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1. Introduction

Let μ be a positive measure on R such that
∫

R
(1 + |t|)−1 dμ(t) <∞. The Cauchy

transform of μ is the function

C[μ](z) :=
∫

R

1
t− z

dμ(t) (1.1)

defined and analytic in the open upper half-plane C
+. It plays an important role

in many areas, such as spectral theory, moment problems, complex analysis and
random matrix theory. A prominent particular case occurs when μ is supported on
[0, ∞). Then we speak of the Stieltjes transform of μ and write

S[μ](z) :=
∫

[0,∞)

1
t− z

dμ(t). (1.2)

This function is defined and analytic in the slit plane C\[0, ∞).
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2 M. Langer and H. Woracek

A measure μ can be reconstructed from its Cauchy (or Stieltjes) transform by
means of the Stieltjes inversion formula,

μ
(
(α, β)

)
= lim

δ↓0
lim
ε↓0

1
π

∫ β−δ

α+δ

ImC[μ](x+ iε) dx (1.3)

for −∞ < α < β <∞. This formula can be seen as relating the local behaviour of
μ at a point or on a bounded interval in R with the local behaviour of C[μ] around
this point or interval: in order to evaluate the right-hand side of (1.3) only the
values of C[μ](z) for z in some rectangle (α, β) × (0, ε) ⊆ C

+ have to be known.
One question that has attracted a lot of attention is the relation between the

asymptotics of μ at ∞ and the asymptotics of its transform at ∞. For the case
of the Stieltjes transform results were obtained already in the early 20th century:
G. Valiron [35], E.C. Titchmarsh [34], and G.H. Hardy and J.E. Littlewood [12]
proved that, for each γ ∈ (−1, 0),

S[μ](−x) ∼ cxγ ⇔ μ([0, t)) ∼ c′tγ+1, (1.4)

where c, c′ are related by a certain formula. Here the symbol ∼ means that the
quotient of the left-hand and right-hand sides tends to 1, and is understood for
x, t→ +∞. The asymptotics of S[μ] along the ray eiπ(0, ∞) could be substituted
by the asymptotics along any ray contained in the domain of analyticity C\[0, ∞)
(allowing the constant c to depend on the angle of the ray), or even non-tangentially.
This early result about the Stieltjes transform was generalized in several directions,
and there is a vast literature on that topic. As examples we mention [16] where J.
Karamata generalized (1.4) to growth of regular variation instead of power asymp-
totics, or [27] where asymptotic expansions with infinitely many terms instead of
a monomial on the right-hand side of (1.4) is considered. In the bilateral case,
meaning measures that are not semi-bounded, asymptotics have to be taken along
the positive imaginary axis, or a ray in C

+ or non-tangentially. In this case there is
much less known. One of the main difficulties is that contributions from the positive
and negative half-axes can cancel each other.

In many applications, e.g. spectral theory of Sturm–Liouville and Schrödinger
operators, measures are used that grow faster at infinity: instead of satisfy-
ing

∫
R
(1 + |t|)−1 dμ(t) <∞ they have only power bounded tails, meaning that∫

R
(1 + t2)−κ−1 dμ(t) <∞ for some κ ∈ N0. For such measures the Cauchy trans-

form (1.1) has to be redefined by including appropriate regularizing summands in
the integrand. The most common case is that μ is Poisson integrable, i.e. κ = 0,
and a commonly used regularization in this case is

C̃[μ](z) :=
∫

R

( 1
t− z

− t

1 + t2

)
dμ(t), z ∈ C

+. (1.5)

Some Abelian and Tauberian theorems dealing with polynomial asymptotics in the
bilateral case are given in [28, 29], a Tauberian theorem for the Cauchy transform
(1.1) can be found in [30], and an Abelian theorem of somewhat different type
(and formulated for integration on the unit circle instead of the real line) is [33].
A Tauberian theorem for the regularized Cauchy transform (1.5) is stated in [2];
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Karamata’s theorem for regularized Cauchy transforms 3

however, the proof given contains a mistake. Fortunately the result itself turns out
to be true; see theorem 3.2 and the discussion preceding it.

In the current paper we prove Abelian and Tauberian theorems for higher-
order regularized Cauchy transforms and growth of regular variation in Karamata’s
sense (see Appendix A for this notion). We relate the asymptotics of μ([0, t)) and
μ((−t, 0)) when t→ +∞ to the asymptotics of the higher-order regularized Cauchy
transform when z → +i∞ radially or non-tangentially. The main result of the paper
is theorem 5.1 where we give a full characterization (including explicit formulae for
constants) in the generic case. There are some boundary cases, namely when the
index of regular variation is an integer, where only one direction is possible: either
the Abelian direction where we deduce properties of the regularized Cauchy trans-
form from properties of the measure, or the Tauberian direction, which is the other
way round. The phenomenon that more complicated behaviour occurs at integer
powers was already observed in [28, 29]. We investigate these exceptional cases
more closely in theorem 5.5.

For the proof of our results we follow common lines and consider imaginary and
real parts of the integral separately. The imaginary part can be written as a Stieltjes
transform, and thus inherits being well behaved; see theorem 4.7. Contrasting this,
the real part is the difference of two Stieltjes transforms, and this is the point where
cancellation may happen.

Let us give a brief overview of the contents of the paper. In § 2 we define higher-
order regularized Cauchy transforms and study basic properties. In particular, we
explore the relation with generalized Nevanlinna functions in the sense of M.G.
Krein and H. Langer [19], characterize the range of the transform, and prove an
analogue of the classical Grommer–Hamburger theorem that relates convergence
of a sequence of measures to convergence of their Cauchy transforms. We use the
latter theorem to prove a basic Tauberian theorem in § 3. The proofs of Abelian
theorems, which are contained in § 4, use different methods: the main ingredients
are Karamata’s theorems. In § 5 we combine the results from § 3 and 4 to prove our
main theorems. We also provide counterexamples for the boundary cases. Finally,
in Appendix A we recall and extend some results on regularly varying functions
and Stieltjes transforms of measures supported on [0, ∞).

Notation

Throughout the paper we use the following conventions and notations.

� We set N := {1, 2, . . .}, N0 := N ∪ {0}, and let C be the field of complex numbers.
� We always use the branches of the logarithm and complex powers which are

analytic on C\(−∞, 0] and take the value 0 or 1, respectively, at the point 1.
� We set C

+ := {z ∈ C : Im z > 0} and C
− := {z ∈ C : Im z < 0}.

� For a domain Ω denote by Hol(Ω) and Mer(Ω) the set of holomorphic and of
meromorphic functions on Ω respectively.

� We use the notation f ∼ g to express that f
g → 1, and the notation f 	 g if

f
g → 0. Further, we write f � g if there exists a constant c > 0 such that f � cg,
and we write f 
 g if f � g and g � f . The domain of validity will be stated
or will be clear from the context.
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4 M. Langer and H. Woracek

� When we speak of a ‘measure’, we always mean positive Borel measure (unless
explicitly specified differently).

� Throughout the rest of the paper we use the Stieltjes transform S[μ] as defined
in (A.7), where we use a different sign convention from the one used in (1.2).

2. Regularized Cauchy integrals

2.1. Definition of higher-order regularized Cauchy integrals

To start with, let us recall the characterizations of the ranges of the transforms
C and C̃ introduced in (1.1) and (1.5). These are classical results going back to F.
Riesz, G. Herglotz and R. Nevanlinna; for a comprehensive account see, e.g. [14]
or [10].

Proposition 2.1. Let q ∈ Hol(C+).

(i) The function q can be represented in the form

q(z) = a+ C[μ](z) = a+
∫

R

1
t− z

dμ(t), z ∈ C
+, (2.1)

with some a ∈ R and a positive measure μ on R with
∫

R
(1 + |t|)−1dμ(t) <∞

if and only if

∀z ∈ C
+ : Im q(z) � 0 and

∫ ∞

1

Im q(iy)
y

dy <∞.

(ii) The function q can be represented in the form

q(z) = a+ bz + C̃[μ](z) = a+ bz +
∫

R

( 1
t− z

− t

1 + t2

)
dμ(t), z ∈ C

+,

(2.2)

with some a ∈ R, b � 0 and a positive measure μ on R with
∫

R
(1 + t2)−1dμ(t) <

∞ if and only if

∀z ∈ C
+ : Im q(z) � 0.

Remark 2.2.

(i) Assume that q is represented in the form (2.2). Then the constants a, b are
given by

a = Re q(i), b = lim
y→+∞

1
iy
q(iy), (2.3)

and the measure μ is given by the Stieltjes inversion formula

∀α, β ∈ R, α < β : lim
δ↓0

lim
ε↓0

1
π

∫ β−δ

α+δ

Im q(x+ iε) dx = μ
(
(α, β)

)
;

see, e.g. [14]. In particular, the map (a, b, μ) �→ q with q satisfying (2.2) is
injective.
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(ii) Assume that a = b = 0 in (2.2), i.e. q(z) = C̃[μ](z). Then

|q(iy)| 	 y, y → +∞, (2.4)

by (2.3), and

lim
y→+∞ y Im q(iy) = sup

y>0
y Im(iy) = μ(R); (2.5)

see again [14].

It is apparent that moving from function (2.1) to function (2.2) is only the first
step on a ladder: instead of Poisson-integrable measures one may use measures
whose tails have at most power growth, and instead of the term a+ bz one may
use any polynomial with real coefficients. In the integral higher-order regularization
will become necessary.

We work with a scale of higher-order regularized Cauchy transforms which is
commonly used in the framework of indefinite inner product spaces; see, e.g. [19].

Definition 2.3. Let κ ∈ N0.

(i) We denote by E�κ the set of all pairs (μ, p) where
� μ is a measure on R that satisfies∫

R

dμ(t)
(1 + t2)κ+1

<∞; (2.6)

� p is a polynomial with real coefficients whose degree does not exceed 2κ+ 1;
� the coefficient of z2κ+1 in p satisfies

1
(2κ+ 1)!

p(2κ+1)(0) �
∫

R

dμ(t)
(1 + t2)κ+1

. (2.7)

(ii) The κ-regularized Cauchy transform is the map Cκ : E�κ → Hol(C+) defined
by

Cκ[μ, p](z) := p(z) + (1 + z2)κ+1

∫
R

1
t− z

· dμ(t)
(1 + t2)κ+1

, z ∈ C
+. (2.8)

In order to represent polynomials with real coefficients as regularized Cauchy
transforms, we have to include pairs such as (0, z2κ) in E�κ. For this reason we
cannot speak of ‘the leading coefficient of p’ in (2.7).

These maps can indeed be seen as higher-order regularized Cauchy integrals: for
k ∈ N0 we have

1
t− z

− (t+ z)
k∑

j=0

(1 + z2)j

(1 + t2)j+1
=

1
t− z

− t+ z

1 + t2
· 1 − (

1+z2

1+t2

)k+1

1 − 1+z2

1+t2

=
1

t− z
− (t+ z) · 1 − (

1+z2

1+t2

)k+1

t2 − z2
=

1
t− z

· (1 + z2)k+1

(1 + t2)k+1
; (2.9)
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6 M. Langer and H. Woracek

hence we obtain, with k = κ,

Cκ[μ, p](z) = p(z) +
∫

R

[
1

t− z
− (t+ z)

κ∑
j=0

(1 + z2)j

(1 + t2)j+1

]
dμ(t). (2.10)

Note that the regularizing terms in the integral on the right-hand side of (2.10) are
the first κ+ 1 terms of an expansion of 1

t−z = (t+ z) · 1
t2−z2 in terms of powers of

1
1+t2 . For κ = 0 relation (2.10) reads as

C0[μ, p](z) = p(z) +
∫

R

( 1
t− z

− t+ z

1 + t2

)
dμ(t), (2.11)

which yields the following connection with the previously discussed regularized
Cauchy-type integral (1.5):

� a+ bz + C̃[μ](z) = C0[μ, p](z) with p(z) := a+
(
b+

∫
R

dμ(t)
1 + t2

)
z;

� (a, b, μ) ∈ R × [0, ∞) ×
{
μ : positive measure with

∫
R

dμ(t)
1 + t2

<∞
}

⇐⇒ (μ, p) ∈ E�0 with p related to a, b and μ as above.

