uniquely defined by its mean m ∈ L2, and its covariance
operator C : L2 → L2 (Appendix A). It can be shown that there is a natural Hilbert space
Hγ that corresponds to γ , and that (Bogachev 1998; Hairer 2009)

Hγ =
√
C(L2). (2.6)

In other words, if x is a random function distributed according to γ , any realization of x
lies in Hγ , which is the image of

√
C. Furthermore, the corresponding inner product〈

x, x′
〉
C =

〈
C−1/2x, C−1/2x′

〉
(2.7)

is the covariance between x and x′, and the norm
∥∥x
∥∥2
C =

〈
x, x
〉
C is the variance of x.

Therefore, if x is an unknown parameter for which a priori statistical information is
available, and if the Gaussian assumption can be justified, we can choose

R(x) = 1
2

∥∥x− x̄
∥∥2
C . (2.8)

In this way, J ≡ E +R increases as the variance of x increases. Consequently,
minimizing J penalizes improbable realizations.
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As mentioned in § 2.1, the unknown model parameters of the Navier–Stokes problem
(2.1) are the kinematic viscosity ν, the boundary conditions gi, go and the shape of Ω .
Since we consider the kinematic viscosity ν to be constant, the regularizing norm is simply

1
2
|ν − ν̄|2Σν =

1
2σ 2
ν

|ν − ν̄|2
R
, (2.9)

where ν̄ ∈ R is a prior guess for ν and σ 2
ν ∈ R is the variance. For the Dirichlet boundary

condition, gi ∈ L2(Γi), we choose the exponential covariance function

C(x, x′) =
σ 2

gi

2
exp

(
−|x− x′|



)
(2.10)

with variance σ 2
gi
∈ R and characteristic length  ∈ R. For zero-Dirichlet (no-slip) or

zero-Neumann boundary conditions on ∂Γi, (2.10) leads to the norm (Tarantola 2005,
Chapter 7.21) ∥∥gi

∥∥2
Cgi
� 1
σ 2

gi

∫
Γi

g2
i + 2 (∇gi

)2
. (2.11)

Using integration by parts, we find that the covariance operator is

Cgi = σ 2
gi
(I− 2�̃)−1, (2.12)

where �̃ is the L2-extension of the Laplacian � that incorporates the boundary condition
gi = 0 on ∂Γi. For the natural boundary condition, go ∈ L2(Γo), we can use the same
covariance operator, but equip �̃ with zero-Neumann boundary conditions, i.e. ∂νgo = 0
on ∂Γo. Lastly, for the shape of Ω , which we implicitly represent with a signed distance
function φ± (defined in § 2.4), we choose the norm

1
2

∥∥φ̄± − φ±∥∥2
Cφ± =

1
2σ 2
φ±

∥∥φ̄± − φ±∥∥2
L2(I), (2.13)

where σφ± ∈ R and φ̄± ∈ L2(I). Additional regularization for the boundary of Ω (i.e. the
zero level-set of φ±) is needed and it is described in § 2.4. Based on the above results, the
regularization norm for the unknown model parameters is

R(x, φ±) = 1
2 |ν − ν̄|2Σν + 1

2

∥∥gi − ḡi
∥∥2
Cgi

+ 1
2

∥∥go − ḡo
∥∥2
Cgo
+ 1

2

∥∥φ̄± − φ±∥∥2
Cφ± . (2.14)

2.3. Euler–Lagrange equations for the inverse Navier–Stokes problem
Testing the Navier–Stokes problem (2.1) with functions (v, q) ∈ H1(Ω)× L2(Ω) and
after integrating by parts, we obtain the weak form

M (Ω)(u, p, v, q; x) ≡
∫
Ω

(v · (u · ∇u)+ ν∇v : ∇u− (∇ · v)p− q(∇ · u))+
∫
Γo

v · go

+
∫
Γ∪Γi

v · (−ν∂νu+ pν)+NΓi(v, q,u; gi)+NΓ (v, q,u; 0) = 0, (2.15)
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where N is the Nitsche (1971) penalty term

NT(v, q,u; z) ≡
∫

T
(−ν∂νv + qν + ηv) · (u− z), (2.16)

which weakly imposes the Dirichlet boundary condition z ∈ L2(T) on a boundary T , given
a penalization constant η. (The penalization η is a numerical parameter with no physical
significance (see § 2.7).) We define the augmented reconstruction error functional

J (Ω)(u, p, v, q; x) ≡ E (u)+R(x, φ±)+M (Ω)(u, p, v, q; x), (2.17)

which contains the regularization terms R and the model constraint M , such that u weakly
satisfies (2.1). To reconstruct the measured velocity field u� and find the unknowns (Ω, x),
we minimize J by solving its associated Euler–Lagrange system.

2.3.1. Adjoint Navier–Stokes problem
To derive the Euler–Lagrange equations for J , we first define

U ′ =
{

u′ ∈ H1(Ω) : u′
∣∣
Γ∪Γi
≡ 0

}
(2.18)

to be the space of admissible velocity perturbations u′ and P ′ ⊂ L2(Ω) to be the space of
admissible pressure perturbations p′, such that (−∂νu′ + p′ν)|Γo ≡ 0. We start with

δuE ≡ d
dτ

E (u+ τu′)
∣∣∣
τ=0
=
∫
Ω

−C−1
u
(
u� − Su

) · Su′

=
∫
Ω

−S†C−1
u
(
u� − Su

) · u′ ≡
〈
DuE ,u′

〉
Ω
. (2.19)

Adding together the first variations of M with respect to (u, p),

δuM ≡ d
dτ

M (·)(u+ τu′, . . . )
∣∣∣
τ=0

, δpM ≡ d
dτ

M (·)(. . . , p+ τp′, . . . )
∣∣∣
τ=0

,

(2.20a,b)

and after integrating by parts, we find

δuM + δpM =
∫
Ω

(
−u ·

(
∇v + (∇v)†

)
− ν�v +∇q

)
· u′ +

∫
Ω

(∇ · v)p′

+
∫
∂Ω

((u · ν)v + (u · v)ν + ν∂νv − qν) · u′

+
∫
Γ∪Γi

v · (−ν∂νu′ + p′ν)+NΓi∪Γ (v, q,u′; 0). (2.21)

Since R does not depend on (u, p), we can use (2.19) and (2.21) to assemble the optimality
conditions of J for (u, p)〈

DuJ ,u′
〉
Ω
= 0,

〈
DpJ , p′

〉
Ω
= 0. (2.22)

For (2.22) to hold true for all perturbations (u′, p′) ∈ U ′ × P ′, we deduce that (v, q) must
satisfy the following adjoint Navier–Stokes problem

−u · (∇v + (∇v)†
)− ν�v +∇q = −DuE in Ω,

∇ · v = 0 in Ω,
v = 0 on Γ ∪ Γi,

(u · ν)v + (u · v)ν + ν∂νv − qν = 0 on Γo.

⎫⎪⎬⎪⎭ (2.23)
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In this context, v is the adjoint velocity and q is the adjoint pressure, which both vanish
when u� ≡ Su. Note also that we choose boundary conditions for the adjoint problem
(2.23) that make the boundary terms of (2.21) vanish and that these boundary conditions
are subject to the choice of U ′, which, in turn, depends on the boundary conditions of the
(primal) Navier–Stokes problem.

2.3.2. Shape derivatives for the Navier–Stokes problem
To find the shape derivative of an integral defined in Ω , when the boundary ∂Ω deforms
with speed V , we use Reynold’s transport theorem. For the bulk integral of f : Ω → R,
we find

d
dτ

(∫
Ω(τ)

f
) ∣∣∣∣

τ=0
=
∫
Ω

f ′ +
∫
∂Ω

f (V · ν), (2.24)

while for the boundary integral of f , we find (Walker 2015, Chapter 5.6)

d
dτ

(∫
∂Ω(τ)

f
) ∣∣∣∣

τ=0
=
∫
∂Ω

f ′ + (∂ν + κ)f (V · ν), (2.25)

where f ′ is the shape derivative of f (due to V ), κ is the summed curvature of
∂Ω and V ≡ ζν, with ζ ∈ L2(∂Ω), is the Hadamard parametrization of the speed field.
Any boundary that is a subset of ∂I, i.e. the edge of the image I, is non-deforming and
therefore the second term of the above integrals vanishes. The only boundary that deforms
is Γ ⊂ ∂Ω . For brevity, let δV I denote the shape perturbation of an integral I. Using (2.24)
on E , we compute

δV E =
〈
DuE ,u′

〉
Ω
, (2.26)

where DuE is given by (2.19). Using (2.24) and (2.25) on M , we obtain the shape
derivatives problem for (u′, p′)

u′ · ∇u+ u · ∇u′ − ν�u′ +∇p′ = 0 in Ω,
∇ · u′ = 0 in Ω,

u′ = −∂νu(V · ν) on Γ,
u′ = 0 on Γi,

−ν∂νu′ + p′ν = 0 on Γo,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.27)

which can be used directly to compute the velocity and pressure perturbations for a
given speed field V . We observe that (u′, p′) ≡ 0 when ζ ≡ V · ν ≡ 0. Testing the shape
derivatives problem (2.27) with (v, q), and adding the appropriate Nitsche terms for the
weakly enforced Dirichlet boundary conditions, we obtain

δV M =
∫
Ω

(
v · (u′ · ∇u+ u · ∇u′

)+ ν∇v : ∇u′ − (∇ · v)p′ − q(∇ · u′)
)

+
∫
Γ∪Γi

v · (−ν∂νu′ + p′ν)+NΓi(v, q,u′; 0)+NΓ (v, q,u′; −ζ∂νu) = 0.

