
2 Simple examples

Before formally defining what manifolds are, and before introducing any particu-
lar algorithms, this chapter surveys simple problems that are naturally modeled as
optimization on manifolds. These problems are motivated by applications in vari-
ous scientific and technological domains. We introduce them chiefly to illustrate how
manifolds arise and to motivate the mathematical abstractions in subsequent chapters.

The first example leads to optimization on an affine subspace: it falls within the
scope of optimization on manifolds, but one can also handle it with classical tools.
Subsequently, we encounter optimization on spheres, products of spheres, orthonormal
matrices, the set of all linear subspaces, rotation matrices, fixed-rank matrices, positive
definite matrices and certain quadratic surfaces. Through those, we get a glimpse of
the wide reach of optimization on manifolds.

Below, we use a few standard concepts from linear algebra and calculus that are
revisited in Section 3.1.

2.1 Sensor network localization from directions: an affine subspace

Consider n sensors located at unknown positions t1, . . . , tn in R
d . We aim to locate

the sensors, that is, estimate the positions ti , based on some directional measurements.
Specifically, for each pair of sensors (i, j) corresponding to an edge of a graph G, we
receive a noisy measurement of the direction from t j to ti :

vi j ≈ ti − t j
‖ti − tj ‖ ,

where ‖x‖ =
√

x2
1 + · · · + x2

d
is the Euclidean norm on R

d induced by the inner

product 〈u,v〉 = u�v = u1v1 + · · · + udvd .
There are two fundamental ambiguities in this task. First, directional measurements

reveal nothing about the global location of the sensors: translating the sensors as
a whole does not affect pairwise directions. Thus, we may assume without loss of
generality that the sensors are centered:

t1 + · · · + tn = 0.

Second, the measurements reveal nothing about the global scale of the sensor arrange-
ment. Specifically, scaling all positions ti by a scalar α > 0 as αti has no effect on the

https://doi.org/10.1017/9781009166164.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009166164.003

2.2 Single extreme eigenvalue or singular value: spheres 5

directions separating the sensors so that the true scale cannot be recovered from the
measurements. It is thus legitimate to fix the scale arbitrarily, to break symmetry. One
fruitful way is to assume the following [HLV18]:

∑
(i, j)∈G

〈
ti − t j ,vi j

〉
= 1.

Indeed, if this constraint holds for some set of locations t1, . . . , tn , then it does not hold
for locations αt1, . . . ,αtn unless α = 1.

Given a tentative estimator t̂1, . . . , t̂n ∈ R
d for the locations, we may assess its

compatibility with the measurement vi j by computing

�
�
�
(t̂i − t̂ j) −

〈
t̂i − t̂ j ,vi j

〉
vi j

�
�
�
.

Indeed, if t̂i − t̂ j and vi j are aligned in the same direction, this evaluates to zero. Oth-
erwise, it evaluates to a positive number, growing as alignment degrades. Combined
with the symmetry-breaking conditions, this suggests the following formulation for
sensor network localization from direction measurements:

min
t̂1, ..., t̂n ∈Rd

∑
(i, j)∈G

�
�
�
(t̂i − t̂ j) −

〈
t̂i − t̂ j ,vi j

〉
vi j

�
�
�

2

subject to t̂1 + · · · + t̂n = 0 and
∑

(i, j)∈G

〈
t̂i − t̂ j ,vi j

〉
= 1.

The role of the second constraint is clear: it excludes t̂1 = · · · = t̂n = 0, which would
otherwise be optimal.

Grouping the variables as the columns of a matrix, we find that the search space
for this problem is an affine subspace of Rd×n : this is a linear manifold. It is also an
embedded submanifold of Rd×n . Hence it falls within our framework.