Remark 2.4. Using again (2.9) with κ = 0 we obtain the following representation
for Cκ for arbitrary κ ∈ N0:

Cκ[μ, p](z) = p(z) + (1 + z2)κ

∫
R

( 1
t− z

− t+ z

1 + t2

) dμ(t)
(1 + t2)κ

=
(
p(z) − z(1 + z2)κ

∫
R

dμ(t)
(1 + t2)κ+1

)
+ (1 + z2)κ

∫
R

( 1
t− z

− t

1 + t2

) dμ(t)
(1 + t2)κ

. (2.12)

If the stronger integrability condition
∫

R
(1 + |t|)−(2κ+1)dμ(t) <∞ is satisfied, then

we can split the second integral on the right-hand side of (2.12) and rewrite it as

Cκ[μ, p](z) =
(
p(z) − (1 + z2)κ

[
z

∫
R

dμ(t)
(1 + t2)κ+1

+
∫

R

t

1 + t2
· dμ(t)
(1 + t2)κ

])
+ (1 + z2)κ

∫
R

1
t− z

· dμ(t)
(1 + t2)κ

. (2.13)

Before we collect some properties of E�κ and Cκ, we recall the Stieltjes–Livšic
inversion formula; see, e.g. [21, Corollary II.1.2] or [11, Theorem 1.2.4]). Let σ be
a finite measure on R, let α, β ∈ R with α < β, and let f be an analytic function
on a neighbourhood of [α, β]. For δ, ε > 0 let Γδ

ε be the path consisting of the two
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directed line segments

α+ δ − iε� β − δ − iε and β − δ + iε� α+ δ + iε. (2.14)

Then

lim
δ↓0

lim
ε↓0

−1
2πi

∫
Γδ

ε

f(z)
∫

R

1
t− z

dσ(t) dz =
∫

(α,β)

f(t) dσ(t). (2.15)

Lemma 2.5. Let κ ∈ N0.

(i) The set E�κ is a positive cone and Cκ is a cone map, i.e. compatible with finite
sums and non-negative scalar multiples.

(ii) The map Cκ is injective. For q ∈ ran Cκ the element (μ, p) = C−1
κ q is obtained

as follows: the polynomial p can be recovered from solving the 2κ+ 2 equations
obtained by splitting real and imaginary parts of

q(j)(i) = p(j)(i), j ∈ {0, . . . , κ}; (2.16)

the measure μ can be obtained via the Stieltjes inversion formula: for α, β ∈ R

with α < β we have

μ
(
(α, β)

)
= lim

δ↓0
lim
ε↓0

1
π

∫ β−δ

α+δ

Im q(t+ iε) dμ(t). (2.17)

(iii) Let κ′ > κ. Then the inclusion ran Cκ ⊆ ran Cκ′ holds, and, for (μ, p) ∈ E�κ,
we have Cκ[μ, p] = Cκ′ [μ, p̃] with

p̃(z) = p(z) +
κ′∑

j=κ+1

(1 + z2)j

[
z

∫
R

dμ(t)
(1 + t2)j+1

+
∫

R

t dμ(t)
(1 + t2)j+1

]
.

Proof. (i) The statements are clear from the definitions of E�κ and Cκ.

(ii) Let (μ, p) ∈ E�κ and set q = Cκ[μ, p]. It follows from the definition of Cκ

that (2.16) holds, which implies that p is uniquely determined by q. To show
(2.17), let us first extend q to C\R by symmetry: q(z) := q(z) for z ∈ C

−.
Moreover, let α, β ∈ R with α < β and let Γδ

ε be the path in (2.14). Then
(2.15) implies that

lim
δ↓0

lim
ε↓0

1
π

∫ β−δ

α+δ

Im q(t+ iε) dμ(t) = lim
δ↓0

lim
ε↓0

−1
2πi

∫
Γδ

ε

q(z) dz

= lim
δ↓0

lim
ε↓0

−1
2πi

∫
Γδ

ε

(1 + z2)κ+1

[ ∫
R

1
t− z

· dμ(t)
(1 + t2)κ+1

]
dz

=
∫

(α,β)

(1 + t2)κ+1 · dμ(t)
(1 + t2)κ+1

= μ
(
(α, β)

)
.

The unique determination of μ and p shows that Cκ is injective.
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8 M. Langer and H. Woracek

(iii) Let (μ, p) ∈ E�κ and let κ′ > κ. It follows from (2.9) that

1
t− z

· (1 + z2)κ+1

(1 + t2)κ+1
=

1
t− z

· (1 + z2)κ′+1

(1 + t2)κ′+1
+ (t+ z)

κ′∑
j=κ+1

(1 + z2)j

(1 + t2)j+1
, (2.18)

which yields the statement in (iii). �

Note that the Stieltjes inversion formula (2.17) for the recovery of μ is
independent of κ.

2.2. Determining the range of Cκ

An intrinsic characterization of the range of Cκ along the lines of proposi-
tion 2.1 (ii) can be given. This is based on [19, 20, 22] and related to [25, Theorem
3.9] (a predecessor of the latter is [15, Lemma 3.6]).

Let us first recall the definition of generalized Nevanlinna functions in the sense
of [19]. We need, in particular, functions from the subclasses N (∞)

κ , which are
characterized by a special behaviour at infinity and which were studied in, e.g.
[6–8, 13, 24–26].

Definition 2.6. For q ∈ Mer(C+) we denote by Ωq its domain of analyticity; for
the constant q ≡ ∞ we set Ωq = ∅.
(i) For q ∈ Mer(C+) ∪ {∞} we denote by κq ∈ N0 ∪ {∞} the number of negative

squares of the Hermitian kernel

Kq(w, z) :=
q(z) − q(w)

z − w
, z, w ∈ Ωq, (2.19)

i.e. the supremum of all numbers of negative squares of the quadratic forms

m∑
i,j=1

Kq(wj , wi)ξiξj

with m ∈ N and w1, . . . , wm ∈ Ωq.

(ii) Let κ ∈ N0. We denote by Nκ the set of all functions q ∈ Mer(C+) with κq = κ.

Moreover, we set N�κ :=
κ⋃

κ′=0

Nκ′ and N<∞ :=
∞⋃

κ′=0

Nκ′ .

(iii) Let κ ∈ N0. We denote by N (∞)
κ the set of all functions q ∈ Nκ for which

lim
y→+∞

∣∣∣∣ q(iy)y2κ−1

∣∣∣∣ = ∞ or lim
y→+∞

q(iy)
(iy)2κ−1

∈ (−∞, 0).

Moreover, we set N (∞)
�κ :=

κ⋃
κ′=0

N (∞)
κ′ and N (∞)

<∞ :=
∞⋃

κ′=0

N (∞)
κ′ .
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Remark 2.7.

(i) Note that the classes N0 and N (∞)
0 coincide with the set of all Nevanlinna

functions, i.e. those functions q that are analytic on C
+ and satisfy Im q(z) � 0

for z ∈ C
+. Further, functions in Nκ have at most κ poles and at most κ zeros

in C
+.

(ii) The classes N (∞)
κ , which have also been denoted by N∞

κ in the literature,
can also be characterized differently, namely, for q ∈ Mer(C+) the following
conditions are equivalent (see [13], or also [6, 15]):
(a) q ∈ N (∞)

<∞ ;

(b) ∞ is the only (generalized) pole not of positive type (in the sense of
[19, §3]), i.e. ∞ is the only (generalized) eigenvalue with a non-positive
eigenvector of a representing relation in a Pontryagin space (see also [22]
for an analytic characterization of generalized poles not of positive type);

(c) there exist m ∈ N0, a real polynomial p and a measure σ on R such that∫
R
(1 + t2)−1dσ(t) <∞ and

q(z) = (1 + z2)m

∫
R

( 1
t− z

− t

1 + t2

)
dσ(t) + p(z); (2.20)

(d) there exist n ∈ N0, β1, . . . , βn ∈ C
+ ∪ R, ρj ∈ N and q0 ∈ N0 such that

q(z) = q0(z)
n∏

j=1

(z − βj)ρj (z − βj)ρj .

If q is as in (2.20) and deg p = l with leading coefficient cl, then q ∈ N (∞)
κ with

κ � max{m,κp} where κp =

{
l
2 , l even,
l−sgn(cl)

2 , l odd;
(2.21)

equality holds in (2.21) if m = 0 or σ is an infinite measure; see, e.g. [6, (1.16)].
Note that for a real polynomial p one has κp � κ′ if and only if deg p � 2κ′ + 1
and p(2κ′+1)(0) � 0.

(iii) Representation (2.10) is a special case of the integral representation of N<∞-
functions given in [19, Satz 3.1].

(iv) In [25] representations of functions in N (∞)
<∞ were constructed with distribu-

tions (more precisely, distributional densities) on the one-point compactifica-
tion R ∪ {∞} of R which act like measures on R.

(v) Functions in N (∞)
<∞ are analytic in C

+.

Theorem 2.8. For every κ ∈ N0 the equality ran Cκ = N (∞)
�κ holds.
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Proof. Let κ ∈ N0. It follows from (2.12) that q ∈ ran Cκ if and only if it can be
written as

q(z) = p̃(z) + (1 + z2)κ

∫
R

( 1
t− z

− t

1 + t2

)
dσ(t) (2.22)

with a real polynomial p̃ of degree at most 2κ+ 1 with p̃(2κ+1)(0) � 0 and a measure
σ such that

∫
R
(1 + t2)−1dσ(t) <∞.

First assume that q ∈ ran Cκ. Then (2.22) holds with σ and p̃ as above. By
remark 2.7 (ii) we obtain that q ∈ N (∞)

�κ .

Conversely, assume that q ∈ N (∞)
�κ , say q ∈ N (∞)

κ′ with κ′ ∈ {0, . . . , κ}. Then
there exists a representation of q as in (2.20) such that κ′ = max{m, κp}, where κp

is as in (2.21); in particular m � κ and κp � κ. The function

q̂(z) := (1 + z2)m

∫
R

( 1
t− z

− t

1 + t2

)
dσ(t)

belongs to ran Cm by the first paragraph of this proof. Since m � κ, we obtain from
lemma 2.5 (iii) that q̂ ∈ ran Cκ. The relations deg p � 2κ+ 1 and p(2κ+1)(0) � 0
show that (0, p) ∈ E�κ, and hence p = Cκ[0, p] ∈ ran Cκ. Now lemma 2.5 (i) implies
that q = q̂ + p ∈ ran Cκ. �

2.3. Cκ as a homeomorphism: the Grommer–Hamburger theorem

Next we discuss a continuity property of Cκ; see theorem 2.12 below. This result is
a variant of a classical theorem of J. Grommer and H. Hamburger; see the discussion
in remark 2.13.

Before being able to formulate a result, we have to make clear which topologies we
use. On the set Hol(C+) we always use the topology of locally uniform convergence.
Topologizing E�κ is slightly more subtle. We proceed as follows. Fix κ ∈ N0. The
set of all positive measures μ that satisfies (2.6) is a subset of the dual space of the
weighted C0-space

C0(R, ωκ) :=
{
f ∈ C(R) : lim

|x|→∞
|f(x)|ωκ(x) = 0

}
, ‖f‖ := sup

x∈R

|f(x)|ωκ(x),

where ωκ is the weight function ωκ(x) := (1 + x2)κ+1; note that

‖μ‖C0(R,ωk)′ =
∫

R

dμ(t)
(1 + t2)κ+1

(2.23)

for a positive measure μ that satisfies (2.6). We endow the set of all positive
measures μ that satisfy (2.6) with the subspace topology of the w∗-topology in
C0(R, ωκ)′. The set of all polynomials of degree at most 2κ+ 1 is isomorphic to
R

2κ+2 mapping a polynomial to its coefficients, and we endow polynomials with the
Euclidean norm transported via this isomorphism. The set E�κ is now topologized
as a subspace of the product.

This topology has some very nice properties, which are summarized in the
following lemma.

https://doi.org/10.1017/prm.2023.128 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.128
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Lemma 2.9. Let κ ∈ N0.

(i) E�κ is a closed subset of C0(R, ωκ)′ × R
2κ+2.

(ii) A subset E ⊆ E�κ is relatively compact if and only if

sup
{‖p‖ : (μ, p) ∈ E} <∞. (2.24)

(iii) The sets

EN :=
{
(μ, p) ∈ E�κ : ‖p‖ � N}

are compact. We have EN ⊆ Int EN+1, and
⋃

N∈N
EN = E�κ, where the interior

Int EN+1 of EN+1 is understood within E�κ.

Proof. (i) Assume that ((μi, pi))i∈I is a net in E�κ that converges to some ele-
ment (μ, p) ∈ C0(R, ωκ)′ × R

2κ+2. Then μ is again a positive measure, and,
by (2.23),

1
(2κ+ 1)!

p(2κ+1)(0) = lim
i∈I

1
(2κ+ 1)!

p
(2κ+1)
i (0)

� lim sup
i∈I

∫
R

dμi(t)
(1 + t2)κ+1

�
∫

R

dμ(t)
(1 + t2)κ+1

.

Thus (μ, p) ∈ E�κ, and we see that E�κ is indeed closed.

(ii) Let π2 be the projection onto the second component of C0(R, ωκ)′ × R
2κ+2.

Then π2 is continuous. This already shows the implication ‘⇒’ in (ii).
Conversely, assume that (2.24) holds. It follows from (2.23) that

sup
{
‖μ‖C0(R,ωκ)′ : (μ, p) ∈ E

}
� sup

{‖p‖ : (μ, p) ∈ E} =: c <∞.

We see that

E ⊆ {μ ∈ C0(R, ωκ)′ : ‖μ‖C0(R,ωκ)′ � c} × {p ∈ R
2κ+2 : ‖p‖ � c},

and hence E is relatively compact in C0(R, ωκ)′ × R
2κ+2 by the

Banach–Alaoglu Theorem. Since E�κ is closed in this product space, E is
also relatively compact in E�κ.