(2.28)

If we define Ii to be the first four integrals in (2.21), integrating (2.28) by parts yields

δV M =
4∑

i=1

Ii +NΓi(v, q,u′; 0)+NΓ (v, q,u′; −ζ∂νu) = 0, (2.29)
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Reconstruction and segmentation of noisy velocity images

and, due to the adjoint problem (2.23), we find

δV M = −δV E +
∫
Γ

(−ν∂νv + qν) · ζ∂νu = 0, (2.30)

since u′|Γi ≡ 0 and u|Γ ≡ 0. Therefore, the shape perturbation of J is

δV J ≡
〈
DV J ,V · ν

〉
Γ
≡
〈
DζJ , ζ

〉
Γ
= δV E + δV M + δV R = 0, (2.31)

which, due to (2.30) and δV R ≡ 0, takes the form〈
DζJ , ζ

〉
Γ
=
〈
∂νu · (−ν∂νv + qν) , ζ

〉
Γ
, (2.32)

where DζJ is the shape gradient. Note that the shape gradient depends on the normal
gradient of the (primal) velocity field and the pseudotraction, (−ν∇v + qI) · ν, that the
adjoint flow exerts on Γ .

2.3.3. Generalized gradients for the unknown model parameters x
The unknown model parameters x have an explicit effect on M and R, and can therefore
be obtained by taking their first variations. For the Dirichlet-type boundary condition at
the inlet, we find〈

DgiJ , g′i
〉
Γi
=
〈
ν∂νv − qν − ηv + C−1

gi

(
gi − ḡi

)
, g′i
〉
Γi

=
〈
Cgi (ν∂νv − qν − ηv)+ gi − ḡi, g′i

〉
Cgi

=
〈
D̂giJ , g′i

〉
Cgi

, (2.33)

where−D̂giJ is the steepest descent direction that corresponds to the covariance-weighted
norm. For the natural boundary condition at the outlet, we find〈

DgoJ , g′o
〉
Γo
=
〈
v + C−1

go

(
go − ḡo

)
, g′o
〉
Γo

=
〈
Cgov + go − ḡo, g′o

〉
Cgo

=
〈
D̂goJ , g′o

〉
Cgo

. (2.34)

Lastly, since the kinematic viscosity is considered to be constant withinΩ , its generalized
gradient is〈

DνJ , ν′
〉
R

=
〈∫
Ω

∇v : ∇u+Σ−1
ν (ν − ν̄) , ν′

〉
R

=
〈
Σν

∫
Ω

∇v : ∇u+ ν − ν̄, ν′
〉
Σν
=
〈
D̂νJ , ν′

〉
Σν
. (2.35)

For a given step size R � τ > 0, the steepest descent directions (2.33)–(2.35) can be used
either to update an unknown parameter x through

xk+1 = xk + τ sk, (2.36)

with sk = −D̂xJ , or to reconstruct an approximation H̃ of the inverse Hessian matrix, in
the context of a quasi-Newton method, and thereby to compute sk = −H̃D̂xJ . We adopt
the latter approach, which is discussed in § 2.5.
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2.4. Geometric flow
To deform the boundary ∂Ω using the simple update formula (2.36), we need a parametric
surface representation. Here we choose to implicitly represent ∂Ω using signed distance
functions φ±. The object Ω and its boundary ∂Ω are then identified with a particular
function φ± such that

Ω = {x ∈ Ω : φ±(x) < 0} , ∂Ω = {x ∈ Ω : φ±(x) = 0} . (2.37a,b)

2.4.1. Implicit representation of Ω using signed distance functions
A signed distance function φ± for Ω can be obtained by solving the Eikonal equation

|∇φ±(x)| = 1 subject to φ±
∣∣
∂Ω
= 0 x ∈ I. (2.38)

One way to solve this problem is with level-set methods (Osher & Sethian 1988; Sethian
1996; Burger 2001, 2003; Burger & Osher 2005; Yu, Juniper & Magri 2019). There is,
however, a different approach, which relies on the heat equation (Varadhan 1967b,a; Crane,
Weischedel & Wardetzky 2017). The main result that we draw from Varadhan (1967b), to
justify the use of the heat equation for the approximation of φ±, states that

d(x, ∂Ω) = lim
τ1→0

(
−
√
τ1

2
log u(x, τ1)

)
, x ∈ I, (2.39)

where d(x, ∂Ω) is the Euclidean distance between any point x ∈ I and ∂Ω , and u is the
solution of heat propagation away from ∂Ω

(I − τ1�) u = 0 in I,
u = 1 on ∂Ω.

}
(2.40)

Crane et al. (2017) used the above result to implement a smoothed distance function
computation method which they called the ‘heat method’. Here, we slightly adapt this
method to compute signed distance functions φ± in truncated domains (figure 2b). To
compute φ±, we therefore solve (2.40) for τ1 � 1 and then obtain φ± by solving

∇ · ∇φ± = ∇ · X in I,
∂νφ± = X · ν on ∂I,
φ± = 0 on ∂Ω,

⎫⎬⎭ X = −sgn(ψ)
∇u
|∇u| , (2.41)

with X being the normalized heat flux and ψ being a signed function such that ψ(x) is
negative for points x in Ω and positive for points x outside Ω . This intermediate step
(the solution of two Poisson problems (2.40)–(2.41) instead of one) is taken to ensure that
|∇φ±| = 1.

2.4.2. Propagating the boundary of Ω
To deform the boundary ∂Ω , we transport φ± under the speed field V ≡ ζν. The
convection-diffusion problem for φ±(x, t) reads

∂tφ± +
◦

V · ∇φ± − εφ±�φ± = 0 in I × (0, τ ],
φ± = φ±0 in I × {t = 0},

}
εφ± =

|V |∞ι
Reφ±

, (2.42)

where φ±0 denotes the signed distance function of the current domain Ω , εφ± is the
diffusion coefficient, ι is a length scale, Reφ± is a Reynolds number and

◦
V : I→ R× R is
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(a) (b) (c)

(d) (e) ( f )
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Figure 2. Geometric flow of ∂Ω (figure 2a) relies on the computation of its signed distance field φ± (figure 2b)
and its normal vector extension ◦ν (figure 2c). The shape gradient ζ (figure 2d), which is initially defined on ∂Ω ,
is extended to the whole image I (

◦
ζ in figure 2e, f ). Shape regularization is achieved by increasing the diffusion

coefficient εζ to mitigate small-scale perturbations when assimilating noisy velocity fields u�. Figure 2( f )
shows results at a lower value of Reζ than figure 2(e). (a) Shape of ∂Ω . (b) Level-sets of φ±. (c) Magnitude of
φ± and ◦ν. (d) Shape gradient ζ on ∂Ω . (e)

◦
ζ in I (Reζ = 1). ( f )

◦
ζ in I (Reζ = 0.01).

an extension of V : ∂Ω → R× R. If we solve (2.42) for φ±(x, τ ), we obtain the implicit
representation of the perturbed domain Ωτ at time t = τ (the step size), but to do so, we
first need to extend V to the whole space of the image I.