With the simple cost function as above, this problem is in fact a convex quadratic
minimization problem on an affine subspace. As such, it admits an explicit solution
which merely requires solving a linear system. Optimization algorithms can be used
to solve this system implicitly. More importantly, the power of optimization algorithms
lies in the flexibility that they offer: alternative cost functions may be used to improve
robustness against specific noise models for example, and those require more general
algorithms [HLV18].

2.2 Single extreme eigenvalue or singular value: spheres

Let A ∈ R
n×n be a symmetric matrix: A = A�. By the spectral theorem, A admits

n real eigenvalues λ1 ≤ · · · ≤ λn and corresponding real, orthonormal eigenvectors
v1, . . . ,vn ∈ R

n , where orthonormality is assessed with respect to the standard inner
product over Rn : 〈u,v〉 = u�v.

For now, we focus on computing one extreme eigenpair of A: (λ1,v1) or (λn ,vn)
will do. Let Rn∗ denote the set of nonzero vectors in R

n . It is well known that the
Rayleigh quotient,

https://doi.org/10.1017/9781009166164.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009166164.003

6 Simple examples

r : Rn∗ → R : x �→ r (x) =
〈x, Ax〉
〈x, x〉 ,

attains its extreme values when x is aligned with ±v1 or ±vn , and that the correspond-
ing value of the quotient is λ1 or λn . We will rediscover such properties through the
prism of optimization on manifolds as a running example in this book. One can gain
some insight by checking that r (vi) = λi .

Say we are interested in the smallest eigenvalue, λ1. Then, we must solve the
following optimization problem:

min
x∈Rn∗

〈x, Ax〉
〈x, x〉 .

The set Rn∗ is open in R
n : it is an open submanifold of Rn . Optimization over an open

set has its challenges (more on this later). Fortunately, we can easily circumvent these
issues in this instance.

Since the Rayleigh quotient is invariant to scaling, that is, since r (αx) = r (x)
for all nonzero real α, we may fix the scale arbitrarily. Given the denominator of
r , one particularly convenient way is to restrict our attention to unit-norm vectors:
‖x‖2 = 〈x, x〉 = 1. The set of such vectors is the unit sphere in R

n :

Sn−1 =
{
x ∈ R

n : ‖x‖ = 1
}
.

This is an embedded submanifold of Rn . Our problem becomes

min
x∈Sn−1

〈x, Ax〉 . (2.1)

This is perhaps the simplest non-trivial instance of an optimization problem on a
manifold: we use it recurringly to illustrate concepts as they occur.

Similarly to the above, we may compute the largest singular value of a matrix M ∈
R

m×n together with associated left- and right-singular vectors by solving

max
x∈Sm−1,y∈Sn−1

〈x,My〉 . (2.2)

This is the basis of principal component analysis: see also Section 2.4. The search
space is a Cartesian product of two spheres. This too is a manifold, specifically, an
embedded submanifold of Rm × R

n . In general:

Products of manifolds are manifolds.

This is an immensely useful property.

2.3 Dictionary learning: products of spheres

JPEG and its more recent version JPEG 2000 are some of the most commonly used
compression standards for photographs. At their core, these algorithms rely on basis
expansions: discrete cosine transforms for JPEG, and wavelet transforms for JPEG
2000. That is, an image (or rather, each patch of the image) is written as a linear
combination of a fixed collection of basis images. To fix notation, say an image is

https://doi.org/10.1017/9781009166164.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009166164.003

2.3 Dictionary learning: products of spheres 7

represented as a vector y ∈ R
d (its pixels rearranged into a single column vector) and

the basis images are b1, . . . ,bd ∈ R
d (each of unit norm). There exists a unique set of

coordinates c ∈ R
d such that

y = c1b1 + · · · + cdbd .

Since the basis images are fixed (and known to anyone creating or reading image files
in this format), it is equivalent to store y or c.