(iii) The statement follows from what we have shown so far and from the fact that
the continuity of π2 implies that EN is closed and that

Int EN+1 =
{
(μ, p) ∈ E�κ : ‖p‖ < N + 1

}
. �

Proposition 2.10. The range of Cκ is closed in Hol(C+), and Cκ is a homeomor-
phism onto its range.

Proof. Continuity of Cκ is clear from our choice of topology. Let (qi)i∈I be a net
in ran Cκ, and assume that limi∈I qi = q in Hol(C+). Remembering (2.16) we find
i0 ∈ I and N ∈ N such that C−1

κ (qi) ∈ EN for all i � i0. Since EN is compact (and
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12 M. Langer and H. Woracek

Cκ is continuous and injective), it follows that the limit limi∈I C−1
κ (qi) exists in

EN ⊆ E�κ. �

The following result is used in the proofs of theorems 2.12 and 3.1.

Proposition 2.11. Let κ ∈ N0 and qn ∈ N�κ, n ∈ N0. Assume that

(i) for each compact K ⊆ C
+ with non-empty interior O there exists mK ∈ N such

that qn is analytic on O for all n � mK ;

(ii) there exists M ⊆ C
+ with accumulation point in C

+ such that lim
n→∞ qn(z) exists

for all z ∈M .

Then there exists q̊ ∈ N�κ ∩ Hol(C+) such that lim
n→∞ qn = q̊ locally uniformly

in C
+. Here we understand locally uniform convergence in the space of meromorphic

functions considered as analytic functions into the Riemann sphere.

Proof. Assumptions (i) and (ii) imply, in particular, that there exist κ+ 1 points
z0, . . . , zκ ∈ C

+ such that |qn(zi)| � c for all n ∈ N and i ∈ {0, . . . , κ} and some
c > 0. By [23, Theorem 3.2] there exist a subsequence (qnk

)k∈N, a set P ⊆ C
+ with

|P | � κ, and q̊ ∈ N�κ such that

lim
k→∞

qnk
= q̊ locally uniformly on C

+\P.

Note that q̊ is meromorphic on C
+ because q̊ ∈ N�κ. Let w ∈ P . There exists a

closed disc K ⊆ C
+ around w with interior O such that q̊ is zero-free on O\{w}.

By assumption (i), qnk
is analytic on O for all k with nk � mK . The convergence of

the logarithmic residue implies that q̊ is analytic at w, and hence limk→∞ qnk
= q̊

locally uniformly on O. Since w was arbitrary in P , this shows that q̊ is analytic
on C

+ and that limk→∞ qnk
= q̊ locally uniformly on C

+.
The above considerations can be done for every subsequence of (qn) instead

of (qn) itself. Now assumption (ii) implies that limn→∞ qn = q̊ locally uniformly
on C

+. �

We can now prove an analogue of the classical Grommer–Hamburger theorem for
regularized Cauchy transforms.

Theorem 2.12. Let κ ∈ N0, let (μn, pn) ∈ E�κ for n ∈ N, set qn := Cκ[μn, pn],
and let q̊ ∈ Hol(C+). Then the following three statements are equivalent:

(i) ∃M ⊆ C
+ such that M has an accumulation point in C

+ and that lim
n→∞ qn(z) =

q̊(z) for all z ∈M ;

(ii) lim
n→∞ qn = q̊ locally uniformly on C

+;

(iii) ∃(μ̊, p̊) ∈ E�κ such that q̊ = Cκ [̊μ, p̊], lim
n→∞ pn = p̊ and

∀a, b ∈ R : a < b, μ̊({a}) = μ̊({b}) = 0 =⇒ lim
n→∞μn((a, b)) = μ̊((a, b)).

(2.25)
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Proof. The equivalence of (i) and (ii) follows directly from theorem 2.8 and
proposition 2.11 since qn is analytic on C

+ for every n ∈ N.
Let us now prove the equivalence of (ii) and (iii). It follows from proposition 2.10

that (ii) is equivalent to

∃(μ̊, p̊) ∈ E�κ : q̊ = Cκ [̊μ, p̊], lim
n→∞ pn = p̊ (2.26)

together with limn→∞ μn = μ̊ w.r.t. w∗ in C0(R, ωκ)′. Now assume that (2.26)
holds. Then the convergence of (pn) implies that

‖μn‖C0(R,ωκ)′ =
∫

R

dμn(t)
(1 + t2)κ+1

� 1
(2κ+ 1)!

p(2κ+1)
n (0) � c

for some c > 0. Since C00(R), which denotes the set of compactly supported con-
tinuous functions on R, is dense in C0(R, ωκ), the relation μn → μ̊ w.r.t. w∗ in
C0(R, ωκ)′ is equivalent to μn → μ̊ w.r.t. w∗ in C00(R)′. The latter relation is
equivalent to (2.25) by the portmanteau-type theorem [1, Theorem 1]. �

Remark 2.13.

(i) Let us make the connection with the original formulation of the Grom-
mer–Hamburger theorem; see, e.g. [36, §48]. The latter is about Cauchy
transforms, (1.1), of finite measures, and states the following: let (μn)n∈N be a
sequence of finite measures on R whose total variations are uniformly bounded
and let q̊ ∈ Hol(C+); then the following statements are equivalent:
(a) lim

n→∞C[μn](z) = q̊(z) for all z ∈ C
+;

(b) there exists a finite measure μ̊ such that q̊ = C [̊μ] and (2.25) holds.

(ii) There has been some confusion about the formulation of the Grom-
mer–Hamburger theorem. The condition in (2.25) says that (μn)n∈N converges
vaguely, i.e. w.r.t. w∗ in C00(R)′. However, at some places in the literature
it is claimed that (a) in item (i) implies that (μn)n∈N converges weakly, i.e.
w.r.t. w∗ in Cb(R)′, where Cb(R) is the space of bounded continuous functions.
The example μn = δn, where δn denotes the Dirac measure at n, shows that
this is not true: limn→∞ C[δn] = 0 locally uniformly, but limn→∞ δn = 0 only
vaguely and not weakly; in particular, mass is lost. Note that, by the portman-
teau theorem (see, e.g. [18, Theorem 13.16]), a sequence of uniformly bounded
measures (μn) on R converges weakly to a measure μ̊ if and only if it converges
vaguely to μ̊ and limn→∞ μn(R) = μ̊(R). See also the discussion in [9].

(iii) In the original Grommer–Hamburger theorem one needs the a priori assump-
tion that the total variations are uniformly bounded. On the other hand, in
theorem 2.12 the integrals

∫
R
(1 + t2)−(κ+1)dμn(t) are automatically bounded

by (2.7) and the convergence of the polynomials (pn). Consider also the
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14 M. Langer and H. Woracek

following example: let μn = n2δn and pn(z) = n2

1+n2 z. By (2.11) we have

C0[μn, pn](z) = pn(z) +
∫

R

( 1
t− z

− t+ z

1 + t2

)
dμn(t)

= C̃[μn](z) = n2
( 1
n− z

− n

1 + n2

)
→ z

locally uniformly as n→ ∞. Note that the limit function belongs to ran C0

but is not the Cauchy transform of a finite measure.

(iv) It follows from [1, Theorem 1] that (2.25) is equivalent to the following
condition:

for every bounded Borel set A with μ̊(∂A) = 0 : lim
n→∞μn(A) = μ̊(A).

(v) Under the additional assumption that q̊ ∈ N (∞)
κ , i.e. q̊ has the same number of

negative squares as qn, the implication (ii)⇒ (2.25) in theorem 2.12 can also
be deduced from [23, Corollary 3.1]; see also [26, Lemma 3.7].

3. A Tauberian theorem

In this section we prove a Tauberian theorem for the transform Cκ where
the asymptotic behaviour of the measure μ towards infinity can be derived
from the asymptotic behaviour of the function q = Cκ[μ, p] at infinity. As men-
tioned in the Introduction, there is a wide range of Tauberian theorems for Stieltjes
transforms, where the measure is only supported on the positive half-line. Surpris-
ingly, it seems there is much less known for Cauchy integrals, where the measure
is allowed to be supported on the whole real line. One result, which has been fre-
quently cited, is claimed in [2, Theorem 7.5]. The proof given in that paper contains
a mistake1. Fortunately, the result itself turns out to be true. In this section we
provide a simple and conclusive argument which allows us, at the same time, to
drop one assumption made in [2] and to generalize it to higher-order regularized
Cauchy transforms.

Theorem 3.2 contains the above mentioned Tauberian theorem for the transform
q = Cκ[μ, p]. In most cases the asymptotic behaviour of the measure μ can be
determined independently for the positive and the negative real axis; see (3.6) and
(3.7). The assumption about the asymptotic behaviour of q at infinity can be for-
mulated in different ways. Theorem 3.1 shows the equivalence of these assumptions,
where conditions (i) and (ii) are relatively minimal assumptions. In particular, (ii)
says that, along one ray towards infinity, q behaves like a constant times a regu-
larly varying function; for the latter notion see Appendix A. Note that we prove
theorem 3.1 for the larger class N�κ instead of the class N (∞)

�κ = ran Cκ.

1In particular, in that paper it is claimed that the relation
∫

R
(t − z)−3dτ(t) = 0 for all z ∈ C+

for a non-decreasing function τ on R implies that τ is constant at all points of continuity, which
is not true as the example τ(t) = t shows.
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The following functions play an important role in the current section, namely as
limiting functions of rescalings of a given q:

Qα,ω(z) := iω
(z
i

)α

, z ∈ C
+, (3.1)

where α ∈ R and ω ∈ C\{0}. Note that, by the normalization of the power function
at the end of the Introduction, we have Qα,ω(i) = iω.

Theorem 3.1. Let κ ∈ N0 and q ∈ N�κ, and let f : [x0, ∞) → (0, ∞) with x0 > 0
be measurable. Then the following statements are equivalent:

(i) there exists M ⊆ C
+ with an accumulation point in C

+ such that

∀z ∈M : lim
r→∞

q(rz)
f(r)

exists and is non-zero; (3.2)

(ii) f is regularly varying and there exists z0 ∈ C
+ such that

lim
r→∞

q(rz0)
f(r)

exists and is non-zero; (3.3)

(iii) f is regularly varying with index α ∈ [−2κ− 1, 2κ+ 1] and there exists ω ∈
C\{0} such that

lim
r→∞

q(rz)
f(r)

= Qα,ω(z) locally uniformly for z ∈ C
+;

moreover, there exists κ′ ∈ {0, . . . , κ} such that Qα,ω ∈ Nκ′ and hence

∣∣ arg
(
(−1)κ′

ω
)∣∣ � π

2

(
1 − ∣∣|α| − 2κ′

∣∣). (3.4)

If (i)–(iii) are satisfied and ξ denotes the limit in (3.3), then ω = ξ
i

(
z0
i

)−α.

Note that in the case when κ = 0 we must have κ′ = 0 in (iii) and hence (3.4)
reduces to | argω| � π

2 (1 − |α|).

Theorem 3.2. Let κ ∈ N0 and (μ, p) ∈ E�κ, set q := Cκ[μ, p], and let f :
[x0, ∞) → (0, ∞) with x0 > 0 be measurable. Assume that the equivalent condi-
tions (i)–(iii) in theorem 3.1 hold. Then α ∈ [−1, 2κ+ 1] and Qα,ω ∈ ran Cκ. Let
μα,ω be the measure component of C−1

κ Qα,ω. For all a, b ∈ R with a < b and
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μα,ω({a}) = μα,ω({b}) = 0, we have

lim
r→∞

1
rf(r)

μ
(
(ra, rb)

)
= μα,ω

(
(a, b)

)
. (3.5)

In particular, if α > −1, then

lim
r→∞

1
rf(r)

μ
(
(0, r)

)
=

1
π
· |ω|
α+ 1

cos
(απ

2
− argω

)
, (3.6)

lim
r→∞

1
rf(r)

μ
(
(−r, 0)

)
=

1
π
· |ω|
α+ 1

cos
(απ

2
+ argω

)
; (3.7)

if α = −1, then ω > 0 and

lim
r→∞

1
rf(r)

μ
(
(−r, r)) = ω. (3.8)

Remark 3.3.

(i) Any asymmetry of the limits on the right-hand sides of (3.6) and (3.7) can be
seen from ω. To this end, assume that α > −1 and write α = 2m+ α0 with
m ∈ N0 and |α0| � 1; if α ∈ 2N0 + 1, choose m such that (−1)mω > 0. The
limits on the right-hand sides of (3.6) and (3.7) can be rewritten as follows:

c± :=
1
π
· |ω|
α+ 1

cos
(απ

2
∓ argω

)

=
1
π
· |ω|
α+ 1

⎧⎨⎩cos
(α0π

2
∓ argω

)
, m even,

cos
(α0π

2
+ π ∓ argω

)
, m odd,

=
1
π
· |ω|
α+ 1

cos
(α0π

2
∓ arg

(
(−1)mω

))
.