To extend V to I, we extend the normal vector ν and the scalar function ζ , which are
both initially defined on ∂Ω . The normal vector extension (figure 2c) is easily obtained by

◦
ν(x) = ∇φ±

|∇φ±| = ∇φ±, x ∈ I, (2.43)

since |∇φ±| = 1, and an outward-facing extension is given by
◦
νo = sgn(φ±)

◦
ν. (2.44)

We then use the extended normal vector ◦νo to extend ζ ∈ L2(∂Ω) to
◦
ζ ∈ L2(I), using the

convection-diffusion problem

∂t
◦
ζ + ◦

νo · ∇ ◦
ζ − εζ�

◦
ζ = 0 in I × (0, τζ ],

◦
ζ = ζ on ∂Ω × (0, τζ ],
◦
ζ ≡ 0 in I × {t = 0},

⎫⎪⎬⎪⎭ εζ = |
◦
νo|∞ι
Reζ

. (2.45)

In other words, we convect ζ along the predefined ◦
νo-streamlines and add isotropic

diffusion for regularization (figure 2e, f ). The choice of εφ± in (2.42) and εζ in (2.45)
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has been made for the shape regularization to depend only on the length scale ι and the
Reynolds numbers Reφ±,Reζ . More precisely, the shape regularization depends only on
Reφ± and Reζ because we fix the length scale ι to equal the smallest possible length scale
of the modelled flow, which is the numerical grid spacing h for a uniform Cartesian grid.
For illustration, if we consider ζ to be the concentration of a dye on ∂Ω (figure 2d), using
a simplified scaling argument similar to the growth of a boundary layer on a flat plate, we
observe that the diffusing dye at distance d from ∂Ω will extend over a width δ such that

δ ∼
√
εζd
| ◦νo|∞

=
√
ιd

Reζ
or

δ

ι
∼
√
α

Reζ
when d = αι. (2.46)

The above scaling approximation describes the dissipation rate of small-scale features such
as roughness away from ∂Ω . This is therefore how Reφ± and Reζ control the regularity of
the boundary ∂Ωτ at time t = τ , which is given by (2.42). We take τζ to be large enough
to find a steady-state for (2.45). We recast the linear initial value problems (2.42) and
(2.45) into their corresponding boundary value problems using backward-Euler temporal
discretization because the time-dependent solution does not interest us here.

The extended shape gradient (2.32), after taking into account the regularizing term for
φ±, is therefore given by〈

D◦
ζ
J ,

◦
ζ
′〉

I
=
〈 ◦
ζ + C−1

φ±
(
φ̄± − φ±

)
,
◦
ζ
′〉

I

=
〈
Cφ±

◦
ζ + φ̄± − φ±,

◦
ζ
′〉
Cφ±
=
〈
D̂◦
ζ
J ,

◦
ζ
′〉
Cφ±
, (2.47)

where
◦
ζ is the extension of the shape gradient ζ(x) = ∂νu · (−ν∂νv + qν), for x on Γ .

2.5. Segregated approach for the Euler–Lagrange system
The inverse Navier–Stokes problem for the reconstruction and the segmentation of noisy
velocity images u� can be written as the saddle point problem (Benzi, Golubt & Liesen
2005)

find u◦ ≡ arg min
Ω,x

max
v,q

J (Ω)(u, p, v, q; x), (2.48)

where J is given by (2.17). The above optimization problem leads to an Euler–Lagrange
system whose optimality conditions were formulated in § 2.3. We briefly describe our
segregated approach to solve this Euler–Lagrange system in algorithm 1.

To precondition the steepest descent directions (2.33)–(2.35) and (2.47), we reconstruct
the approximated inverse Hessian H̃ of each unknown using the BFGS quasi-Newton
method (Fletcher 2000) with damping (Nocedal & Wright 2006). Due to the large scale of
the problem, it is only possible to work with the matrix-vector product representation of
H̃. Consequently, the search directions are given by

s = −

⎛⎜⎜⎜⎝
H̃◦
ζ
· · ·

· H̃gi · ·
· · H̃go ·
· · · H̃ν

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

D̂◦
ζ
J

D̂giJ
D̂goJ
D̂νJ

⎞⎟⎟⎟⎠ , (2.49)

and the unknown variables x are updated according to (2.36). The signed
distance function φ± is perturbed according to (2.42), with

◦
V ≡ −(H̃◦

ζ
D̂◦
ζ
J )

◦
ν.
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Reconstruction and segmentation of noisy velocity images

Algorithm 1: Reconstruction and segmentation of noisy flow velocity images.
Input: u�, initial guesses for the unknowns (Ω0, x0), regularization parameters.
begin

k← 0
(φ±)k ← signed distance field ((2.40) and (2.41))
(u, p)k ← Navier–Stokes problem for (φ±, x)k (2.1)
while convergence criterion is not met do

(v, q) ← adjoint Navier–Stokes problem with uk (2.23)
D̂(·)J ← steepest ascent directions ((2.33)–(2.35) and (2.47))
s, τ ← search directions and step-size (2.49)
(φ±, x)k+1← perturb φ± (2.42) and model parameters x (2.36)
(u, p)k+1 ← linearized Navier–Stokes problem for (φ±, x)k+1 (2.50)
k← k + 1

(u◦, p◦) ← (u, p)k
(Ω◦, x◦)← (φ±, x)k

Output: reconstruction (u◦, p◦) and inferred model parameters (Ω◦, x◦).
Optional output: wall shear rate γ ◦w from u◦ and ∂Ω◦.

We start every line search with a global step size τ = 1 and halve the step size until
J ((φ±, x)k+1) < J ((φ±, x)k). To update the flowfield uk to uk+1, we solve the Oseen
problem for the updated parameters (φ±, x)k+1

uk · ∇uk+1 − ν�uk+1 +∇pk+1 = 0, ∇ · uk+1 = 0, (2.50)

with the boundary conditions given by (2.1). Algorithm 1 terminates if either the
covariance-weighted norm for the perturbations of the model parameters is below the
user-specified tolerance or the line search fails to reduce J .

2.6. Uncertainty estimation

We now briefly describe how the reconstructed inverse Hessian H̃ can provide estimates
for the uncertainties of the model parameters. To simplify the description, let x denote an
unknown parameter distributed according to N (xk, Cx). The linear approximation to the
data u� is given by

u� = Zx+ ε, ε ∼ N (0, Cu), (2.51a,b)

where u = Zx, where Z is the operator that encodes the linearized Navier–Stokes problem
around the solution uk. To solve (2.48), we update x as

xk+1 = xk + CZ†C−1
u (u� − Zxk), with C = (Z†C−1

u Z + C−1
x )−1, (2.52)

where Z† is the operator that encodes the adjoint Navier–Stokes problem and C is the
posterior covariance operator. It can be shown that (Tarantola 2005, Chapter 6.22.8)

C = (Z†C−1
u Z + C−1

x )−1 = (CxZ†C−1
u Z + I)−1Cx � H̃xCx, (2.53)

where H̃x is the reconstructed inverse Hessian for x. Note that H̃ by itself approximates
(CxZ†C−1

u Z + I)−1 and not C, because we use the steepest ascent directions D̂(·)J
(prior-preconditioned gradients), instead of the gradients D(·)J , in the BFGS formula.
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Therefore, if C̃ ≡ H̃xCx is the approximated covariance matrix, then samples xs
k+1 from

the posterior distribution can be drawn using the Karhunen–Loève expansion

xs
k+1 = xk +

∑
k

ηk
√
λkϕk, with ηk ∼ N (0, 1), (2.54)

where (λ, ϕ)k is the eigenvalue/eigenvector pair of C̃. The variance of xk+1 can then be
directly computed from the samples.

2.7. Numerics
To solve the above boundary value problems numerically, we use an immersed boundary
finite element method. In particular, we implement the fictitious domain cut-cell finite
element method (FEM), which was introduced by Burman (2010) and Burman & Hansbo
(2012) for the Poisson problem, and extended by Burman, and Massing et al. (2014);
Massing, Schott & Wall (2018) to the Stokes and the Oseen problems. We define Th to
be a tessellation of I produced by square cells (pixels) K ∈ Th, having sides of length h.
We also define the set of cut-cells T �h consisting of the cells that are cut by the boundary
∂Ω , and T �

h the set of cells that are found inside Ω and which remain intact (not
cut) (see figure 1). We assume that the boundary ∂Ω is well-resolved, i.e. ∂Ω/h� 1
where ∂Ω is the smallest length scale of ∂Ω . For the detailed assumptions on ∂Ω ,
we cite Burman & Hansbo (2012). The discretized space is generated by assigning a
bilinear quadrilateral finite element Q1 to every cell K. To compute the integrals, we
use standard Gaussian quadrature for cells K ∈ T �

h , while for cut-cells K ∈ T �h , where
integration must be considered only for the intersection K ∩Ω , we use the approach of
Mirtich (1996), which relies on the divergence theorem and simply replaces the integral
over K ∩Ω with an integral over ∂(K ∩Ω). The boundary integral on ∂(K ∩Ω) is then
easily computed using one-dimensional Gaussian quadrature (Massing, Larson & Logg
2013). Since we use an inf-sup unstable finite element pair (Q1–Q1) (Brenner & Scott
2008), we use a pressure-stabilizing Petrov–Galerkin formulation (Tezduyar 1991; Codina
2002) and ∇-div stabilization for preconditioning (Benzi & Olshanskii 2006; Heister
& Rapin 2013). Typical values and formulae for numerical parameters, e.g. Nitsche’s
penalization η, are given by Massing et al. (2014, 2018). Here, we take η = γ ν/h (Massing
et al. 2018), with γ = 100. To solve the Navier–Stokes problem, we use fixed-point
iteration (Oseen linearization) and at each iteration, we solve the coupled system using
the Schur complement; with an iterative solver (LGMRES) for the outer loops and a
direct sparse solver (UMFPACK) for the inner loops. The immersed FEM solver and
all the necessary numerical operations of algorithm 1 are implemented in Python, using
its standard libraries for scientific computing, namely SciPy (Virtanen et al. 2020) and
NumPy (Harris et al. 2020). Computationally intensive functions are accelerated using
Numba (Lam, Pitrou & Seibert 2015) and CuPy (Okuta et al. 2017).