The basis is designed carefully with two goals in mind. First, the transform between
y and c should be fast to compute (one good starting point to that effect is orthogonal-
ity). Second, images encountered in practice should lead to many of the coefficients
ci being zero, or close to zero. Indeed, to recover y, it is only necessary to record
the nonzero coefficients. To compress further, we may also decide not to store the
small coefficients: if so, y can still be reconstructed approximately. Beyond compres-
sion, another benefit of sparse expansions is that they can reveal structural information
about the contents of the image.

In dictionary learning, we focus on the second goal. As a key departure from the
above, the idea here is not to design a basis by hand, but rather to learn a good basis
from data automatically. This way, we may exploit structural properties of images that
come up in a particular application. For example, it may be the case that photographs
of faces can be expressed more sparsely in a dedicated basis as compared to a standard
wavelet basis. Pushing this idea further, we relax the requirement of identifying a
basis, instead allowing ourselves to pick more than d images for our expansions. The
collection of images b1, . . . ,bn ∈ R

d forms a dictionary. Its elements are called atoms,
and they normally span R

d in an overcomplete way, meaning any image y can be
expanded into a linear combination of atoms in more than one way. The aim is that at
least one of these expansions should be sparse, or have many small coefficients. For
the magnitudes of coefficients to be meaningful, we further require all atoms to have
the same norm: ‖bi ‖ = 1 for all i.

Thus, given a collection of k images y1, . . . , yk ∈ R
d , the task in dictionary learning

is to find atoms b1, . . . ,bn ∈ R
d such that (as much as possible) each image yi is a

sparse linear combination of the atoms. Collect the input images as the columns of a
data matrix Y ∈ R

d×k , and the atoms into a matrix D ∈ R
d×n (to be determined).

Expansion coefficients for the images in this dictionary form the columns of a matrix
C ∈ R

n×k so that

Y = DC.

Typically, many choices of C are possible. We aim to pick D such that there exists
a valid (or approximately valid) choice of C with numerous zeros. Let ‖C‖0 denote
the number of entries of C different from zero. Then, one possible formulation of
dictionary learning balances both aims with a parameter λ > 0 as (with b1, . . . ,bn the
columns of the dictionary matrix D):

min
D∈Rd×n,C ∈Rn×k

‖Y − DC‖2 + λ‖C‖0 (2.3)

subject to ‖b1‖ = · · · = ‖bn ‖ = 1.

https://doi.org/10.1017/9781009166164.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009166164.003

8 Simple examples

The matrix norm ‖ · ‖ is the Frobenius norm, induced by the standard inner product
〈U,V 〉 = Tr(U�V).

Evidently, allowing the dictionary to be overcomplete (n > d) helps sparsity. An
extreme case is to set n = k, in which case an optimal solution consists in letting D be
Y with normalized columns. Then, each image can be expressed with a single nonzero
coefficient (C is diagonal). This is useless of course, if only because both parties of the
communication must have access to the (possibly huge) dictionary, and because this
choice may generalize poorly when presented with new images. Interesting scenarios
involve n much smaller than k.

The search space for D is a product of several spheres, which is an embedded
submanifold of Rd×n called the oblique manifold:

OB(d,n) = (Sd−1)n =
{

X ∈ R
d×n : diag(X�X) = 1

}

,

where 1 ∈ R
n is the all-ones vector and diag : Rn×n → R

n extracts the diagonal
entries of a matrix. The search space in C is the linear manifold R

n×k . Overall, the
search space of the dictionary learning optimization problem is

OB(d,n) × R
n×k ,

which is an embedded submanifold of Rd×n × R
n×k .

We note in closing that the cost function in (2.3) is discontinuous because of the
term ‖C‖0, making it hard to optimize. A standard reformulation replaces the culprit
with ‖C‖1: the sum of absolute values of the entries of C. This is continuous but
nonsmooth. A possible further step then is to smooth the cost function, for example
exploiting that |x | ≈ √

x2 + ε2 or |x | ≈ ε log(ex/ε + e−x/ε) for small ε > 0: these are
standard tricks.