It follows from lemma 3.4 below and its proof that m = κ′ and hence, by (3.4),
that

∣∣α0π
2 ∓ arg

(
(−1)mω

)∣∣ � π
2 . From this the following equivalences follow

easily, where we set ψ := arg((−1)mω),

c+ > c− ⇐⇒ α0, ψ �= 0 ∧ sgnα0 = sgnψ,

c+ = c− ⇐⇒ α0 = 0 ∨ ψ = 0,

c+ < c− ⇐⇒ α0, ψ �= 0 ∧ sgnα0 = − sgnψ,

c± = 0 ⇐⇒ ∣∣α0π
2 ∓ ψ

∣∣ = π
2 ,

c+ = c−=0 ⇐⇒ |α0| = 1 ∨ (
α0 = 0 ∧ |ψ| = π

2

)
.

If c+ �= 0, then the function r �→ μ((0, r)) is regularly varying with index α+ 1;
if c− �= 0, then r �→ μ((−r, 0)) is regularly varying with index α+ 1.

(ii) Example 4.9 below shows that there are situations where (i)–(iii) in theorem 3.1
are satisfied but none of t �→ μ((−t, t)), t �→ μ((0, t)), t �→ μ((−t, 0)) is regu-
larly varying. See also example 5.3.
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Before we prove theorems 3.1 and 3.2, we need some lemmas.

Lemma 3.4. Let α ∈ R and ω ∈ C\{0} and let Qα,ω be as in (3.1).

(i) We have Qα,ω ∈ Nκ if and only if∣∣ arg
(
(−1)κω

)∣∣ � π

2

(
1 − ∣∣|α| − 2κ

∣∣). (3.9)

This is possible only when

κ =

⎧⎪⎪⎨⎪⎪⎩
⌊ |α|+1

2

⌋
if α /∈ 2Z + 1,

|α|+1
2 if α ∈ 2Z + 1 and (−1)

|α|+1
2 ω > 0,

|α|−1
2 if α ∈ 2Z + 1 and (−1)

|α|+1
2 ω < 0.

(3.10)

In particular, |α|−1
2 � κ � |α|+1

2 .

(ii) Assume that Qα,ω ∈ Nκ, i.e. that (3.9) is satisfied. Then Qα,ω ∈ N (∞)
κ if and

only if α � −1 and, in addition, ω > 0 in the case when α = −1.

(iii) Assume that Qα,ω ∈ N (∞)
κ and let μα,ω be the measure component of C−1

κ Qα,ω.
If α = −1, then μα,ω = ωδ0, where δ0 is the Dirac measure at 0. If α > −1,
then μα,ω is absolutely continuous w.r.t. the Lebesgue measure and has density

dμα,ω

dt
(t) =

|ω|
π

|t|α cos
(απ

2
− (sgn t) argω

)
, a.e. t ∈ R.

Proof. (i) Write α = 2m+ α0 with m ∈ Z and |α0| � 1 (note that if α is an odd
integer, then m and α0 are not unique). Then

Qα,ω(z) = iω
(z
i

)2m(z
i

)α0

= z2mq0(z) (3.11)

with

q0(z) = i(−1)mω
(z
i

)α0

.

Since the only generalized poles and zeros not of positive type (in the sense
of [19]; see also [22]) can be 0 and ∞, it follows from [5, Corollary] or [4,
Proposition 3.2 and Theorem 3.3] that Qα,ω ∈ Nκ if and only if |m| = κ and
q0 ∈ N0. Determining the sector onto which C

+ is mapped under q0 one can
easily show that q0 ∈ N0 if and only if∣∣ arg

(
(−1)mω

)∣∣ � π

2
(
1 − |α0|

)
.

Since |α0| =
∣∣|α| − |2m|∣∣ =

∣∣|α| − 2κ
∣∣, the equivalence of Qα,ω ∈ Nκ and (3.9)

follows. The formula for κ can be derived easily from (3.9).

(ii) It follows from the factorization (3.11) and [5, Corollary] that q ∈ N (∞)
κ if

and only if m � 0.
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(iii) If α = −1 and ω > 0, then Qα,ω(z) = −ω
z and hence Qα,ω ∈ N0 = N (∞)

0 and
μα,ω = ωδ0. Assume that α > −1. The function Qα,ω can be extended to a
continuous function on (C+ ∪ R)\{0}, and, for t > 0, we have

ImQα,ω(±t) = Im
[
iω(∓it)α

]
= Im

[
|ω|tαei( π

2 +arg ω∓α π
2 )

]
= |ω|tα sin

(π
2

+ argω ∓ απ

2

)
= |ω|tα cos

(
argω ∓ απ

2

)
.

Now the assertion follows from the Stieltjes inversion formula (2.17). Note
that there is no point mass at 0 if α > −1.

�

Remark 3.5. It follows from (3.9) and (3.10) that Qα,ω ∈ N<∞ if and only if

α /∈ 2Z + 1 and
∣∣ arg

(
(−1)	

|α|+1
2 
ω

)∣∣ � π

2
dist(α, 2Z + 1) (3.12)

or
α ∈ 2Z + 1 and ω ∈ R. (3.12)

The significance of regular variation is that having a regularly varying asymp-
totics for q(rz) for one single point z already suffices to get locally uniform
asymptotics depending on z as a power. The reason for this is the multiplica-
tive nature of the argument in q(rz). In the following lemma we use the standard
notation z0M = {z0z : z ∈M} with M ⊆ R.

Lemma 3.6. Let z0 ∈ C
+, r0 > 0 and let q : z0(r0, ∞) → C\{0} be a continuous

function. Further, let f : [x0, ∞) → (0, ∞) with x0 > 0 be a measurable function
and let B ⊆ (r0, ∞) be a set with positive Lebesgue measure. Assume that

∀z ∈ z0B : lim
r→∞

q(rz)
f(r)

exists and is non-zero.

Then there exist α ∈ R and ω ∈ C\{0} such that f is regularly varying with index
α and

∀z ∈ z0(0,∞) : lim
r→∞

q(rz)
f(r)

= Qα,ω(z), (3.14)

where Qα,ω is as in (3.1).

Proof. Set q̊(z) := limr→∞
q(rz)
f(r) , z ∈ z0B. Choose s0 ∈ B. For every λ ∈ 1

s0
B we

have λs0z0 ∈ z0B and s0z0 ∈ z0B and hence

lim
r→∞

q(r · λs0z0)
f(r)

= q̊(λs0z0), lim
r→∞

q(λr · s0z0)
f(λr)

= q̊(s0z0).

Taking quotients of these equations we obtain

lim
r→∞

f(λr)
f(r)

=
q̊(λs0z0)
q̊(s0z0)

.

Since the set 1
s0
B has positive measure, the Characterization Theorem [3, Theorem

1.4.1] yields that f is regularly varying with index, say, α ∈ R. Hence, for every
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λ > 0 we have

lim
r→∞

q(r · λs0z0)
f(r)

= lim
r→∞

q(λr · s0z0)
f(λr)

· lim
r→∞

f(λr)
f(r)

= q̊(s0z0)λα.

Replacing λs0z0 by z we obtain that, for every z ∈ z0(0, ∞),

lim
r→∞

q(rz)
f(r)

= q̊(s0z0)
( z

s0z0

)α

,

which implies (3.14). �

Lemma 3.7. Let q ∈ ran Cκ, r > 0, and consider the function q〈r〉(z) := q(rz). Then
the following statements hold.

(i) q〈r〉 ∈ ran Cκ.

(ii) The measure components μ and μ〈r〉 of C−1
κ (q) and C−1

κ (q〈r〉), respectively, are
related by

μ〈r〉 = 1
r Σr

∗μ,

where Σr
∗μ is the push-forward of μ under the map Σr : t �→ 1

r t, i.e. μ〈r〉(M) =
1
rμ(rM) for a measurable set M ⊆ R.

Proof. The statement in (i) is obvious from theorem 2.8. Write q = Cκ[μ, p] and
q〈r〉 = Cκ[μ〈r〉, p〈r〉]. Making a change of variable (t = rs) we obtain

q〈r〉(z) = q(rz) = p(rz) +
(
1 + (rz)2

)κ+1
∫

R

1
t− rz

· dμ(t)
(1 + t2)κ+1

= p(rz) +
(
1 + (rz)2

)κ+1 ·
∫

R

1
s− z

·
1
r d(Σr

∗μ)(s)
(1 + (rs)2)κ+1

.

Extend q〈r〉 to C
+ ∪ C

− by symmetry: q〈r〉(z) := q〈r〉(z), z ∈ C
−, and let Γδ

ε be
the path in (2.14). The Stieltjes inversion formula (2.17) and the Stieltjes–Livšic
inversion formula (2.15) yield that, for all α, β ∈ R with α < β, we have

μ〈r〉
(
(α, β)

)
= lim

δ↓0
lim
ε↓0

1
π

∫ β−δ

α+δ

Im q〈r〉(t+ iε) dt = lim
δ↓0

lim
ε↓0

−1
2πi

∫
Γδ

ε

q〈r〉(z) dz

= lim
δ↓0

lim
ε↓0

−1
2πi

∫
Γδ

ε

(
1 + (rz)2

)κ+1
[∫

R

1
s− z

·
1
r d(Σr

∗μ)(s)
(1 + (rs)2)κ+1

]
dz

=
∫

(α,β)

(
1 + (rs)2

)κ+1 ·
1
r d(Σr

∗μ)(s)
(1 + (rs)2)κ+1

= 1
r (Σr

∗μ)
(
(a, b)

)
. �

Proof of theorem 3.1. The implication (iii)⇒ (ii) is trivial.
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Next let us show the implication (ii)⇒ (i). For each s > 0 the limit

lim
r→∞

q(r · sz0)
f(r)

= lim
r→∞

(
q(rs · z0)
f(rs)

· f(rs)
f(r)

)
= lim

t→∞
q(tz0)
f(t)

· lim
r→∞

f(rs)
f(r)

exists and is non-zero. Hence (i) is satisfied with M = {sz0 : s ∈ (0, ∞)}.
Finally, we prove the implication (i)⇒ (iii). Let (rn)n∈N be an arbitrary sequence

of positive numbers with rn → ∞, and set

qn(z) :=
q(rnz)
f(rn)

, z ∈ C
+. (3.15)

It is easy to see that qn ∈ N�κ. Since q, as a function from N�κ, has only finitely
many poles in C

+, assumption (i) in proposition 2.11 is satisfied. By (3.2) also
assumption (ii) in proposition 2.11 is fulfilled. Hence, the latter proposition implies
that there exists q̊ ∈ N�κ ∩ Hol(C+) such that limn→∞ qn = q̊ locally uniformly
in C

+. Since the sequence (rn)n∈N was arbitrary, it follows again from (3.2) that

lim
r→∞

q(rz)
f(r)

= q̊(z)

locally uniformly for z ∈ C
+. Now lemma 3.6 implies that there exist α ∈ R and

ω ∈ C\{0} such that f is regularly varying with index α and that q̊ = Qα,ω.
Since N�κ is closed under locally uniform convergence, we have Qα,ω ∈ Nκ′ with
some κ′ � κ. By lemma 3.4 this shows that |α| � 2κ′ + 1 � 2κ+ 1 and that (3.4)
holds. �

Proof of theorem 3.2. Let (rn)n∈N be an arbitrary sequence of positive numbers
with rn → ∞, and define qn as in (3.15). It follows from lemma 3.7 that qn ∈ ran Cκ

and that the measure component μn of C−1
κ qn satisfies

μn

(
(a, b)

)
=

1
rnf(rn)

μ
(
(rna, rnb)

)
(3.16)

for all a, b ∈ R with a < b. Theorem 2.12 implies that Qα,ω ∈ ran Cκ = N (∞)
�κ ,

which, by lemma 3.4 (ii) shows that α � −1. Let μα,ω be the measure component of
C−1

κ Qα,ω. Further, let a, b ∈ R be such that a < b and μα,ω({a}) = μα,ω({b}) = 0.
It follows from theorem 2.12 that

lim
n→∞μn

(
(a, b)

)
= μα,ω

(
(a, b)

)
. (3.17)

Since the sequence (rn)n∈N was arbitrary, relations (3.16) and (3.17) imply (3.5).
We obtain from lemma 3.4 (iii) that

μα,ω

(±(0, 1)
)

=
1
π
· |ω|
α+ 1

cos
(απ

2
∓ argω

)
if α > −1 and μα,ω((−1, 1)) = ω if α = −1. This, combined with (3.5), yields
(3.6)–(3.8). �
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4. The Abelian direction

In this section we consider Abelian theorems, i.e. we study the asymptotic behaviour
of q at infinity using some knowledge about the asymptotic behaviour of the dis-
tribution functions t �→ μ([0, t)) and t �→ μ((−t, 0)). Some of the theorems contain
also a Tauberian direction, which complement the results in § 3. The main tool is
Karamata’s theorem about Stieltjes transforms of measures that are supported on
the half-axis [0, ∞). We follow the common lines to pass from unilateral to bilateral
theorems, e.g. [28, 30], and represent imaginary and real parts as Stieltjes trans-
forms. To this end we use the push-forward measure μ∗ of μ under the map t �→ t2,
which satisfies

μ∗((−∞, 0)) = 0 and μ∗([0, t2)) = μ((−t, t)), t > 0. (4.1)

We shall often use a substitution to change between μ and μ∗; let us note that,
for a non-negative, measurable function h on [0, ∞), we have

∫
[0,∞)

h(s) dμ∗(s) =∫
R
h(t2) dμ(t).
In order to apply Karamata’s theorem in an effective way, we need a finer

classification of the growth properties of the positive measure μ, namely, let us
set

p(μ) := inf
{
n ∈ N :

∫
R

dμ(t)
(1 + |t|)n

<∞
}

∈ N ∪ {∞}. (4.2)

In the Abelian theorems we often assume that the symmetrized distribution func-
tion t �→ μ((−t, t)) is regularly varying. The following lemma can be used to give
a different characterization of p(μ) and its relation to the index of the regularly
varying distribution function.