3. Reconstruction and segmentation of flow images

In this section, we reconstruct and segment noisy flow images by solving the inverse
Navier–Stokes problem (2.48) using algorithm 1. We then use the reconstructed velocity
field to estimate the wall shear rate on the reconstructed boundary. First, we apply this
to three test cases with known solutions by generating synthetic 2-D Navier–Stokes data.
Next, we perform a magnetic resonance velocimetry experiment to acquire images of a
3-D axisymmetric Navier–Stokes flow, and apply algorithm 1 to these images.
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Reconstruction and segmentation of noisy velocity images

Image dimension Model dimension σux/U σuy/U

Converging channel (2-D) 1922 2002 3.97× 10−1 8.97× 10−3

Regularization σφ±/D σgi/U σν/UD Reφ± Reζ /h
Converging channel (2-D) 1.0 2.0 · 0.025 0.025 3

Table 1. Input parameters for the inverse 2-D Navier–Stokes problem.

We define the SNR of the u�x image as

SNRx = μx

σux

, μx ≡ 1
|Ω•|

∫
Ω•
|u•x |, (3.1a,b)

where σux is the standard deviation, Ω• is the ground truth domain, |Ω•| is the volume
of this domain and |u•x | is the magnitude of the ground truth x-velocity component in Ω•.
We also define the component-wise averaged, noise relative reconstruction error E •x and
the total relative reconstruction error E• by

E •x ≡ log
(

1
|Ω|

∫
Ω

|u•x − Su◦x |
σux

)
and E• ≡

∥∥u• − Su◦
∥∥

L1(I)∥∥u•
∥∥

L1(I)

, (3.2a,b)

respectively. Similar measures also apply for the u�y image.
We define the volumetric flow rate Q, the cross-section area at the inlet A and the

diameter at the inlet D. The Reynolds number is based on the reference velocity U ≡ Q/A
and the reference length D.

3.1. Synthetic data for 2-D flow in a converging channel
We start by testing algorithm 1 on a flow through a symmetric converging channel
having a taper ratio of 0.67. To generate synthetic 2-D Navier–Stokes data, we solve the
Navier–Stokes problem (2.1) for a parabolic inlet velocity profile (gi), zero-pseudotraction
boundary conditions at the outlet (go ≡ 0) and Re � 534, to obtain the ground truth
velocity u•. We then generate the synthetic data u� by corrupting the components of u•
with white Gaussian noise such that SNRx = SNRy = 3. For this test case, we are only
trying to infer Ω and gi. Note that, in our method, the initial guess x0 of an unknown x
equals the mean of its prior distribution x̄, i.e. x0 ≡ x̄. We start the algorithm using bad
initial guesses (high uncertainty in priors) for both the unknown parameters (see table 1).
The initial guess for Ω , labelled Ω0, is a rectangular domain with height equal to 0.7D,
centred in the image domain. For gi0, we take a parabolic velocity profile with a peak
velocity of approximately 2U that fits the inlet of Ω0. For comparison, g•i has a peak
velocity of 1.5U, while it is also defined on a different domain, namely Ω•.

The algorithm manages to reconstruct and segment the noisy flow images in 39
iterations, with a total reconstruction error E• � 1.44 %. The results are presented in
figures 3 and 4. We observe that the inverse Navier–Stokes problem performs very
well in filtering the noise (u� − Su◦) (figure 3c, f ), providing noiseless images for each
component of the velocity (figure 3b,e). As we expect, the discrepancies C−1

u (u� − Su◦)
(figure 3c, f ) consist mainly of Gaussian white noise, except at the corners of the outlet
(figure 3f ), where there is a weak correlation. For a more detailed presentation of the
denoising effect, we plot slices of the reconstructed velocity (figure 4c) and the ground
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(a) (b) (c)

(d) (e) ( f )

0

2

–2

–4

4

0

2

–2

–4

4

Figure 3. Reconstruction (algorithm 1) of synthetic noisy velocity images depicting the flow (from left to
right) in a converging channel. Figures 3(a,b) and 3(d,e) show the horizontal, ux, and vertical, uy, velocities
and share the same colourmap (colourbar not shown). Figure 3(c, f ) shows the discrepancy between the noisy
velocity images and the reconstruction (colourbars apply only to figure 3c, f ). (a) Synthetic image u�x . (b)
Our reconstruction u◦x . (c) Discrepancy σ−1

ux
(u�x − Su◦x). (d) Synthetic image u�y . (e) Our reconstruction u◦y .

( f ) Discrepancy σ−1
uy
(u�y − Su◦y).

truth velocity (figure 4d). The reconstructed pressure p◦, which is consistent with the
reconstructed velocity u◦ to machine precision accuracy, is, in effect, indistinguishable
from the ground truth p• (figure 5).

Having obtained the reconstructed velocity u◦, we can compute the wall shear rate γ ◦w on
the reconstructed boundary ∂Ω◦, which we compare with the ground truth γ •w in figure 6.
Using the upper (∂Ω◦+) and lower (∂Ω◦−) limits of the 2σ confidence region for ∂Ω◦
(figure 4a), we estimate a confidence region for γ ◦w; although this has to be interpreted
carefully. Note that, for example, ∂Ω◦+ and ∂Ω◦− can be smoother than the mean ∂Ω◦,
and, therefore, ∂Ω◦ may be found outside this confidence region. A better estimate of the
confidence region could be obtained by sampling the posterior distribution of ∂Ω◦ solving
a Navier–Stokes problem for each sample ∂Ωk and finding the distribution of γ ◦w . Since the
latter approach would be computationally intensive, we only provide our estimate, which
requires the solution of only two Navier–Stokes problems.

3.2. Synthetic data for 2-D flow in a simulated abdominal aortic aneurysm
Next, we test algorithm 1 in a channel that resembles the cross-section of a small
abdominal aortic aneurysm, with Dmax/D � 1.5, where Dmax is the maximum diameter
at the midsection. We generate synthetic images for u� as in § 3.1, again for
SNRx = SNRy = 3, but now for Re = 153. The ground truth domain Ω• has horizontal
symmetry but the inlet velocity profile deliberately breaks this symmetry. The inverse
problem is the same as that in § 3.1 but with different input parameters (see table 2).
The initial guess Ω0 is a rectangular domain with height equal to 0.85D, centred in the
image domain. For gi0, we take a skewed parabolic velocity profile with a peak velocity of
approximately 2U that fits the inlet of Ω0.

The algorithm manages to reconstruct and segment the noisy flow images in 39
iterations, with total reconstruction error E• � 2.87 %. The results are presented in
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Figure 4. Reconstruction (algorithm 1) of synthetic images depicting the flow (from left to right) in a
converging channel. Figure 4(a) depicts the reconstructed boundary ∂Ω◦ (cyan line), the 2σ confidence region
computed from the approximated posterior covariance C̃◦

ζ
≡ H̃◦

ζ
Cφ± (blue region), the ground truth boundary

∂Ω• (yellow line) and the initial guess ∂Ω0 (white line). Figure 4(b) shows the reconstruction error as a
function of iteration number. Velocity slices are drawn for 10 equidistant cross-sections (labelled with the
letters A to J) for both the reconstructed images (figure 4c) and the ground truth (figure 4d), coloured red for
positive values and blue for negative. (a) Velocity magnitude |u◦| and shape ∂Ω◦. (b) Reconstruction error
history. (c) Noisy data (grey) and reconstruction. (d) Ground truth velocity distributions.

0

0.1

0.2

(a) (b)

Figure 5. (a) Reconstructed and (b) ground truth reduced hydrodynamic pressure (p) for the flow (from left
to right) in the converging channel in figure 4. (a) Our reconstruction p◦. (b) Ground truth p•.
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Figure 6. Wall shear rate γw ≡ τ · ∂νu, where τ is the unit tangent vector of ∂Ω , for the converging channel
flow in figure 4. The wall shear stress is found by multiplying this by the viscosity. The reconstructed wall shear
rate (γ ◦w) is calculated on ∂Ω◦ and for u◦, while the ground truth (γ •w) is calculated on ∂Ω• and for u•. The
blue region is bounded by the two wall shear rate distributions for u◦, calculated on the upper (∂Ω◦+) and lower
(∂Ω◦−) limits of the 2σ confidence region of ∂Ω◦. Note that the reconstructed solution can sometimes be found
outside the blue region because the reconstructed shape ∂Ω◦ may be less regular than ∂Ω◦+ or ∂Ω◦−. (a) Lower
boundary. (b) Upper boundary.