Regardless of changes to the cost function, the manifold OB(d,n) is non-convex so
that finding a global optimum for dictionary learning as stated above is challenging:
see work by Sun et al. [SQW17] for some guarantees.

2.4 Principal component analysis: Stiefel and Grassmann

Let x1, . . . , xn ∈ R
d represent a large collection of centered data points in a d-

dimensional linear space. We may think of it as a cloud of points. It may be the
case that this cloud lies on or near a low-dimensional subspace of R

d , and it may
be distributed anisotropically in that subspace, meaning it shows more variation along
some directions than others. One of the pillars of data analysis is to determine the
main directions of variation of the data. This goes by the name of principal component
analysis (PCA), which we encountered in Section 2.2.

One way to think of a main direction of variation, called a principal component,
is as a vector u ∈ Sd−1 such that projecting the data points to the one-dimensional
subspace spanned by u “preserves most of the variance.” Specifically, let X ∈ R

d×n be
the matrix whose columns are the data points and let uu� be the orthogonal projector

https://doi.org/10.1017/9781009166164.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009166164.003

2.4 Principal component analysis: Stiefel and Grassmann 9

from R
d to the span of u. We wish to maximize the following for u ∈ Sd−1:

n∑
i=1

‖uu�xi ‖2 = ‖uu�X ‖2 = 〈uu�X ,uu�X〉 = 〈X X�u,u〉.

We recognize the Rayleigh quotient of the matrix X X� to be maximized for u over
Sd−1 (Section 2.2). An optimal solution is given by a dominant eigenvector of X X�,
or equivalently by a dominant left singular vector of X .

Let u1 ∈ Sd−1 be a principal component. We would like to find a second one. That
is, we aim to find u2 ∈ Sd−1, orthogonal to u1, such that projecting the data to the
subspace spanned by u1 and u2 preserves the most variance. The orthogonal projector
to that subspace is u1u�1 + u2u�2. We maximize

‖(u1u�1 + u2u�2)X ‖2 = 〈X X�u1,u1〉 + 〈X X�u2,u2〉
over u2 ∈ Sd−1 with u�2u1 = 0. The search space for u2 is an embedded submanifold
of Rd : it is a unit sphere in the subspace orthogonal to u1.

It is often more convenient to optimize for u1 and u2 simultaneously rather than
sequentially. Then, since the above cost function is symmetric in u1 and u2, as is the
constraint u�2u1 = 0, we add weights to the two terms to ensure u1 captures a principal
component and u2 captures a second principal component:

max
u1,u2∈Sd−1,u�2u1=0

α1〈X X�u1,u1〉 + α2〈X X�u2,u2〉,

with α1 > α2 > 0 arbitrary.
More generally, aiming for k principal components, we look for a matrix U ∈ R

d×k

with k orthonormal columns u1, . . . ,uk ∈ R
d . The set of such matrices is called the

Stiefel manifold:

St(d, k) = {U ∈ R
d×k : U�U = Ik },

where Ik is the identity matrix of size k. It is an embedded submanifold of Rd×k . The
orthogonal projector to the subspace spanned by the columns of U is UU�. Hence
PCA amounts to solving the problem

max
U ∈St(d,k)

k∑
i=1

αi〈X X�ui ,ui〉 = max
U ∈St(d,k)

〈X X�U,UD〉, (2.4)

where D ∈ R
k×k is diagonal with diagonal entries α1 > · · · > αk > 0.

It is well known that collecting k top eigenvectors of X X� (or, equivalently, k top
left singular vectors of X) yields a global optimum of (2.4), meaning this optimization
problem can be solved efficiently using tools from numerical linear algebra. Still, the
optimization perspective offers significant flexibility that standard linear algebra algo-
rithms cannot match. Specifically, within an optimization framework, it is possible to
revisit the variance criterion by changing the cost function. This allows one to promote
sparsity or robustness against outliers, for example, to develop variants such as sparse
PCA [dBEG08, JNRS10] and robust PCA [MT11, GZAL14, MZL19, NNSS20].
There may also be computational advantages, for example, in tracking and online

https://doi.org/10.1017/9781009166164.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009166164.003

10 Simple examples

models where the dataset changes or grows with time: it may be cheaper to update
a previously computed good estimator using few optimization steps than to run a
complete eigenvalue or singular value decomposition anew.