Lemma 4.1. Let μ be a measure on R. For γ > 0 we have∫
R

dμ(t)
(1 + |t|)γ

<∞ ⇔
∫ ∞

1

μ((−t, t))
tγ+1

dt <∞.

If t �→ μ((−t, t)) is regularly varying with index β, then p(μ) is finite and
β ∈ [p(μ) − 1, p(μ)].

Proof. Let the measure μ∗ be defined as in (4.1), let γ > 0 and define the measure ν
on [1, ∞) such that ν((t, ∞)) = t−

γ
2 . It follows from lemma A.3 that the following

equivalences hold:∫
R

dμ(t)
(1 + |t|)γ

<∞ ⇔
∫

[0,∞)

dμ∗(s)
(1 +

√
s)γ

<∞ ⇔
∫

[1,∞)

s−
γ
2 dμ∗(s) <∞

⇔
∫ ∞

1

s−
γ
2 −1μ∗([1, s)) ds <∞ (4.3)

⇔
∫ ∞

1

μ((−t, t))
tγ+1

dt <∞,

where in the last step we used the substitution s = t2.
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Now assume that t �→ μ((−t, t)) is regularly varying with index β. Then s �→
μ∗[1, s) is regularly varying with index β/2. It is clear that the integral in (4.3) is
finite if γ is large enough, which shows that p(μ) is finite. Further, the fact that the
integral in (4.3) is finite for γ = p(μ) and infinite for γ = p(μ) − 1 (unless μ itself is
finite) implies that β/2 −p(μ)/2 � 0 and β/2 −p(μ) − 1/2 � 0, which finishes the
proof; cf. proposition A.4. Note that, when μ is finite, then β = 0 and p(μ) = 1. �

For the Abelian theorems we treat real and imaginary parts of q(iy) separately
as they have different representations in terms of Stieltjes transforms. This is done
in the following two subsections.

4.1. The imaginary part

The imaginary part of q(iy) is relatively well behaved as it can be written in
terms of one Stieltjes transform. In order to apply Karamata’s theorem, we choose
κ minimal in (2.6) for a given measure μ. To this end, let us define

κ(μ) := inf
{
n ∈ N0 :

∫
R

dμ(t)
(1 + |t|)2n+2

<∞
}
<∞. (4.4)

Comparing (4.4) with (4.2) we can easily deduce that

κ(μ) =
⌊p(μ) − 1

2

⌋
. (4.5)

Throughout this section we suppose that the following assumption is satisfied.

Assumption 4.2. Let μ be a measure on R such that p(μ) <∞ and set κ := κ(μ).
Further, let p ∈ R[z] with p(z) = c2κ+1z

2κ+1 + . . .+ c0 such that (μ, p) ∈ E�κ, and
set q := Cκ[μ, p].

Note that, by definition 2.3 (i), we have c2κ+1 �
∫

R
(1 + t2)−(κ+1)dμ(t). The two

cases, equality and strict inequality, lead to different asymptotic behaviour of
Im q(iy) as y → ∞, as the next proposition shows. Naturally, the case when the
polynomial dominates the integral is the simpler one.

Proposition 4.3. Let μ, κ, p, and q be as in assumption 4.2.

(i) If c2κ+1 >
∫

R
(1 + t2)−(κ+1)dμ(t), then

q(iy) ∼ i(−1)κ

(
c2κ+1 −

∫
R

dμ(t)
(1 + t2)κ+1

)
y2κ+1, y → ∞.

(ii) If c2κ+1 =
∫

R
(1 + t2)−(κ+1)dμ(t), then

|q(iy)| 	 y2κ+1 and Im q(iy) ∼ (−1)κy2κ+1

∫
R

1
t2 + y2

· dμ(t)
(1 + t2)κ

,

(4.6)
as y → ∞.
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(iii) If μ is an infinite measure, then

(−1)κ Im q(iy) � y2κ−1, y → ∞. (4.7)

Proof. 1○ From (2.12) we obtain

q(iy) = p(iy) + iy(1 − y2)κ

∫
R

dμ(t)
(1 + t2)κ+1

+ (1 − y2)κ

∫
R

(
1

t− iy
− t

1 + t2

)
dμ(t)

(1 + t2)κ

= i(−1)κ

(
c2κ+1 −

∫
R

dμ(t)
(1 + t2)κ+1

)
y2κ+1 + c2κ(−1)κy2κ + O

(
y2κ−1

)
+ (−1)κ

(
y2κ + O

(
y2κ−2

)) ∫
R

(
1

t− iy
− t

1 + t2

)
dμ(t)

(1 + t2)κ
. (4.8)

Together with (2.4), this proves the assertion in (i), relation (4.7) when
c2κ+1 >

∫
R
(1 + t2)−(κ+1)dμ(t), and the first relation in (4.6) when c2κ+1 =∫

R
(1 + t2)−(κ+1)dμ(t).

2○ For the rest of the proof assume that c2κ+1 =
∫

R
(1 + t2)−(κ+1)dμ(t). If the

measure μ is finite, then κ = 0 and

Im q(iy) = Im
∫

R

1
t− iy

dμ(t) = y

∫
R

1
t2 + y2

dμ(t).

3○ Let us now consider the case when μ is infinite. We can use (4.8) to write the
imaginary part as

Im q(iy) = (−1)κ
(
y2κ + O

(
y2κ−2

))
Im

[∫
R

(
1

t− iy
− t

1 + t2

)
dμ(t)

(1 + t2)κ

]
+ O

(
y2κ−1

)
.

By the definition of κ we have
∫

R
(1 + t2)−κdμ(t) = ∞. Hence (2.5) implies that

Im
[∫

R

(
1

t− iy
− t

1 + t2

)
dμ(t)

(1 + t2)κ

]
� 1

y
,

from which the second relation in (4.6) follows.
�

In the following we assume that the leading asymptotics of q(iy) is not given by a
polynomial term but the measure μ. More precisely, we suppose that the following
assumption is satisfied.

Assumption 4.4. Let μ, κ, p, and q satisfy the conditions in assumption 4.2.
Further, assume that

c2κ+1 =
∫

R

dμ(t)
(1 + t2)κ+1

. (4.9)
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Remark 4.5. Suppose that assumption 4.2 holds and that κ = κ(μ) = 0, with κ
defined in (4.4). According to (2.11) we can write

q(z) = C0[μ, p] =
(
c1 −

∫
R

dμ(t)
1 + t2

)
z + c0 +

∫
R

(
1

t− z
− t

1 + t2

)
dμ(t). (4.10)

Assumption 4.4 is equivalent to the coefficient of z in (4.10) vanishing. Hence with
assumption 4.4 being satisfied we have

q(z) = c0 +
∫

R

(
1

t− z
− t

1 + t2

)
dμ(t) = c0 + C̃[μ](z), (4.11)

where C̃[μ] is defined in (1.5).

The next lemma shows that the imaginary part of q(iy) can be written—at least
asymptotically—in terms of a Stieltjes transform. For the definition of the Stieltjes
transform see (A.7).

Lemma 4.6. Let p, κ, p and q satisfy the conditions in assumptions 4.2 and 4.4.
Further, let μ∗ be the push-forward measure of μ as in (4.1) and define the measure
τκ on [0, ∞) by

dτκ(s) =
dμ∗(s)
(1 + s)κ

, s ∈ [0,∞). (4.12)

Then the Stieltjes transform S[τκ] is well defined and

Im q(iy) ∼ (−1)κy2κ+1S[τκ](y2), y → ∞. (4.13)

Proof. Since∫
[0,∞)

dτκ(s)
1 + s

=
∫

[0,∞)

dμ∗(s)
(1 + s)κ+1

=
∫

R

dμ(t)
(1 + t2)κ+1

<∞,

the Stieltjes transform S[τκ] is well defined. It follows from proposition 4.3 (ii) that

Im q(iy) ∼ (−1)κy2κ+1

∫
R

1
t2 + y2

· dμ(t)
(1 + t2)κ

= (−1)κy2κ+1

∫
[0,∞)

1
s+ y2

· dμ∗(s)
(1 + s)κ

= (−1)κy2κ+1

∫
[0,∞)

1
s+ y2

dτκ(s) = (−1)κy2κ+1S[τκ](y2),

which proves (4.13). �

In the following theorem we prove that the imaginary part of q(iy) is related to
the symmetrised distribution function μ((−t, t)) of the measure μ. In most cases
| Im q(iy)| is regularly varying if and only if t �→ μ((−t, t)) is regularly varying.
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Theorem 4.7. Let μ, κ, p, and q satisfy the conditions in assumptions 4.2 and 4.4.
Further, let β � 0 and consider the following two statements:

(a) the symmetrized distribution function t �→ μ((−t, t)) is regularly varying with
index β;

(b) the function y �→ (−1)κ Im q(iy) is regularly varying with index β − 1.

Then we have the following relations.

(i) The implication (a)⇒ (b) holds.

(ii) Unless κ > 0 and β = 2κ, also (b)⇒ (a) holds.

(iii) Assume that (a) and (b) are satisfied. Then β ∈ [2κ, 2κ+ 2] and

Im q(iy) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

πβ
2

sin πβ
2

· μ((−y, y))
y

, β ∈ [0,∞)\{2, 4, . . .},

(−1)κβyβ−1

∫ y

1

μ((−t, t))
tβ+1

dt, β = 2κ ∧ κ > 0,

(−1)κβyβ−1

∫ ∞

y

μ((−t, t))
tβ+1

dt, β = 2κ+ 2,

(4.14)

as y → ∞, where the first fraction in the first case on the right-hand side is
understood as 1 when β = 0. In particular, if β ∈ 2N, then

(−1)κ Im q(iy) � μ((−y, y))
y

. (4.15)

Remark 4.8. In the situation of theorem 4.7 assume that (a) is satisfied and that
β ∈ 2N. It follows from the definition of κ in (4.4) and from lemma 4.1 that

β = 2κ ⇔
∫

R

dμ(t)
(1 + |t|)β

= ∞ ⇔
∫ ∞

1

μ((−t, t))
tβ+1

dt = ∞,

β = 2κ+ 2 ⇔
∫

R

dμ(t)
(1 + |t|)β

<∞ ⇔
∫ ∞

1

μ((−t, t))
tβ+1

dt <∞.

Proof of theorem 4.7. Let μ∗ be the push-forward measure of μ as in (4.1) and
define τκ as in (4.12). Then (4.13) holds. We prove the theorem in several steps.

1○ Let us first consider the case when κ = 0. Then τ0 = μ∗ and, by theorem A.7,
we have the following equivalences:

(a) ⇔ s �→ μ∗([0, s)) is regularly varying with index β
2

⇔ S[μ∗] is regularly varying with index β
2 − 1

⇔ (b).
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Assume now that (a) and (b) hold. Another application of theorem A.7 implies
that β

2 ∈ [0, 1]. When β ∈ [0, 2), remark A.8 yields

Im q(iy) = yS[μ∗](y2) ∼ y
πβ
2

sin πβ
2

· μ∗([0, y2))
y2

∼
πβ
2

sin πβ
2

· μ((−y, y))
y

.

When β = 2, we obtain from theorem A.7 and the substitution s = t2 that

Im q(iy) = yS[μ∗](y2) ∼ y

∫ ∞

y2

μ∗([0, s))
s2

ds = 2y
∫ ∞

y

μ((−t, t))
t3

dt,

which proves (4.14) when κ = 0.
2○ Now let us consider the case when κ > 0. Set h(s) := 1

(1+s)κ ∼ s−κ, s→ ∞. By
the definition of κ we have∫

[0,∞)

h(s) dμ∗(s) =
∫

[0,∞)

dμ∗(s)
(1 + s)κ

=
∫

R

dμ(t)
(1 + t2)κ

= ∞,

∫
[0,∞)

h(s)
1 + s

dμ∗(s) =
∫

[0,∞)

dμ∗(s)
(1 + s)κ+1

=
∫

R

dμ(t)
(1 + t2)κ+1

<∞,

which shows that (A.20) with ν = μ∗ is satisfied.
3○ Assume that κ > 0 and (a) holds. Then s �→ μ∗([0, s)) is regularly varying with

index β
2 . By proposition A.11 (i) with α = β

2 and γ = −κ we have α+ γ =
β
2 − κ ∈ [0, 1] and hence β > 0. Therefore we can apply proposition A.11 (i)
again to obtain that y �→ y2κ+1S[τκ](y2) is regularly varying with index 2κ+

1 + 2
(

β
2 − κ− 1

)
= β − 1, i.e. (b) holds.