Image dim. Model dim. σux/U σuy/U

Simul. abd. aortic aneurysm (2-D) 1922 2002 2.80× 10−1 5.26× 10−3

Regularization σφ±/D σgi/U σν/UD Reφ± Reζ /h
Simul. abd. aortic aneurysm (2-D) 1.0 2.0 · 0.1 0.1 3

Table 2. Input parameters for the inverse 2-D Navier–Stokes problem.

figures 7 and 8. We observe that the discrepancy (figure 7c, f ) consists mainly of Gaussian
white noise. Again, some correlations are visible in the discrepancy of the y-velocity
component at the upper inlet corner and the upper boundary of the simulated abdominal
aortic aneurysm. The latter correlations (figure 7f ) can be explained by the associated
uncertainty in the predicted shape ∂Ω◦ (figure 8a), which is well estimated for the upper
boundary but slightly underestimated for the upper inlet corner. It is interesting to note
that the upward skewed velocity profile at the inlet creates a region of low velocity
magnitude on the lower boundary. The velocity profiles in this region produce low wall
shear stresses, as seen in figures 8(c,d), and 10(b). These conditions are particularly
challenging when one tries to infer the true boundary ∂Ω• because the local SNR is
low (SNR� 1), meaning that there is considerable information loss there. Despite the
above difficulties, algorithm 1 manages to approximate the posterior distribution of ∂Ω◦
well, and successfully predicts extra uncertainty in this region (figure 8a). Again, the
reconstructed pressure p◦ is indistinguishable from the ground truth p• (figure 9).

Using the reconstructions u◦ and ∂Ω◦, we compute the wall shear rate and we compare
it with the ground truth in figure 10(b). We observe that the reconstructed solution
approximates the ground truth well, even for very low SNRs (SNR = 3). Note that the
waviness of the ground truth γ •w is due to the relatively poor resolution of the level set
function that we intentionally used to implicitly define this domain.

3.3. Synthetic data for 2-D flow in a simulated aortic aneurysm
Next, we test algorithm 1 in a channel that resembles the cross-section of an aorta that
has an aneurysm in its ascending part. This test case is designed to demonstrate that
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Figure 7. As for figure 3 but for the synthetic images depicting the flow (from left to right) in the simulated
2-D model of an abdominal aortic aneurysm. (a) Synthetic image u�x . (b) Our reconstruction u◦x . (c) Discrepancy
σ−1

ux
(u�x − Su◦x). (d) Synthetic image u�y . (e) Our reconstruction u◦y . ( f ) Discrepancy σ−1

uy
(u�y − Su◦y).

(a) (b)

(c) (d)

0

0

Reconstucted ∂Ω° ± 2σ

Ground truth ∂Ω•

Initial guess ∂Ω0 0.2

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

0.4

0.6

0

0.25

–0.25

–0.50

0.50

0

A B C D E F G H I J

A B C D E F G H I J

A B C D E F G H I J

V
er

ti
ca

l 
co

o
rd

in
at

e 
y

V
er

ti
ca

l 
co

o
rd

in
at

e 
y

0.25

–0.25

–0.50

0.50

0

0.25

–0.25

–0.50

0.50

0

0.25

–0.25

–0.50

0.50

A B C D E F G H I J

A B C D E F G H I J

5 10 15 20

Iteration

25 30 35 40

ux
�

uy
•

Sux°
∂Ω°

∂Ω°

ux
•

∂Ω•

∂Ω•

x
•

y
•

uy
�

Suy°

Figure 8. As for figure 4 but for the synthetic images depicting the flow (from left to right) in the simulated
2-D model of an abdominal aortic aneurysm. (a) Velocity magnitude |u◦| and shape ∂Ω◦. (b) Reconstruction
error history. (c) Noisy data (grey) and reconstruction. (d) Ground truth velocity distributions.
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Figure 9. (a) Reconstructed and (b) ground truth reduced hydrodynamic pressure (p) for the flow (from left
to right) in the simulated 2-D model of an abdominal aortic aneurysm in figure 8. (a) Our reconstruction p◦.
(b) Ground truth p•.
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Figure 10. As for figure 6 but for the synthetic images depicting the flow (from left to right) in the simulated
2-D model of an abdominal aortic aneurysm in figure 8. (a) Lower boundary. (b) Upper boundary.

Image dim. Model dim. σux/U σuy/U

Simul. aortic aneurysm (2-D) 3002 3252 1.17× 10−1 2.62× 10−1

Regularization σφ±/D σgix/U σgiy/U σν/UD Reφ± Reζ /h
Simul. aortic aneurysm (2-D) 0.025 0.5 0.4 . 1 1 5

Table 3. Input parameters for the inverse 2-D Navier–Stokes problem.

the algorithm is applicable to realistic geometries with multiple inlets/outlets and for
abnormal flow conditions (e.g. separation and recirculation zones). We generate synthetic
images for u� as in § 3.1, but for SNRx = SNRy = 2.5 and for Re = 500. For increased
Reynolds numbers (Re = 1000, 1500), we observed vortex shedding within the aneurysm
and we could not find a steady flow solution to generate synthetic images of steady flow.
The inverse problem is the same as that in § 3.1 but with different input parameters (see
table 3). The initial guess for the boundary of Ω0 (figure 11a) is generated by using the
Chan–Vese segmentation method (Chan & Vese 2001; Getreuer 2012a; Van Der Walt et al.
2014) on the noisy mask of the ground truth domain Ω• (figure 11b). The prior standard
deviation σφ± corresponds to the length of approximately 7 pixels of the noisy mask. The
initial guess for the inlet velocity profile gi0 is also shown in figure 11(a). Using the prior
information of the boundary and the inlet velocity profile, algorithm 1 generates an initial
guess for the Navier–Stokes velocity field (figure 12a,b) during its zeroth iteration.
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Ground truth ∂Ω•,gi
•

Initial guess ∂Ω0 ,gi0

(a) (b)

Figure 11. Initial guesses (input for algorithm 1) for the geometry (∂Ω0) and the inlet velocity profile (gi0)
versus their corresponding ground truth (figure 11a) for the flow in the simulated 2-D model of an aortic
aneurysm. The initial guess ∂Ω0 (figure 11a) is generated by segmenting the noisy mask (figure 11b) of the
ground truth domain Ω•. (a) Initial guesses (priors) for ∂Ω and gi. (b) Noisy mask of Ω•.

(a) (b) (c)

(d) (e) ( f )

Figure 12. Zeroth iteration (N–S solution for the initial guesses in figure 11) velocity images (figure 12a,b),
streamlines (figure 12c) and discrepancies with the data (figure 12d–f ) for the flow in the simulated 2-D
model of an aortic aneurysm. Streamlines are plotted on top of the velocity/discrepancy magnitude image
and streamline thickness increases as the velocity magnitude increases. Figures 12(a–c) (colourbar not
shown) and 12(d–f ) (colourbar shown on the right) share the same colourmap. (a) (ux)0. (b) (uy)0. (c) u0.
(d) σ−1

ux
(u�x − S(ux)0). (e) σ−1

uy
(u�y − S(uy)0). ( f ) C−1

u (u� − Su0).
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Figure 13. Reconstruction (final iteration of algorithm 1) of synthetic noisy velocity images depicting the
flow in the simulated 2-D model of an aortic aneurysm. Figures 13(a,b) and 13(d,e) show the horizontal, ux,
and vertical, uy, velocities and share the same colourmap (colourbar not shown). Figure 13(c, f ) shows the
discrepancy between the noisy velocity images and the reconstruction (colourbars apply only to figure 13c, f ).
(a) Synthetic image u�x . (b) Our reconstruction u◦x . (c) Discrepancy σ−1

ux
(u�x − Su◦x). (d) Synthetic image u�y .

(e) Our reconstruction u◦y . ( f ) Discrepancy σ−1
uy
(u�y − Su◦y).

The algorithm manages to reconstruct and segment the noisy flow images in 15
iterations, with a total reconstruction error E• � 5.73 %. The results are presented in
figures 13 and 14. We observe that the discrepancy of the last iteration (figure 13c, f )
consists mainly of Gaussian white noise. Some correlations are visible in the discrepancy
of the x-velocity component near the stagnation points of the upper branches, but these
correlations are explained by the extra uncertainty in the predicted shape ∂Ω◦ (figure 14a).
By comparing figures 13(c, f ) with figure 12(d,e), we confirm that the algorithm has
successfully assimilated the remaining information from the noisy velocity measurements.
Figure 15 shows the pressure of the zeroth iteration (figure 15a), and the reconstructed
pressure p◦ (figure 15b), which compares well to the ground truth pressure p• (figure 15c).