If the top k principal components are of interest but their ordering is not, then we
do not need the weight matrix D. In this scenario, we are seeking an orthonormal basis
U for a k dimensional subspace of Rd such that projecting the data to that subspace
preserves as much of the variance as possible. This description makes it clear that the
particular basis is irrelevant: only the selected subspace matters. This is apparent in
the cost function,

f (U) = 〈X X�U,U〉,
which is invariant under orthogonal transformations. Specifically, for all Q in the
orthogonal group

O(k) = {Q ∈ R
k×k : Q�Q = Ik },

we have f (UQ) = f (U). This induces an equivalence relation1 ∼ on the Stiefel
manifold:

U ∼ V ⇐⇒ V = UQ for some Q ∈ O(k).

This equivalence relation partitions St(d, k) into equivalence classes:

[U] = {V ∈ St(d, k) : U ∼ V } = {UQ : Q ∈ O(k)}.
The set of equivalence classes is called the quotient set:

St(d, k)/∼ = St(d, k)/O(k) = {[U] : U ∈ St(d, k)}.
Importantly, U,V ∈ St(d, k) are equivalent if and only if their columns span the same
subspace of Rd . In other words: the quotient set is in one-to-one correspondence with
the set of subspaces of dimension k in R

d . With the right geometry, the latter is called
the Grassmann manifold:

Gr(d, k) = { subspaces of dimension k in R
d } ≡ St(d, k)/O(k),

where the symbol ≡ reads “is equivalent to” (context indicates in what sense). As
defined here, the Grassmann manifold is a quotient manifold. This type of manifold
is more abstract than embedded submanifolds, but we can still develop numerically
efficient tools to work with them.

Within our framework, computing the dominant eigenspace of dimension k of the
matrix X X� can be written as

max
[U]∈Gr(d,k)

〈X X�U,U〉.

1 Recall that an equivalence relation ∼ on a set M is a reflexive (a ∼ a), symmetric (a ∼ b ⇐⇒ b ∼ a)
and transitive (a ∼ b and b ∼ c =⇒ a ∼ c) binary relation. The equivalence class [a] is the set of
elements of M that are equivalent to a. Each element of M belongs to exactly one equivalence class.

https://doi.org/10.1017/9781009166164.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009166164.003

2.5 Synchronization of rotations: special orthogonal group 11

The cost function is well defined over Gr(d, k) since it depends only on the equivalence
class of U , not on U itself.

Going back to (2.4), we note in passing that k top left and right singular vectors of
a matrix M ∈ R

m×n can be computed by solving the following problem on a product
of Stiefel manifolds (this and (2.4) are sometimes called Brockett cost functions):

max
U ∈St(m,k),V ∈St(n,k)

〈MV ,UD〉 ,

where D = diag(α1, . . . ,αk) with arbitrary α1 > · · · > αk > 0 as above.
A book by Trendafilov and Gallo provides more in-depth discussion of applications

of optimization on manifolds to data analysis [TG21].

2.5 Synchronization of rotations: special orthogonal group

In structure from motion (SfM), the 3D structure of an object is to be reconstructed
from several 2D images of it. For example, in the paper “Building Rome in a
Day” [ASS+09], the authors automatically construct a model of the Colosseum from
over 2000 photographs freely available on the Internet. Because the pictures are
acquired from an unstructured source, one of the steps in the reconstruction pipeline is
to estimate camera locations and pose. The pose of a camera is its orientation in space.