If β /∈ 2N, then α+ γ = β
2 − κ ∈ (0, 1) and (A.22) implies that

Im q(iy) ∼ (−1)κy2κ+1S[τκ](y2)

∼ (−1)κy2κ+1 π β
2

sin
(
π
(

β
2 − κ

)) · (y2
)−κ+1

μ∗([0, y))

=
πβ
2

sin πβ
2

· μ((−y, y))
y

.

Now assume that β ∈ 2N. The relation β
2 − κ ∈ [0, 1] implies that either κ = β

2

or κ = β
2 − 1. Let us consider the former case; the other case is similar. It follows

again from (A.22) that, with the substitution s = t2,

Im q(iy) ∼ (−1)κy2κ+1S[τκ](y2)

∼ (−1)κy2κ+1 · β
2
· 1
y2

∫ y2

1

s−κ−1μ∗([0, s)) ds

= (−1)κβy2κ−1

∫ y

1

μ∗([0, t2))
t2κ+1

dt = (−1)κβyβ−1

∫ y

1

μ((−t, t))
tβ+1

dt,

which proves (4.14) also in the case κ > 0.
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4○ Now assume that κ > 0, β �= 2κ and (b) holds. It follows from (4.13) that S[τκ]
is regularly varying. Since α+ γ = β

2 − κ > 0, we can use proposition A.11 (ii)
to deduce that s �→ μ∗([0, s)) is regularly varying, which implies that (a) holds.

5○ Finally, assume that β ∈ 2N. Relation (4.15) follows from (4.14) and
theorem A.2.

�

The following example shows that the implication (b)⇒ (a) is, in general, not
valid when β = 2κ > 0.

Example 4.9. Let κ ∈ N and set h(s) = 1
(1+s)κ , s ∈ [0, ∞). Choose the measures

σ and ν as in example A.12, and let μ be the symmetric measure on R such that
μ∗ = ν, i.e. μ is the discrete measure with point masses

μ({en/2}) = μ({−en/2}) = ν({en}) = (1 + en)κ, n ∈ N.

According to example A.12 the distribution function t �→ μ((−t, t)) = ν([0, t2)) is
not regularly varying, which means that (a) does not hold. On the other hand,
t �→ τκ([0, t)) = σ([0, t)) is slowly varying, again by example A.12. It follows from
theorem A.7 that S[τκ] is regularly varying with index −1, and hence (b) holds
with β = 2κ; see (4.13). Note that we have

Im q(iy) ∼ 2(−1)κy2κ−1 log y, y → ∞,

by (A.27).
Since μ is symmetric, we have Re q(iy) = 0 for y > 0. Hence (3.3) is satisfied

with z0 = i and f(r) = r2κ−1 log r. Theorem 3.2 implies that also (3.6) and (3.7)
are satisfied. However, since ω = 2(−1)κ ∈ R and α = 2κ− 1 is odd, the right-hand
sides of (3.6) and (3.7) vanish. This shows that, in some cases, one cannot use
theorem 3.2 to deduce from the validity of (i)–(iii) in theorem 3.1 that t �→ μ((−t, t))
is regularly varying.

Example 4.10. Let a, b � 0 with a �= b, and consider the function

q(z) = a log z − b log(−z),
which belongs to the Nevanlinna class N0. Since q(ri) = (a− b) log r + i(a+ b)π

2 ,
conditions (i)–(iii) in theorem 3.1 are satisfied with f(r) = log r, α = 0 and ω =
i(b− a). Let μ be the measure in the representation q = C0[μ, p]. Theorem 3.2 only
yields that

lim
r→∞

μ((0, r))
r log r

= 0, lim
r→∞

μ((−r, 0))
r log r

= 0.

On the other hand, since Im q(ri) = (a+ b)π
2 , we can apply theorem 4.7 to obtain

that r �→ μ((−r, r)) is regularly varying and that

μ((−r, r)) ∼ 2
π
r Im q(ir) = (a+ b)r.

Note that, actually, μ((0, r)) = br and μ((−r, 0)) = ar.
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The next proposition shows that, in the case κ = 0, the validity of the first
asymptotic relation in (4.14) implies already (a) and (b) in theorem 4.7.

Proposition 4.11. Let μ be a measure on R such that
∫

R
(1 + t2)−1dμ(t) <∞, let

c0 ∈ R and set q := c0 + C̃[μ]. Assume that the limit

lim
y→∞

(
Imq(iy)

/
μ((−y, y))

y

)
exists and is positive. Then (a) and (b) in theorem 4.7 are satisfied.

Proof. Let μ∗ be as in (4.1). By (4.13), the following limit

lim
t→∞

μ∗([0, t))
tS[μ∗](t)

= lim
y→∞

μ∗([0, y2))
y2S[μ∗](y2)

= lim
y→∞

μ((−y, y))
y Im q(iy)

exists and is positive. Hence [32, Theorem B] implies that t �→ μ∗([0, t)) is regularly
varying, and hence (a) and (b) hold. �

4.2. The real part

The real part of q(iy) is more subtle since it can be written only in terms of a
difference of two Stieltjes transforms and cancellations can arise. We introduce the
following notation for the main part of Re q(iy). Let μ be a measure on R such that
there exists � ∈ N0 with ∫

R

dμ(t)
(1 + |t|)2�+1

<∞, (4.16)

and define

RC�[μ](y) := (1 − y2)�

∫
R

t

t2 + y2
· dμ(t)
(1 + t2)�

, y > 0. (4.17)

Lemma 4.12. Let μ, κ, p, and q be as in assumption 4.2, and let p(μ) and RC� be
as in (4.2) and (4.17) respectively.

(i) If p(μ) is odd, then there exists a real, even polynomial p̃ of degree at most
2κ− 2 such that

Re q(iy) = (−1)κ

(
c2κ −

∫
R

t

(1 + t2)κ+1
dμ(t)

)
y2κ + RCκ[μ](y) + p̃(y).

(4.18)

(ii) If p(μ) is even, then there exists a real, even polynomial p̃ of degree at most
2κ such that

Re q(iy) = RCκ+1[μ](y) + p̃(y) (4.19)

with p̃(y) = (−1)κc2κy
2κ + O(y2κ−2).
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Proof. (i) When p(μ) is odd, then
∫

R
(1 + |t|)−(2κ+1)dμ(t) <∞. Hence from (2.13)

we obtain

Re q(iy) = Re(p(iy)) − (1 − y2)κ

∫
R

t

(1 + t2)κ+1
dμ(t)

+ (1 − y2)κ

∫
R

t

t2 + y2
· dμ(t)
(1 + t2)κ

,

which yields (4.18).

(ii) When p(μ) is even, then we use (2.8) to write

Re q(iy) = Re(p(iy)) + (1 − y2)κ+1

∫
R

t

t2 + y2
· dμ(t)
(1 + t2)κ+1

,

which gives (4.19). �

Assumption 4.13. Let μ, κ, p, and q be as in assumption 4.2. Assume that, if p(μ)
is odd, then

c2κ =
∫

R

t

(1 + t2)κ+1
dμ(t).

Remark 4.14. Assume that p(μ) = 1 and that assumptions 4.2 and 4.4 are sat-
isfied. We then have κ = κ(μ) = 0 and, by remark 4.5, we can write q as in
(4.11), i.e. q(z) = c0 + C̃[μ](z). If, in addition, assumption 4.13 is satisfied, then
c0 =

∫
R

t
1+t2 dμ(t) and hence q is the Cauchy transform of μ, i.e.

q(z) =
∫

R

1
t− z

dμ(t) = C[μ](z),

where C[μ] is defined in (1.1).

To investigate the behaviour of the real part, we often choose � minimal so that
(4.17) makes sense, i.e. let us set

�(μ) := inf
{
n ∈ N0 :

∫
R

dμ(t)
(1 + |t|)2n+1

<∞
}
. (4.20)

It follows easily that �(μ) =
⌊p(μ)

2

⌋
, where p(μ) is as in (4.2).

Remark 4.15. Let μ be a measure on R and define p(μ), κ(μ) and �(μ) as in (4.2),
(4.4) and (4.20) respectively. If p(μ) is odd, then κ(μ) = �(μ) = p(μ)−1

2 . If p(μ) is
even, then κ(μ) + 1 = �(μ) = p(μ)

2 . In both cases we have κ(μ) + �(μ) = p(μ) − 1.

Lemma 4.16. Let μ, κ, p, and q be as in assumption 4.2 and � = �(μ). Then there
exists a real, even polynomial p̃ of degree at most 2�− 2 such that

Re q(iy) = RC�[μ](y) + p̃(y).
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Proof. If p(μ) is odd, then �(μ) = κ(μ) and the statement follows from
lemma 4.12 (i). If p(μ) is even, then �(μ) = κ(μ) + 1 and we can apply
lemma 4.12 (ii). �

Definition 4.17. Let μ be a measure on R, let μ∗ be the push-forward measure
as in (4.1), and let � ∈ N0 be such that (4.16) is satisfied, i.e. � � �(μ). Define the
measure σ� on [0, ∞) by

dσ�(s) =
√
s

(1 + s)�
dμ∗(s), s ∈ [0,∞), (4.21)

and set

F�[μ](y) := (1 − y2)�S[σ�](y2), y > 0,

where S is the Stieltjes transform defined in (A.7).

Lemma 4.18. Let μ be a measure on R and define the measures μ+ and μ− on R

by

dμ+(t) := 1[0,∞)(t) dμ(t), dμ−(t) := 1(−∞,0)(t) dμ(t), t ∈ R. (4.22)

Let � ∈ N0 such that (4.16) holds and let F� be as in definition 4.17. Then

RC�[μ](y) = F�[μ+](y) −F�[μ−](y), (4.23)∣∣RC�[μ](y)
∣∣ � ∣∣F�[μ](y)

∣∣ (4.24)

for y > 0.

Proof. Let μ∗ and μ±
∗ be the push-forward measures of μ and μ± respectively as in

(4.1), and let σ�, σ±
� be as in (4.21).

The definition of � in (4.20) implies that∫
[0,∞)

dσ±
� (s)

1 + s
=

∫
[0,∞)

√
s

(1 + s)�+1
dμ±

∗ (s) =
∫

R

|t|
(1 + t2)�+1

dμ±(t) <∞,

and hence S[σ+
� ] and S[σ−

� ] are well defined. Moreover,

RC�[μ](y) = (1 − y2)�

[∫
R

1
t2 + y2

· |t|
(1 + t2)�

dμ+(t)

−
∫

R

1
t2 + y2

· |t|
(1 + t2)�

dμ−(t)
]

= (1 − y2)�

[∫
[0,∞)

1
s+ y2

·
√
s

(1 + s)�
dμ+

∗ (s)

−
∫

[0,∞)

1
s+ y2

·
√
s

(1 + s)�
dμ−

∗ (s)
]

= (1 − y2)�
[
S[σ+

� ](y2) − S[σ−
� ](y2)

]
,
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which yields (4.23). In a similar way as above one shows that S[σ�] is well defined.
Further, we have∣∣RC�[μ](y)

∣∣ � ∣∣(1 − y2)�
∣∣ ∫

R

1
t2 + y2

· |t|
(1 + t2)�

dμ(t)

=
∣∣(1 − y2)�

∣∣ ∫
[0,∞)

1
s+ y2

·
√
s

(1 + s)�
dμ∗(s) =

∣∣S[σ�](y2)
∣∣,

which proves (4.24). �

In the following key proposition the asymptotic behaviour of F�[μ] is determined.
It is used in proposition 4.22 and in the Abelian implications in theorems 5.1 and 5.5.

Proposition 4.19. Let μ be a measure on R, set � := �(μ) and define F�[μ] as in
definition 4.17. Further, assume that t �→ μ((−t, t)) is regularly varying with index
β. Then β ∈ [2�− 1, 2�+ 1]. Moreover, if β = 0, then

F�[μ](y) 	 μ((−y, y))
y

, y → ∞. (4.25)

If β > 0, then (−1)�F�[μ] is regularly varying with index β − 1 and satisfies

F�[μ](y) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

πβ
2

cos πβ
2

· μ((−y, y))
y

, β /∈ 2N − 1,

(−1)�βyβ−1

∫ y

1

μ((−t, t))
tβ+1

dt, β = 2�− 1,

(−1)�βyβ−1

∫ ∞

y

μ((−t, t))
tβ+1

dt, β = 2�+ 1,

(4.26)

and

y2�−2 	 ∣∣F�[μ](y)
∣∣ 	 y2� (4.27)

as y → ∞. In particular, if β ∈ 2N − 1, then∣∣F�[μ](y)
∣∣ � μ((−y, y))

y
. (4.28)

Remark 4.20.