We further compare the performance of algorithm 1 with a state-of-the-art image
denoising algorithm, namely total variation denoising using Bregman iteration (TV-B)
(Getreuer 2012b; Van Der Walt et al. 2014) in figure 16. We first observe that algorithm 1
denoises the velocity field without losing contrast near the walls of the aorta and accurately
identifies the low-speed vortical structure within the aneurysm, which is obscured by
noise. We then test three different values of the TV-B parameter λ/λ0, which controls
the total variation regularization, and observe that even though TV-B manages to denoise
the velocity field and reveal certain large scale vortices, there is considerable loss of
contrast near the walls of the aorta and a systematic error (e.g. decreasing peak velocity)
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Figure 14. Reconstruction (final iteration of algorithm 1) of synthetic images depicting the flow in the
simulated 2-D model of an aortic aneurysm. Figure 14(a) depicts the reconstructed boundary ∂Ω◦ (cyan line),
the 2σ confidence region computed from the approximated posterior covariance C̃◦

ζ
≡ H̃◦

ζ
Cφ± (blue region)

and the ground truth boundary ∂Ω• (yellow line). Figure 14(b) shows the reconstruction error as a function of
iteration number. (a) Velocity magnitude |u◦| and shape ∂Ω◦. (b) Reconstruction error history.

100

(a) (b) (c)

10–1

–10–1

–100

0

Figure 15. (a) Zeroth iteration (N–S solution for the initial guesses in figure 11), (b) reconstructed (final
iteration of algorithm 1) and (c) ground truth reduced hydrodynamic pressure for the simulated 2-D model
of an aortic aneurysm in figure 14. All panels share the same colourmap (symmetric logarithmic scale) and the
same colourbar. (a) Zeroth iteration p0. (b) Our reconstruction p◦. (c) Ground truth p•.

that increases as λ decreases. (The parameter λ0 = λ0(σ ), where σ is the noise standard
deviation in the image, is given by Getreuer (2012b) as an optimal value for λ.)

Using the reconstructions u◦ and ∂Ω◦, we compute the reconstructed wall shear
rate (γ ◦w) and compare it with the ground truth (γ •w) (figure 17). We observe that
γ ◦w approximates γ •w well and that discrepancies are well accounted for by the γ ◦w ±
2σ -bounds.

3.4. Magnetic resonance velocimetry experiment
We measured the flow through a converging nozzle using magnetic resonance velocimetry
(Fukushima 1999; Mantle & Sederman 2003; Elkins & Alley 2007). The nozzle converges
from an inner diameter of 25 mm to an inner diameter of 13 mm, over a length of 40 mm
(figure 18b). On either side of the converging section, the entrance-to-exit length equals
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(a) (b)

(e) ( f )

(c)

(d )

Figure 16. Streamlines for the flow in the simulated 2-D model of an aortic aneurysm (figures 13 and 14),
and comparison with total variation denoising using Bregman iteration (TV-B) with different weights λ.
Streamlines are plotted on top of the velocity magnitude image and streamline thickness increases as the
velocity magnitude increases. (a) Synthetic data u�. (b) Our reconstruction u◦. (c) Ground truth u•. (d) TV-B
λ/λ0 = 0.1. (e) TV-B λ/λ0 = 0.01. ( f ) TV-B λ/λ0 = 0.001.

10 times the local diameter (figure 18b) to ensure the absence of entrance/exit effects.
We acquired velocity images for a Reynolds number of 162 (defined at the nozzle outlet).
We used a 40 wt% glycerol in water solution (Cheng 2008; Volk & Kähler 2018) as the
working fluid to increase the viscosity and minimize the effect of thermal convection in
the resulting velocity field due to the temperature difference between the magnet bore
and the working fluid. The nozzle is made of polyoxymethylene to minimize magnetic
susceptibility differences between the nozzle wall and the working fluid (Wapler et al.
2014). Figure 18(a) depicts the schematic of the flow loop of the MRV experiment.
To pump the water/glycerol solution, we used a Watson Marlow 505S peristaltic pump
(Watson Marlow, Falmouth UK) with a 2 l dampening vessel at its outlet to dampen flow
oscillations introduced by the peristaltic pump. To make the flow uniform, we installed
porous polyethylene distributor plates (SPC technologies, Fakenham UK) at the entrance
and the exit of the nozzle.

We acquired the velocity images on a Bruker Spectrospin DMX200 with a 4.7 T
superconducting magnet, which is equipped with a gradient set providing magnetic field
gradients of a maximum strength of 13.1 G cm−1 in three orthogonal directions, and a
birdcage radiofrequency coil tuned to a 1H frequency of 199.7 MHz with a diameter and
a length of 6.3 cm. To acquire 2-D velocity images, we used slice-selective spin-echo
imaging (Edelstein et al. 1980) combined with pulsed gradient spin-echo (PGSE) (Stejskal
& Tanner 1965) for motion encoding (figure 18c). We measured each of the three
orthogonal velocity components in a 1 mm-thick transverse slice through the converging
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Figure 17. Wall shear rate γw ≡ τ · ∂νu, where τ is the unit tangent vector of ∂Ω , for the flow in the simulated
2-D model of an aortic aneurysm in figure 14. The wall shear stress is found by multiplying this by the
viscosity. The reconstructed wall shear rate (γ ◦w) is calculated on ∂Ω◦ and for u◦, while the ground truth
(γ •w) is calculated on ∂Ω• and for u•. The ±2σ -bounds are calculated on the upper (∂Ω◦+) and lower (∂Ω◦−)
limits of the confidence region of ∂Ω◦. All panels share the same colourmap (symmetric logarithmic scale)
and the same colourbar. (a) Zeroth iteration (γw)0. (b) Our reconstruction γ ◦w . (c) Ground truth γ •w . (d) Lower
confidence bound γ ◦w − 2σ . (e) Upper confidence bound γ ◦w + 2σ .

section of the nozzle, which is centred along the nozzle centreline. The flow images we
acquired have a field of view of 84.2× 28.6 mm at 512× 128 pixels, giving an in-plane
resolution of 165× 223 µm. For velocity measurements in the net flow direction, we used
a gradient pulse duration, δ, of 0.3–0.5 ms and flow observation times, Δ, of 9–12 ms.
For velocity measurements in the perpendicular to the net flow direction, we used an
increased gradient pulse duration, δ, of 1.0 ms and an increased observation time, Δ, of
25–30 ms, due to the lower velocity magnitudes in this direction. We set the amplitude,
g, of the flow encoding gradient pulses to ±3 G cm−1 for the direction parallel to the
net flow and to ±1.5 G cm−1 for the direction perpendicular to the net flow to maximize
phase contrast whilst avoiding velocity aliasing by phase wrapping. To obtain an image
for each velocity component, we took the phase difference between two images acquired
with flow encoding gradients having equal magnitude g but opposite signs. To remove any
phase shift contributions that are not caused by the flow, we corrected the measured phase
shift of each voxel by subtracting the phase shift measured under zero-flow conditions.
The gradient stabilization time that we used is 1 ms and we acquired the signal with a
sweep width of 100 kHz. We used hard 90◦ excitation pulses with a duration of 85 µs, and
a 512 µs Gaussian-shaped soft 180◦ pulse for slice selection and spin-echo refocusing.
We found the T1 relaxation time of the glycerol solution to be 702 ms, as measured by
an inversion recovery pulse sequence. To allow for magnetization recovery between the
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Figure 18. Schematic of the rig that we use to conduct the MRV experiment consisting of: (1) 20 l
holding tank; (2) peristaltic pump; (3) 2 l vessel; (4) clamp valves; (5) porous polyethylene distributor; (6)
radiofrequency probe; (7) converging nozzle; (8) 4.7 T superconducting magnet; (9) volumetric cylinder
for flow measurements. Figure 18(b) shows a sketch of the converging nozzle with the active area of the
spectrometer shown by a red box. The pulse sequence that we use for 2-D velocity imaging is shown in
figure 18(c). (a) Magnet and flow loop. (b) Converging nozzle. (c) Spin-echo pulse sequence with slice selective
refocusing and flow encoding.

acquisitions, we used a repetition time of 1.0 s. To eliminate unwanted coherences and
common signal artefacts, such as DC offset, we used a four step phase cycle.

To be consistent with the standard definition used in MRI/MRV, we define the SNR of
each MRV image using (3.1a,b), but with μx replaced by the mean signal intensity (images
of the 1H spin density) over the nozzle domain (μI) and σux replaced by the standard
deviation of the Rayleigh distributed noise in a region with no signal (σI) (Gudbjartsson
& Patz 1995). The standard deviation for the phase is therefore σϕ = 1/SNR. The
MRV images are acquired by taking the sum/difference of four phase images and then
multiplying by the constant factor 1/2γ gδΔ, where γ is the gyromagnetic ratio of 1H
(linear relation between the image phase and the velocity). The error in the MRV measured
velocity is therefore σu = σϕ/γ gδΔ. To acquire high SNR images (figure 19), we averaged
32 scans, resulting in a total acquisition time of 137 minutes per velocity image (∼ 4.6 h
for both velocity components). To evaluate the denoising capability of the algorithm,
we acquired poor SNR images by averaging only four scans (the minimum requirement
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Figure 19. High SNR images (average of 32 scans with SNRz � 44,SNRr � 34) that we acquired for the
flow through the converging nozzle using MRV (units in (cm s−1)). (a) u•z . (b) u•r .

for a full phase cycle) and decreasing the repetition time to 300 ms, resulting in a total
acquisition time of 5.1 min per velocity image (10.2 min for both velocity components).