In single particle reconstruction through cryo electron microscopy, an electron
microscope is used to produce 2D tomographic projections of biological objects such
as proteins and viruses. Because shape is a determining factor of function, the goal is
to estimate the 3D structure of the object from these projections. Contrary to X-ray
crystallography (another fundamental tool of structural biology), the orientations of
the objects in the individual projections are unknown. In order to estimate the struc-
ture, a useful step is to estimate the individual orientations (though high noise levels
do not always allow it, in which case alternative statistical techniques must be used).

Mathematically, orientations correspond to rotations of R3. Rotations in R
d can be

represented with orthogonal matrices:

SO(d) = {R ∈ R
d×d : R�R = Id and det(R) = +1}.

The determinant condition excludes reflections of Rd . The set SO(d) is the special
orthogonal group: it is both a group (in the mathematical sense of the term) and a
manifold (an embedded submanifold of Rd×d)—it is a Lie group.

In both applications described above, similar images or projections can be com-
pared to estimate relative orientations. Synchronization of rotations is a mathematical
abstraction of the ensuing task. It consists in estimating n individual rotation matrices,

R1, . . . ,Rn ∈ SO(d),

from pairwise relative rotation measurements: for some pairs (i, j) corresponding to
the edges of a graph G, we observe a noisy version of RiR

−1
j . Let Hi j ∈ SO(d) denote

such a measurement. Then, one possible formulation of synchronization of rotations is

https://doi.org/10.1017/9781009166164.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009166164.003

12 Simple examples

min
R̂1, ..., R̂n ∈SO(d)

∑
(i, j)∈G

‖ R̂i − Hi j R̂j ‖2.

This is an optimization problem over SO(d)n , which is a manifold.
This also comes up in simultaneous localization and mapping (SLAM), whereby

a robot must simultaneously map its environment and locate itself in it as it moves
around [RDTEL21]. An important aspect of SLAM is to keep track of the robot’s
orientation accurately, by integrating all previously acquired information to correct
estimator drift.

2.6 Low-rank matrix completion: fixed-rank manifold

Let M ∈ R
m×n be a large matrix of interest. Given some of its entries, our task is

to estimate the whole matrix. A commonly cited application for this setup is that of
recommender systems, where row i corresponds to a user, column j corresponds to
an item (a movie, a book . . .), and entry Mi j indicates how much user i appreciates
item j: positive values indicate appreciation, zero is neutral, and negative values indi-
cate dislike. The known entries may be collected from user interactions. Typically,
most entries are unobserved. Predicting the missing values may be helpful to automate
personalized recommendations.

Of course, without further knowledge about how the entries of the matrix are
related, the completion task is ill-posed. Hope comes from the fact that certain users
share similar traits so that what one user likes may be informative about what another,
similar, user may like. In the same spirit, certain items may be similar enough that
whole groups of users may feel similarly about them. One mathematically convenient
way to capture this idea is to assume M has (approximately) low rank. The rationale
is as follows: if M has rank r , then it can be factored as

M = LR�,

where L ∈ R
m×r and R ∈ R

n×r are full-rank factor matrices. Row i of L,
i , attributes
r numbers to user i, while the jth row of R, r j , attributes r numbers to item j. Under
the low-rank model, the rating of user i for item j is Mi j = 〈
i ,r j 〉. One interpretation
is that there are r latent features (these could be movie genres, for example): a user has
some positive or negative appreciation for each feature, and an item has traits aligned
with or in opposition to these features; the rating is obtained as the inner product of
the two feature vectors.

Under this model, predicting the user ratings for all items amounts to low-rank
matrix completion. Let Ω denote the set of pairs (i, j) such that Mi j is observed.
Allowing for noise in the observations and inaccuracies in the model, we aim to solve

min
X ∈Rm×n

∑
(i, j)∈Ω

(Xi j − Mi j)
2

subject to rank(X) = r.

https://doi.org/10.1017/9781009166164.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009166164.003

2.7 Gaussian mixture models: positive definite matrices 13

The search space for this optimization problem is the set of matrices of a given size
and rank:

R
m×n
r = {X ∈ R

m×n : rank(X) = r }.
This set is an embedded submanifold of Rm×n which is frequently useful in machine
learning applications.