(i) In the situation of proposition 4.19 assume that β ∈ 2N − 1 and that t �→
μ((−t, t)) is regularly varying with index β. It follows from the definition of
�(μ) in (4.20) and from lemma 4.1 that, with � = �(μ),

β = 2�− 1 ⇔
∫

R

dμ(t)
(1 + |t|)β

= ∞ ⇔
∫ ∞

1

μ((−t, t))
tβ+1

dt = ∞,

β = 2�+ 1 ⇔
∫

R

dμ(t)
(1 + |t|)β

<∞ ⇔
∫ ∞

1

μ((−t, t))
tβ+1

dt <∞.
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(ii) Instead of the assumption � = �(μ) in the proposition, let us consider the case
when � > �(μ). Then

σ�([0,∞)) =
∫

[0,∞)

√
s

(1 + s)�
ds =

∫
R

|t|
(1 + t2)�

dμ(t) <∞,

and, by remark A.6, we have

F�[μ](y) ∼ (−1)�y2S[σ�](y2) ∼ (−1)�σ�([0,∞))y2�−2

as y → ∞.

Proof of theorem 4.19. Let μ∗ be the push-forward measure of μ as (4.1), and let
σ� be as in (4.21). Then s �→ μ∗([0, s)) = μ((−√

s,
√
s)) is regularly varying with

index β
2 . Set h(s) :=

√
s

(1+s)� ∼ s
1
2−� as s→ ∞. Then∫

[0,∞)

h(s) dμ∗(s) =
∫

R

|t|
(1 + t2)�

dμ(t). (4.29)

Let us first consider the case when the integrals in (4.29) are finite. Then � = 0
by the definition of �, and σ0 and μ are finite measures, which implies that β = 0.
From remark A.6 we obtain that

F0[μ](y) = S[σ0](y2) ∼ σ0([0,∞))
y2

	 μ(R)
y

∼ μ((−y, y))
y

,

which proves (4.25) in this case.
For the rest of the proof assume that the integrals in (4.29) are infinite. The

definition of � also implies that∫
[0,∞)

h(s)
1 + s

dμ∗(s) =
∫

R

|t|
(1 + t2)�+1

dμ(t) <∞,

which shows that (A.20) with ν = μ∗ is satisfied. Hence we can apply
proposition A.11 with α = β

2 and γ = 1
2 − �, which yields α+ γ = β

2 + 1
2 − � ∈

[0, 1], i.e. β ∈ [2�− 1, 2�+ 1]. Proposition A.11 also implies that, if β > 0,
then (−1)�F�[μ](y) ∼ y2�S[μ�](y2) is regularly varying with index 2�+ 2

(
β
2 + 1

2 −
�− 1

)
= β − 1.

Let us first consider the case when β /∈ 2N − 1 and β > 0. Then α+ γ = β
2 + 1

2 −
� ∈ (0, 1), and from proposition A.11 we obtain

F�[μ](y) ∼ (−1)�y2�S[σ�](y2) ∼ (−1)�y2� π β
2

sin
(
π
(

β
2 + 1

2 − �
))(y2

)− 1
2−�

μ∗([0, y2))

=
πβ
2

sin
(

πβ
2 + π

2

) · μ((−y, y))
y

=
πβ
2

cos πβ
2

· μ((−y, y))
y

as y → ∞.
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Next assume that β = 2�− 1. Then α+ γ = β
2 + 1

2 − � = 0, and proposition A.11
and the substitution s = t2 yield

F�[μ](y) ∼ (−1)�y2�S[σ�](y2) ∼ (−1)�y2�β

2
· 1
y2

∫ y2

1

s−
1
2−�μ∗([0, s)) ds

= (−1)� β

2
y2�−2

∫ y

1

t−1−2�μ∗([0, t2)) 2t dt = (−1)�βy2�−2

∫ y

1

μ((−t, t))
t2�

dt,

which shows (4.26) in this case.
The proofs of (4.25) when β = 0 and the integrals in (4.29) are infinite and of

(4.26) in the remaining case β = 2�+ 1 are similar.
We can use (A.21) to obtain

∣∣F�[μ](y)
∣∣ ∼ y2�S[σ�](y2) and

1
y2

	 S[σ�](y2) 	 1,

which yields (4.27).
Finally, the relation in (4.28) follows easily from (4.26) and theorem A.2. �

We also need the following comparison result.

Lemma 4.21. Let μ1 and μ2 be measures on R and set � := �(μ2). Further, assume
that t �→ μ2((−t, t)) is regularly varying with index β > 0 and that the limit

lim
t→∞

μ1((−t, t))
μ2((−t, t))

exists in [0, ∞). Then F�[μ1] is well defined, i.e. � � �(μ1), and

lim
y→∞

F�[μ1](y)
F�[μ2](y)

= lim
t→∞

μ1((−t, t))
μ2((−t, t)) .

Proof. Since β > 0, it follows as in the proof of proposition 4.19 that (A.28) with
ν2 = (μ2)∗ and h(s) =

√
s

(1+s)� is satisfied. Now the claim follows from lemma A.13.
�

When t �→ μ((−t, t)) is regularly varying with an index that is not an odd inte-
ger, the real part of q(iy) is dominated by the imaginary part, as the following
proposition shows.

Proposition 4.22. Suppose that μ, p and q satisfy assumptions 4.2, 4.4 and 4.13.
Further, assume that t �→ μ((−t, t)) is regularly varying with index β such that
β /∈ 2N − 1. Then

lim sup
y→∞

∣∣∣∣Re q(iy)
Im q(iy)

∣∣∣∣ � ∣∣∣ tan
πβ

2

∣∣∣. (4.30)
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Proof. Set � := �(μ). It follows from lemmas 4.16 and 4.18 that∣∣∣∣Re q(iy)
Im q(iy)

∣∣∣∣ =
∣∣∣∣RC�[μ](y) + p̃(y)

Im q(iy)

∣∣∣∣ � |F�[μ](y)|
| Im q(iy)| + O

(
y2�−2

| Im q(iy)|
)
. (4.31)

Theorem 4.7 implies that y �→ | Im q(iy)| is regularly varying with index β − 1.
Further, we obtain from proposition 4.19 that β ∈ [2�− 1, 2�+ 1]. Since, by
assumption, β /∈ 2N − 1, we have β − 1 > 2�− 2 and hence | Im q(iy)| � y2�−2, i.e.
the O-term on the right-hand side of (4.31) converges to 0 as y → ∞.

From proposition 4.19 and theorem 4.7 we obtain

|F�[μ](y)|

⎧⎪⎪⎪⎨⎪⎪⎪⎩
	 μ((−y, y))

y
, β = 0,

∼
πβ
2

| cos πβ
2 | ·

μ((−y, y))
y

, β ∈ (0,∞)\(2N − 1),

| Im q(iy)|

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∼

πβ
2

| sin πβ
2 | ·

μ((−y, y))
y

, β ∈ [0,∞)\2N,

� μ((−y, y))
y

, β ∈ 2N,

which yields

lim
y→∞

|F�[μ](y)|
| Im q(iy)| =

∣∣∣ tan
πβ

2

∣∣∣
and hence (4.30). �

5. Abelian–Tauberian theorems

In the following theorem, one of the main results of this paper, we combine the
Tauberian and the Abelian theorems from the previous sections. In most cases we
can give a full characterization when the asymptotic behaviour of the regularized
Cauchy transform is described by a regularly varying function. Thereby, we assume
that the behaviour of q = Cκ[μ, p] is not governed by the polynomial summand.

5.1. The generic situation

Recall the notation p(μ) from (4.2) and κ(μ) from (4.4).

Theorem 5.1. Let μ be a measure on R such that p(μ) <∞ and set κ := κ(μ).
Further, let p ∈ R[z] with p(z) = c2κ+1z

2κ+1 + . . .+ c0 such that (μ, p) ∈ E�κ, and
assume that

c2κ+1 =
∫

R

dμ(t)
(1 + t2)κ+1

.

and, if p(μ) is odd, that

c2κ =
∫

R

t

(1 + t2)κ+1
dμ(t).

Set q := Cκ[μ, p].
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Let β ∈ [0, ∞) and consider the following statements:

(a) the symmetrized distribution function t �→ μ((−t, t)) is regularly varying with
index β;

(a)′ the limit

ζ := lim
t→∞

μ((−t, 0))
μ([0, t))

(5.1)

exists in [0, ∞];

(b) there exist a regularly varying function f : [x0, ∞) → (0, ∞) with x0 > 0 and
a constant ω ∈ C\{0} such that

lim
r→∞

q(rz)
f(r)

= iω
(z
i

)β−1

(5.2)

holds locally uniformly for z ∈ C
+.

Then the following relations hold.

(i) If β /∈ N0, then

(a) ∧ (a)′ ⇔ (b).

(ii) Assume that β ∈ 2N0. Then

(a) ⇒ (b).

If β = 0 or
∫

R
(1 + |t|)−βdμ(t) <∞, then

(b) ⇒ (a).

(iii) If β ∈ 2N − 1, then

(a) ∧ (a)′ ∧ ζ �= 1 ⇒ (b).

Further, assume that either (a) and (b) hold and β ∈ 2N0, or that (a), (a)′ and (b)
hold and β /∈ N0, or that (a), (a)′ with ζ �= 1 and (b) hold and β ∈ 2N − 1; then ω
and f can be chosen as

ω = (−1)p(μ)−1

(
cos

πβ

2
+ i

ζ − 1
ζ + 1

· sin πβ
2

)
, (5.3)

where ζ−1
ζ+1 is understood as 1 when ζ = ∞, where p(μ) is defined in (4.2), and

f(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

πβ

| sin(πβ)| ·
μ((−r, r))

r
, β ∈ [0,∞)\N,

βrβ−1

∫ r

1

μ((−t, t))
tβ+1

dt, β ∈ N ∧
∫

R

dμ(t)
(1 + |t|)β

= ∞,

βrβ−1

∫ ∞

r

μ((−t, t))
tβ+1

dt, β ∈ N ∧
∫

R

dμ(t)
(1 + |t|)β

<∞;

(5.4)

here πβ
| sin(πβ)| is understood as 1 when β = 0.
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Before we prove the theorem, let us add a couple of comments.

Remark 5.2.

(i) Note that, in the case β ∈ N, one has f(r) � μ((−r, r))
r by theorem A.2.

(ii) When β ∈ 2N0, then ω ∈ R and hence | Im q(iy)| � |Re q(iy)|. When
β ∈ 2N − 1 in the theorem, then ω ∈ iR and hence |Re q(iy)| � | Im q(iy)|.

(iii) It follows from the proof of theorem 5.1 (see (5.12)) that, if β ∈ 2N − 1 and (a)
and (a)′ are satisfied with ζ = 1, then |q(iy)| 	 f(y) with f as in (5.4). A more
detailed discussion of some cases in this situation are contained in theorem 5.5
below.

(iv) In the case when β /∈ N0, condition (a) is not sufficient to guarantee (b)
since one can easily construct measures μ that satisfy (a) but not (a)′, e.g.
by distributing the mass in an alternating way on the positive and negative
half-axes.

(v) In example 5.3 below we show that the converse implication in theorem 5.1 (iii)
does not hold. However, see theorem 5.5 (ii) below for a Tauberian implication
in the case when ω /∈ iR.

(vi) Example 5.4 below deals with the situation when β = 1 and ζ = 1, where
theorem 5.1 is not applicable. This example shows that, in general, the
asymptotic behaviour of q(iy) is not determined by the leading asymptotic
behaviour of μ([0, t)) and μ((−t, 0)). However, in this example statement (b)
in theorem 5.1 still holds. We do not know whether there exist a measure μ
and a function q such that β ∈ 2N − 1 and (a) and (a)′ hold with ζ = 1 but
(b) does not hold.

Proof of theorem 5.1. Let κ = κ(μ) and � = �(μ).

1○ It follows from theorem 3.1 that (b) is equivalent to
(c) there exist a regularly varying function f : [x0, ∞) → (0, ∞) with x0 > 0

and a constant ω ∈ C\{0} such that

lim
y→∞

q(iy)
f(y)

= iω. (5.5)

2○ Let us first consider the case when β ∈ 2N0. It follows from theorem 4.22 that
|Re q(iy)| 	 | Im q(iy)| and hence, (5.5) is equivalent to

lim
y→∞

Im q(iy)
f(y)

= ω.

From theorem 4.7 and remark 4.8 we therefore obtain the implications in (ii).
Assume now that (a) and (b) hold. It follows from theorem 4.19 that β ∈
[2�− 1, 2�+ 1] and hence � = β

2 . With f as in (5.4) we obtain from (4.14) and
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theorem 4.8 that

lim
y→∞

Im q(iy)
f(y)

= (−1)κ. (5.6)

On the other hand, by remark 4.15, ω from (5.3) equals ω = (−1)p(μ)−1

cos πβ
2 = (−1)κ+�(−1)� = (−1)κ, which coincides with the limit in (5.6).

3○ Next we assume that β /∈ N0 and (b) holds. It follows from theorem 3.1 that the
index of the regularly varying function f is α := β − 1, and hence r �→ rf(r) is
regularly varying with index β. Now theorem 3.2 implies that (3.6) and (3.7)
hold. Since α /∈ N0, at least one of the right-hand sides of (3.6), (3.7) is non-
zero. Taking the quotient of (3.7) and (3.6) we obtain that the limit in (5.1)
exists; further, t �→ μ((−t, t)) is regularly varying with index β, i.e. (a) and
(a)′ hold.