To verify the quantitative nature of the MRV experiment, we compared the volumetric
flow rates calculated from the MRV images (using 2-D slice-selective velocity imaging in
planes normal to the direction of net flow) with the volumetric flow rates measured from
the pump outlet. The results agree with an average error of ±1.8 %.

3.5. Magnetic resonance velocimetry data in a converging nozzle
We now use algorithm 1 to reconstruct and segment the low SNR images (u�) that we
acquired during the MRV experiment (§ 3.4), and compare them with the high SNR
images of the same flow (u• in figure 19). The flow is axisymmetric with zero swirl.
The subscript ‘x’ is replaced by ‘z’, which denotes the axial component of velocity, and
the subscript ‘y’ is replaced by ‘r’, which denotes the radial component of velocity.
The low SNR images (SNRz = 6.7, SNRr = 5.8) required a total scanning time of 5.1
minutes per velocity image (axial and radial components) and the high SNR images
(SNRz = 44.2, SNRr = 34.4) required a total scanning time of 137 minutes per velocity
image. Since the signal intensity of an MRV experiment corresponds to the 1H spin
density, we segment the spin density image using a thresholding algorithm (Otsu 1979)
to obtain a mask ψ , such that ψ = 1 inside Ω (the nozzle) and ψ = 0 outside Ω . We
consider ψ to be the prior information for the geometry of the nozzle, which also serves as
an initial guess for Ω (Ω0). For gi0, we take a parabolic velocity profile with a peak
velocity of 0.6U, where U � 5 cm s−1 is the characteristic velocity for this problem.
In this case, we treat the kinematic viscosity as an unknown, with a prior distribution
N (ν̄, (0.1ν̄)2) and ν̄ = 4× 10−6 m2 s−1. Note that the axis of the nozzle is not precisely
known beforehand, and since we only solve an axisymmetric Navier–Stokes problem on
the z− r half-plane, we also introduce an unknown variable for the vertical position of the
axis (see Appendix C).

Using the input parameters of table 4, the algorithm manages to reconstruct the
noisy velocity image and reduce segmentation errors in just six iterations, with a total
reconstruction error E• � 5.94 %. The results are presented in figures 20 and 21. We
observe that algorithm 1 manages to filter out the noise, the outliers and the acquisition
artefacts of the low SNR MRV images depicting the axial u�z (figure 20a) and the radial
u�r (figure 20d) components of velocity. A notable difference between these real MRV
images and the synthetic MRV images in §§ 3.1 and 3.2 is that the real MRV images

944 A40-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

50
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.503


A. Kontogiannis, S.V. Elgersma, A.J. Sederman and M.P. Juniper

Image dimension Model dimension σuz/U σur/U
Nozzle (3-D) 255× 128 300× 130 (half-plane) 1.4168× 10−1 3.0679× 10−2

Regularization σφ±/D σgi/U σν/UD Reφ± Reζ /h
Nozzle (3-D) 0.25 0.5 6.2× 10−4 0.025 0.025 3

Table 4. Input parameters for the inverse 3-D axisymmetric Navier–Stokes problem.

(a) (b)

(e) ( f )

(c)

4

2

0

–2

–4

4

2

0

–2
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(d )

Figure 20. Reconstruction (algorithm 1) of low SNR MRV velocity images depicting the axisymmetric flow
(from left to right) in the converging nozzle (figure 18b). Figures 20(a,b) and 20(d,e) show the horizontal,
ux, and vertical, uy, velocities and share the same colourmap (colourbar not shown). Figure 20(c, f ) show the
discrepancy between the noisy velocity images and the reconstruction (colourbars apply only to figure 20c, f ).
The reconstructed flow u◦ is axisymmetric by construction; therefore, u◦z depicts an even reflection and u◦r
depicts an odd reflection, so that they can be compared with the MRV images (see Appendix C). (a) Low SNR
MRV image u�z . (b) Our reconstruction u◦z . (c) Discrepancy σ−1

uz
(u�z − Su◦z ). (d) Low SNR MRV image u�r .

(e) Our reconstruction u◦r . ( f ) Discrepancy σ−1
ur
(u�r − Su◦r ).

display artefacts and contain outliers. We have not pre-processed the MRV images, for
example, by removing outliers. The estimated posterior uncertainty of ∂Ω◦ is depicted
in figure 21(a), in which we observe that regions with gaps in the data coincide with
regions of higher uncertainty. Although we treat the kinematic viscosity ν as an unknown
parameter, the posterior distribution of ν remains effectively unchanged. More precisely,
we infer a kinematic viscosity of ν◦ = 3.995× 10−6 � ν̄, with a posterior variance of
(0.1005ν̄)2. This is because we use a Bayesian approach to this inverse problem, where the
prior information for ν is already rich enough. Technically, the reconstruction functional
E is insensitive to small changes of ν (or 1/Re), and, as a result, the prior term in the
gradient of ν (2.35) dominates; i.e. the model M is not informative. Physically, it is not
possible to infer ν (with reasonable certainty) for this particular flow without additional
information on pressure.

As in § 3.3, we compare the denoising performance of algorithm 1 (figure 20) with TV-B
(Getreuer 2012b; Van Der Walt et al. 2014) (figure 22). We again observe that algorithm 1
has managed to filter out both the noise and the artefacts, while the TV-B-denoised images
present artefacts, loss of contrast and a systematic error that depends on the parameter λ.
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Figure 21. Reconstruction (algorithm 1) of synthetic images depicting the axisymmetric flow (from left to
right) in the converging nozzle (figure 18b). Figure 21(a) depicts the reconstructed boundary ∂Ω◦ (cyan line),
the 2σ confidence region computed from the approximated posterior covariance C̃◦

ζ
≡ H̃◦

ζ
Cφ± (blue region),

the ground truth boundary ∂Ω• (yellow line) and the initial guess ∂Ω0 (white line). Figure 21(b) shows the
reconstruction error as a function of iteration number. Velocity slices are drawn for 10 equidistant cross-sections
(labelled with the letters A to J) for both the reconstructed images (figure 21c) and the high SNR images
(figure 21d), coloured red for positive values and blue for negative. (a) Velocity magnitude |u◦| and shape
∂Ω◦. (b) Reconstruction error history. (c) Low SNR data (grey) and reconstruction. (d) High SNR velocity
data.

Figure 23(a) shows the reconstructed wall shear rate γ ◦w , computed for the reconstructed
velocity field u◦ on the segmented shape ∂Ω◦, and compares it with the ground truth
wall shear rate γ •w computed for the high SNR velocity field u• (figure 19) on the high
SNR shape ∂Ω• (1H spin density). We observe that the ground truth wall shear rate
is particularly noisy, as MRV suffers from low resolution and partial volume effects
(Bouillot et al. 2018; Saito et al. 2020) near the boundaries ∂Ω . Certainly, it is possible
to smooth the boundary ∂Ω• (which we obtained using the method of Otsu (1979)
for the 1H spin density) using conventional image processing algorithms. However, the
velocity field u• will not be consistent with the new smoothed boundary (the no-slip
boundary condition will not be satisfied). The method that we propose here for the
reconstruction and segmentation of MRV images tackles exactly this problem: it infers the
most likely shape of the boundary (∂Ω◦) from the velocity field itself, without requiring
an additional experiment (e.g. CT, MRA) or manual segmentation using another software.
Furthermore, in this Bayesian setting, we can use the 1H spin density to introduce a priori
knowledge of ∂Ω in the form of a prior, which would prove useful in areas of low velocity
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(a) (b)

(e) ( f )

(c)

(d )

Figure 22. Total variation denoising using Bregman iteration with different weights λ for the low SNR MRV
images (figure 20a,d) depicting the axisymmetric flow (from left to right) in the converging nozzle. (a) uz,
TV-B λ/λ0 = 0.1. (b) uz, TV-B λ/λ0 = 0.01. (c) uz, TV-B λ/λ0 = 0.001. (d) ur, TV-B λ/λ0 = 0.1. (e) ur,
TV-B λ/λ0 = 0.01. ( f ) ur, TV-B λ/λ0 = 0.001.
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Figure 23. (a) Wall shear rates (as for figure 6) and (b) reduced hydrodynamic pressure inferred from the
MRV images depicting the axisymmetric flow in the converging nozzle. (a) Wall shear rates γ ◦w and γ •w .
(b) Our pressure reconstruction p◦.

magnitudes where the velocity field itself does not provide enough information to segment
the boundaries, e.g. flow within an aneurysm or a heart ventricle (Demirkiran et al. 2021).
As a result, algorithm 1 performs very well in estimating the posterior distribution of wall
shear rate, a quantity which depends both on the velocity field and the boundary shape,
and which is hard to measure otherwise.