Another use for this manifold is solving high-dimensional matrix equations that
may come up in systems and control applications: aiming for a low-rank solution
may be warranted in certain settings, and exploiting this can lower the computational
burden substantially. Yet another context where optimization over low-rank matrices
occurs is in completing and denoising approximately separable bivariate functions
based on sampled values [Van10, Van13, MV13].

The same set can also be endowed with other geometries, that is, it can be made
into a manifold in other ways. For example, exploiting the factored form more directly,
note that any matrix in R

m×n
r admits a factorization as LR� with both L and R of

full rank r . This correspondence is not one-to-one, however, since the pairs (L,R)
and (LJ−1,RJ�) map to the same matrix in R

m×n
r for all invertible matrices J: they

are equivalent. Similarly to the Grassmann manifold, this leads to a definition of
R

m×n
r as a quotient manifold instead of an embedded submanifold. Many variations

on this theme are possible, some of them more useful than others depending on the
application [Mey11, Mis14].

The set Rm×n
r is not closed in R

m×n , which may create difficulties for optimization.
The closure of the set corresponds to all matrices of rank at most r (rather than exactly
equal to r). That set is not a manifold, but it can be smoothly parameterized by a
manifold in several ways [LKB22]. One particularly simple way is through the map
(L,R) �→ LR�, where L and R are allowed to be rank deficient.

2.7 Gaussian mixture models: positive definite matrices

A common model in machine learning assumes data x1, . . . , xn ∈ R
d are sampled

independently from a mixture of K Gaussians, that is, each data point is sampled from
a probability distribution with density of the form

f (x) =
K∑
k=1

wk
1√

2π det(Σk)
e−

(x−μk)�Σ−1
k

(x−μk)

2 ,

where the centers μ1, . . . , μK ∈ R
d ; covariances Σ1, . . . ,ΣK ∈ Sym(d)+; and mix-

ing probabilities (w1, . . . ,wK) ∈ ΔK−1
+ are to be determined. We use the following

notation:

Sym(d)+ = {X ∈ R
d×d : X = X� and X � 0}

for symmetric, positive definite matrices of size d, and

ΔK−1
+ = {w ∈ R

K : w1, . . . ,wK > 0 and w1 + · · · + wK = 1}

https://doi.org/10.1017/9781009166164.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009166164.003

14 Simple examples

for the positive part of the simplex, that is, the set of non-vanishing discrete probability
distributions over K objects. In this model, with probability wk , a point x is sampled
from the kth Gaussian, with mean μk and covariance Σk . The aim is only to estimate
the parameters, not to estimate which Gaussian each point xi was sampled from.

For a given set of observations x1, . . . , xn , a maximum likelihood estimator solves

max
μ̂1, ..., μ̂K ∈Rd,

Σ̂1, ..., Σ̂K ∈Sym(d)+,
w∈ΔK−1

+

n∑
i=1

log �

�

K∑
k=1

wk
1√

2π det(Σk)
e−

(xi−μk)�Σ−1
k

(xi−μk)

2 �

�

. (2.5)

This is an optimization problem over Rd×K × (Sym(d)+)K ×ΔK−1
+ , which can be made

into a manifold because Sym(d)+ and ΔK−1
+ can be given a manifold structure.

The direct formulation of maximum likelihood estimation for Gaussian mixture
models in (2.5) is, however, not computationally favorable. See [HS15] for a beneficial
reformulation, still on a manifold.