3.6. Choosing the regularization parameters
Regularization is crucial to successfully reconstruct the velocity field and segment the
geometry of the nozzle in the presence of noise, artefacts and outliers. Regularization
comes from the Navier–Stokes problems (primal and adjoint) (M ), and the regularization
of the model parameters (R).
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3.6.1. Notes on prior information for the Navier–Stokes unknowns
By adopting a Bayesian inference framework, we assume that the prior information of an
unknown x is a Gaussian random field with mean x̄ and covariance Cx, i.e. x ∼ N (x̄, Cx)
(see § 2.2 and Appendix A). We, therefore, need to provide algorithm 1 with a prior mean
and a prior covariance for every N–S unknown. For the inlet velocity boundary condition,
ḡi can be a smooth approximation to the noisy velocity data at the inlet and then σgi is
the prior standard deviation around this mean. For the outlet natural boundary condition,
ḡo can be 0 and then σgo determines the confidence of the user regarding whether or not
the outlet is a pseudotraction-free boundary. For both the inlet and the outlet boundary
conditions, the parameter , which can be different for each boundary condition, controls
the regularity of the functions gi and go, i.e. length scales smaller than  are suppressed.
For the shape, φ̄± can be a rough segmentation of the original geometry and then σφ± is the
prior standard deviation around this mean. For example, in § 3.3, we set σφ± approximately
equal to a length of seven pixels by visually inspecting the noisy mask (figure 11b).
The same methodology applies to the determination of prior information regarding the
kinematic viscosity ν.

The advantage of this probabilistic framework is that when prior information is
available, it can be readily exploited to regularize the inverse problem and facilitate
its numerical solution. However, if there is no prior information available regarding an
unknown, we can assume that this unknown is distributed according to a zero-mean
Gaussian distribution with a sufficiently large standard deviation σ .

3.6.2. Notes on shape regularization and the choice of Reφ±,Reζ
For the axisymmetric nozzle (see § 3.5), we avoid overfitting the shape ∂Ω by choosing
the Reynolds numbers for the geometric flow to be Reφ± = Reζ = 0.025. Increasing these
Reynolds numbers to approximately 1.0, we start noticing that the assimilated boundary
becomes more susceptible to noise in the image. However, for the simulated aortic
aneurysm (see § 3.3), we chose Reφ± = Reζ = 1.0 to preserve high curvature regions.
From numerical experiments, we have observed that typical successful values for the
Reynolds numbers Reφ±,Reζ lie in the interval (0.01, 0.1) for low SNR images (SNR <

10) with relatively flat boundaries, in (0.1, 1.0) for higher SNR images (SNR ≥ 10) with
relatively flat boundaries and ≥ 1 for geometries with regions of high curvature. Physical
intuition that justifies the use of Reφ±,Reζ as the preferred shape regularization parameters
is provided in § 2.4.2.

4. Conclusions

We have formulated a generalized inverse Navier–Stokes problem for the joint
reconstruction and segmentation of noisy velocity images of steady incompressible flow.
To regularize the inverse problem, we adopt a Bayesian framework by assuming Gaussian
prior distributions for the unknown model parameters. Although the inverse problem is
formulated using variational methods, every iteration of the nonlinear problem is actually
equivalent to a Gaussian process in Hilbert spaces. We implicitly define the boundaries
of the flow domain in terms of signed distance functions and use Nitsche’s method to
weakly enforce the Dirichlet boundary condition on the moving front. The moving of
the boundaries is expressed by a convection-diffusion equation for the signed distance
function, which allows us to control the regularity of the boundary by tuning an artificial
diffusion coefficient. We use the steepest ascent directions of the model parameters
in conjunction with a quasi-Newton method (BFGS), and we show how the posterior
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Gaussian distribution of a model parameter can be estimated from the reconstructed
inverse Hessian.

We devise an algorithm that solves this inverse Navier–Stokes problem and test it
for noisy (SNR = 2.5, 3) 2-D synthetic images of Navier–Stokes flows. The algorithm
successfully reconstructs the velocity images, infers the most likely boundaries of the
flow and estimates their posterior uncertainty. We then design a magnetic resonance
velocimetry (MRV) experiment to obtain images of a 3-D axisymmetric Navier–Stokes
flow in a converging nozzle. We acquire MRV images of poor quality (SNR � 6), intended
for reconstruction/segmentation, and images of higher quality (SNR > 30) that serve as
the ground truth. We show that the algorithm performs very well in reconstructing and
segmenting the poor MRV images, which were obtained in just 10.2 minutes, and that the
reconstruction compares well to the high SNR images, which required a total acquisition
time of ∼4.6 h. Lastly, we use the reconstructed images and the segmented (smoothed)
domain to estimate the posterior distribution of the wall shear rate and compare it with
the ground truth. Since the wall shear rate depends on both the shape and the velocity
field, we note that our algorithm provides a consistent treatment to this problem by jointly
reconstructing and segmenting the flow images, avoiding the design of an additional
experiment (e.g. CT, MRA) for the measurement of the geometry or the use of external
(non-physics-informed) segmentation software.

The present method has several advantages over general image reconstruction and
segmentation algorithms, which do not respect the underlying physics and the boundary
conditions, and, at the same time, provides additional knowledge of the flow physics (e.g.
pressure field and wall shear stress), which is otherwise difficult to measure. It can be
used to substantially decrease signal acquisition times and provides additional knowledge
of the physical system being imaged. Although our current implementation is restricted to
2-D planar and axisymmetric flows, the method naturally extends to periodic and unsteady
Navier–Stokes problems in complicated 3-D geometries.
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Appendix A. Gaussian measures in Hilbert spaces

The mean of a Gaussian measure γ ∼ N (m, C) in L2 is given by

m ≡ Eh :=
∫

L2
h γ (dh). (A1)

The covariance operator C : L2 → L2 and the covariance C : L2 × L2 → R are defined by

Cx :=
∫

L2
h
〈
x, h
〉
γ (dh), C(x, x′) :=

∫
L2

〈
x, h
〉〈

x′, h
〉
γ (dh), (A2a,b)

noting that
〈
Cx, x′

〉 = C(x, x′). The above (Bochner) integrals define integration over the
function space L2 and under the measure γ , and are well defined due to Fernique’s theorem
(Hairer 2009). These integrals can be directly computed by sampling the Gaussian measure
γ with Karhunen–Loève expansion (as in § 2.6).
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Appendix B. Euler–Lagrange system

The integration by parts formulae for the nonlinear term (2.21) are∫
Ω

(
u′ · ∇u

) · v =
∫
Ω

u′j∂jui vi = −
∫
Ω

u′jui ∂jvi + ∂ju′jui vi +
∫
∂Ω

u′jνj uivi

= −
∫
Ω

(
u · (∇v)†

)
· u′ +

∫
∂Ω

(u · v)(ν · u′), (B1)∫
Ω

(
u · ∇u′

) · v =
∫
Ω

uj∂ju′i vi = −
∫
Ω

∂juju′i vi + uju′i∂jvi +
∫
∂Ω

uju′i νjvi

= −
∫
Ω

(u · ∇v) · u′ +
∫
∂Ω

(u · ν)(v · u′). (B2)

Appendix C. Axisymmetric inverse Navier–Stokes problem

The axisymmetric Navier–Stokes problem is

u · ∇u− ν�u+∇p+ f = 0, ∇ · u = 0, (C1)

where

u = uzẑ + ur r̂, ∇u = (∂zu, ∂ru), �u = ∂2
z uz + ∂2

r ur + 1
r
∂rur,

∇ · u = ∂zuz + ∂rur + ur

r
, f =

(
0,
νur

r2

)
,

⎫⎪⎬⎪⎭ (C2)

and the nonlinear term u · ∇u retains the same form as in the Cartesian frame.
To compare the axisymmetric modelled velocity field with the MRV images, we

introduce two new operators: (i) the reflection operator R : R
+ × R→ R× R and (ii)

a rigid transformation T : R
2 → R

2. The reconstruction error is then expressed by

E (u) ≡ 1
2

∥∥u� − ST Ru
∥∥2
Cu

:= 1
2

∫
I

(
u� − ST Ru

)
C−1

u
(
u� − ST Ru

)
dx dy. (C3)

We introduce an unknown variable for the vertical position of the axisymmetry axis by
letting T u = u(x, y+ y0), for y0 = const. Then, the generalized gradient for y0 is〈

Dy0J , y′0
〉
R
=
〈
−
∫

I
C−1

u
(
u� − ST Ru

) (
ST R ∂yu

)
, y′0

〉
R

, (C4)

and y0 is treated in the same way as the inverse Navier–Stokes problem unknowns x.
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