2.8 Smooth semidefinite programs

Semidefinite programs (SDPs) are optimization problems of the form

min
X ∈Sym(n)

〈C,X〉 subject to A(X) = b and X 0, (2.6)

where Sym(n) is the space of real, symmetric matrices of size n×n, 〈A,B〉 = Tr(A�B),
A : Sym(n) → R

m is a linear map defined by m symmetric matrices A1, . . . , Am as
A(X)i = 〈Ai ,X〉, and X 0 means X is positive semidefinite.

SDPs are convex and they can be solved to global optimality in polynomial time
using interior point methods [Nes18, §5.4.4]. Still, handling the positive semidefinite-
ness constraint X 0 and the dimensionality of the problem (namely, the n(n+1)

2
variables required to define X) both pose significant computational challenges for
large n.

A popular way to address both issues is the Burer–Monteiro approach [BM05],
which consists in factorizing X as X = YY�with Y ∈ R

n×p : the number p of columns
of Y is a parameter. Notice that X is now automatically positive semidefinite. If p ≥ n,
the SDP can be rewritten equivalently as

min
Y ∈Rn×p 〈CY ,Y 〉 subject to A(YY�) = b. (2.7)

If p < n, this corresponds to the SDP with the additional constraint rank(X) ≤ p.
There is a computational advantage to taking p as small as possible. Interestingly, if
the set of matrices X that are feasible for the SDP is compact, then the Pataki–Barvinok
bound [Pat98, Bar95] provides that at least one of the global optimizers of the SDP
has rank r such that r (r+1)

2 ≤ m. In other words: assuming compactness, the Burer–
Monteiro formulation (2.7) is equivalent to the original SDP so long as p satisfies
p(p+1)

2 ≥ m. This is already the case for p = O(
√

m), which may be significantly
smaller than n.

https://doi.org/10.1017/9781009166164.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009166164.003

2.8 Smooth semidefinite programs 15

The positive semidefiniteness constraint disappeared, and the dimensionality of the
problem went from O(n2) to np—a potentially appreciable gain. Yet, we lost some-
thing important along the way: the Burer–Monteiro problem is not convex. It is not
immediately clear how to solve it.

The search space of the Burer–Monteiro problem is the set of feasible Y :

M = {Y ∈ R
n×p : A(YY�) = b}. (2.8)

Assume the map Y �→ A(YY�) has the property that its differential at all Y in M
has rank m. Then, M is an embedded submanifold of Rn×p . In this special case, we
may try to solve the Burer–Monteiro problem through optimization over that man-
ifold. It turns out that non-convexity is mostly benign in that scenario, in a precise
sense [BVB19]:

If M is compact and p(p+1)
2 > m, then, for a generic cost matrix C, the

smooth optimization problem minY ∈M 〈CY ,Y 〉 has no spurious local minima,
in the sense that any point Y which satisfies first- and second-order necessary

optimality conditions is a global optimum.

(Necessary optimality conditions are detailed in Sections 4.2 and 6.1.) Additionally,
these global optima map to global optima of the SDP through X = YY�. This suggests
that smooth-and-compact SDPs may be solved to global optimality via optimization
on manifolds. The requirement that M be a regularly defined smooth manifold is not
innocuous, but it is satisfied in a number of interesting applications.

There has been a lot of work on this front in recent years, including the early
work by Burer and Monteiro [BM03, BM05], the first manifold-inspired perspec-
tive by Journée et al. [JBAS10], qualifications of the benign non-convexity at the
Pataki–Barvinok threshold [BVB16, BVB19] and below in special cases [BBV16],
a proof that p cannot be set much lower than that threshold in general [WW20],
smoothed analyses to assess whether points which satisfy necessary optimality con-
ditions approximately are also approximately optimal [BBJN18, PJB18, CM19] and
extensions to accommodate scenarios where M is not a smooth manifold but, more
generally, a real algebraic variety [BBJN18, Cif21]. See all these references for
applications, including Max-Cut, community detection, the trust-region subproblem,
synchronization of rotations and more.

https://doi.org/10.1017/9781009166164.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009166164.003