4○ For the rest of the proof we assume that β /∈ 2N0, that (a) and (a)′ hold, and if
β ∈ 2N − 1, then also ζ �= 1. Let μ+ and μ− be as in (4.22) and f as in (5.4).
From (4.16) and (4.18) we obtain that

1
i
· q(iy)
f(y)

=
F�[μ](y)
f(y)

· Im q(iy) − iRe q(iy)
F�[μ](y)

=
F�[μ](y)
f(y)

[
Im q(iy)
F�[μ](y)

− i

(F�[μ+](y)
F�[μ](y)

− F�[μ+](y)
F�[μ](y)

+
p̃(y)

F�[μ](y)

)]
,

(5.7)

where p̃ is a real, even polynomial of degree at most 2�− 2. In the next couple
of steps we evaluate the limits of parts of this expression.

5○ First we show that

lim
y→∞

F�[μ](y)
f(y)

= (−1)p(μ)−1 sin
πβ

2
. (5.8)

We start with the case when β /∈ 2N − 1. It follows from lemma 4.1 that
β ∈ (p(μ) − 1, p(μ)) and hence sgn(sin(πβ)) = (−1)p(μ)−1. Further, we obtain
from proposition 4.19 and (5.4) that

lim
y→∞

F�[μ](y)
f(y)

=
| sin(πβ)|
2 cos πβ

2

=
(−1)p(μ)−1 sin(πβ)

2 cos πβ
2

= (−1)p(μ)−1 sin
πβ

2
.

Now assume that β ∈ 2N − 1. Then limy→∞
F�[μ](y)

f(y) = (−1)�. On the other
hand, by theorem 4.7 we have β ∈ [2κ, 2κ+ 2] and hence β = 2κ+ 1, which,
by remark 4.15, implies that

(−1)p(μ)−1 sin
πβ

2
= (−1)κ+� sin

(
πκ+

π

2

)
= (−1)κ+� cos(πκ) = (−1)�,

which proves (5.8) also in this case.
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6○ Next we show that

lim
y→∞

Im q(iy)
F�[μ](y)

= cot
πβ

2
. (5.9)

When β /∈ 2N − 1, we can use theorem 4.7 and proposition 4.19 to obtain (5.9).
When β ∈ 2N − 1, theorem 4.7 and (4.28) imply that limy→∞

Im q(iy)
F�[μ](y) = 0, and

again (5.9) holds.
7○ Let us consider the expressions within the round brackets on the right-hand

side of (5.7). Assume first that μ+ is not the zero measure. The relation
μ = μ+ + μ− implies that

μ((−t, t))
μ+((−t, t)) = 1 +

μ−((−t, t))
μ+((−t, t)) = 1 +

μ((−t, 0))
μ([0, t))

→ 1 + ζ, t→ ∞,

and hence

lim
t→∞

μ+((−t, t))
μ((−t, t)) =

1
1 + ζ

, lim
t→∞

μ−((−t, t))
μ((−t, t)) =

ζ

1 + ζ
.

If μ+ is the zero measure, then these relations also hold with ζ = ∞. Together
with lemma 4.21 this yields

lim
y→∞

F�[μ+](y)
F�[μ](y)

=
1

1 + ζ
, lim

y→∞
F�[μ−](y)
F�[μ](y)

=
ζ

1 + ζ
. (5.10)

Further, (4.27) implies that

lim
y→∞

p̃(y)
F�[μ](y)

= 0. (5.11)

8○ Combining (5.7), (5.8), (5.9), (5.10) and (5.11) we arrive at

1
i

lim
y→∞

q(iy)
f(y)

= (−1)p(μ)−1 sin
πβ

2

(
cot

πβ

2
− i

1 − ζ

1 + ζ

)
, (5.12)

which is equal to the expression on the right-hand side of (5.3); this proves
(5.5). Since, by assumption, either β /∈ 2N − 1 or ζ �= 1, we have ω �= 0. It
follows from (5.8) that

f(y) ∼ ∣∣ sin πβ
2

∣∣ · ∣∣F�[μ](y)
∣∣.

By proposition 4.19 the right-hand side, and hence also f , is regularly varying.
This shows that (c) is satisfied, which, in turn, implies (b).

�

The following example shows that the converse of the implication in
theorem 5.1 (iii) does not hold.
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Example 5.3. Let � ∈ N. With h(s) =
√

s
(1+s)� , s ∈ [0, ∞), choose σ and ν as in

example A.12. Moreover, let μ be the measure on R such that μ((−∞, 0)) = 0 and
μ∗ = μ+

∗ = ν. Then

μ
({
e

k
2
})

= μ+
∗ ({ek}) =

(1 + ek)�

e
k
2

, k ∈ N.

From the relation ∫
R

dμ(t)
(1 + |t|)n

=
∞∑

k=1

1(
1 + e

k
2
)n · (1 + ek)�

e
k
2

we can easily deduce that p(μ) = 2� and hence � = �(μ). Now set q = Cκ[μ, p] with
κ = κ(μ) and a polynomial p such that (4.9) holds. Then assumptions 4.2, 4.4,
and 4.13 are satisfied since p(μ) is even. It follows from example A.12 that t �→
μ((−t, t)) = μ+([0, t)) = ν([0, t2)) is not regularly varying, i.e. (a) in theorem 5.1
is not satisfied.

Let us now consider the behaviour of q(iy) as y → ∞. It is clear that σ� = σ with
σ� as in (4.21). From lemma 4.18 and (A.27) we obtain

RC�[μ](y) = F�[μ+](y) ∼ (−1)�y2�S[σ](y2) ∼ 2(−1)�y2�−2 log y,

and hence

Re q(iy) ∼ 2(−1)�y2�−2 log y, y → ∞, (5.13)

by lemma 4.16. Next we show that the imaginary part is dominated by the real
part. Let τκ be as in (4.12). Since κ(μ) = �(μ) − 1 by remark 4.15, we have

τκ({ek}) =
1

(1 + ek)κ
· (1 + ek)�

e
k
2

=
1 + ek

e
k
2

, k ∈ N.

Let τ̃ be the measure on [0, ∞) with τ̃([0, s)) = 2
√

e√
e−1

(
s

1
2 − 1

)
for s ∈ (1, ∞) and

τ̃([0, 1]) = 0. For t ∈ (en, en+1], n ∈ N, we have

τκ([0, t)) =
n∑

k=1

τk({ek}) � 2
n∑

k=1

e
k
2

=
2
√
e√

e− 1
(
e

n
2 − 1

)
� 2

√
e√

e− 1
(
t

1
2 − 1

)
= τ̃([0, t)).

By lemma A.9 (i) and remark A.8 we have

| Im q(iy)| ∼ y2κ+1S[τκ](y2) � y2κ+1S[τ̃ ](y2) ∼ y2κ+1π

2
· τ̃([0, y

2))
y2

∼ π
√
e√

e− 1
y2κ =

π
√
e√

e− 1
y2�−2, (5.14)

which shows that |Re q(iy)| � | Im q(iy)|. This, together with (5.13), implies that
(3.2) with f(r) = 2r2�−2 log r is satisfied and therefore also (b) in theorem 5.1 with
β = 2�− 1 and ω = i(−1)�+1. Note also that (a)′ is satisfied with ζ = 0.
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For � = 1 we obtain a function q ∈ N0 since κ = 0 in this case. We can choose
p such that

q(z) = C̃[μ](z) =
∞∑

k=1

(
1

e
k
2 − z

− e
k
2

1 + ek

)
· 1 + ek

e
k
2

.

According to (5.13) and (5.14) it satisfies q(iy) ∼ 2 log y as y → ∞.

Example 5.4. Let γ ∈ (0, 1) and define the measure μ = λ+ ν on R where λ is
the Lebesgue measure and ν is the measure such that ν((−∞, 0)) = 0 and

ν([0, t)) =

⎧⎨⎩
t, t ∈ (0, e],

t

(log t)γ
, t ∈ (e,∞).

Further, set q(z) := C̃[μ](z). Clearly, μ([0, t)) ∼ t and μ((−t, 0)) = t and hence
μ((−t, t)) ∼ 2t, which shows that (a) and (a)′ in theorem 5.1 are satisfied with
β = 1 and ζ = 1. Further, lemma 4.7 implies that Im q(iy) → π as y → ∞. For the
real part we obtain from lemma 4.18 and proposition 4.19 that

Re q(iy) = RC1[μ](y) = F1[λ++ν](y) −F1[λ−](y) = F1[ν](y)

∼ −
∫ y

1

ν((−t, t))
t2

dt ∼ −
∫ y

1

1
t(log t)γ

dt = − 1
1 − γ

(log y)1−γ .

This shows that q(iy) ∼ − 1
1−γ (log y)1−γ as y → ∞, and hence (b) in theorem 5.1

is satisfied. However, the asymptotics of q(iy) at infinity is not determined by the
leading term of the asymptotics of μ([0, t)) or μ((−t, 0)) as the former depends on
γ whereas the latter does not.

5.2. The exceptional case

In the following theorem we consider certain situations when β ∈ 2N − 1 and
ζ = 1, a case that is not covered by theorem 5.1. When β ∈ 2N − 1 and ζ �= 1, the
real part of q(iy) dominates the imaginary part and is strictly larger than μ((−y, y))

y ;
see theorem 5.1 and remark 5.2 (ii). In the next theorem we consider cases when
there is cancellation between contributions from the measure μ on the positive and
negative axes to the real part and where the growth of q(iy) is determined by the
imaginary part.

Theorem 5.5. Let μ, κ, p, and q be as in assumptions 4.2 and 4.4 and let β ∈
2N − 1. Then the following statements are true.

(i) Assume that μ = μ0 + μ1 + μ2 with measures μ0, μ1 and μ2 such that the
following conditions are satisfied:
(a) μ0 is symmetric and t �→ μ0((−t, t)) is regularly varying with index β;

(b) either μ1([0, ∞)) = 0 or t �→ μ1([0, t)) is regularly varying with
index β;
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either μ1((−∞, 0)) = 0 or t �→ μ1((−t, 0)) is regularly varying with index
β;

(c) μ2((−t, t)) � tγ as t→ ∞ with some γ < β;

(d) if
∫

R
(1 + |t|)−βdμ1(t) <∞, then

c2κ =
∫

R

t

(1 + t2)κ+1
d(μ1 + μ2)(t);

(e) with the notation in (4.22) the following two limits (for + and −) exist
in R:

η± :=

⎧⎪⎪⎨⎪⎪⎩
lim

t→∞

(∫ t

1

μ±
1 ((−s, s))
sβ+1

ds
/
μ0((−t, t))

tβ

)
if

∫
R

dμ1(t)
(1 + |t|)β

= ∞,

− lim
t→∞

(∫ ∞

t

μ±
1 ((−s, s))
sβ+1

ds
/
μ0((−t, t))

tβ

)
if

∫
R

dμ1(t)
(1 + |t|)β

<∞.

Then μ((−t, t)) ∼ μ0((−t, t)), β = 2κ+ 1, and (5.2) holds locally uniformly
for z ∈ C

+ with

f(r) = β
μ((−r, r))

r
, ω = (−1)κ

(π
2

+ i
(
η+−η−

))
. (5.15)

(ii) Assume that there exist a regularly varying function f : [x0, ∞) → (0, ∞)
with x0 > 0 and a constant ω /∈ iR such that (5.2) holds uniformly for z ∈ C

+.
Then t �→ μ((−t, t)) is regularly varying with index β and (5.1) holds with ζ =
1. One can choose f as in (5.15), in which case ω satisfies Reω = (−1)κ π

2 .

Remark 5.6. Example 5.3 shows that the condition ω /∈ iR in (ii) is essential.

Proof of theorem 5.5. We split the proof into a couple of steps; the first five steps
deal with the proof of (i).

1○ First we note that either μ1 = 0 or t �→ μ1((−t, t)) is regularly varying with
index β. In the latter case we obtain from theorem A.2 (i) and assumptions (b)
and (e) that, when

∫
R
(1 + |t|)−βdμ1(t) = ∞,

μ1((−t, t))
tβ

	
∫ t

1

μ1((−s, s))
sβ+1

ds

=
∫ t

1

μ+
1 ((−s, s))
sβ+1

ds+
∫ t

1

μ−
1 ((−s, s))
sβ+1

ds � μ0((−t, t))
tβ

as t→ ∞. A similar calculation and the use of theorem A.2 (ii) show that also in
the case when

∫
[0,∞)

(1 + |t|)−βdμ1(t) <∞, we have μ1((−t, t)) 	 μ0((−t, t)).
Together with assumption (c), this implies that μ((−t, t)) ∼ μ0((−t, t)).
It follows from theorem 4.7 that β = 2κ+ 1 and

Im q(iy) ∼
πβ
2

sin
(
πκ+ π

2

) · μ((−y, y))
y

= (−1)κπ

2
f(y). (5.16)
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2○ Set � := �(μ) and μ̂ := μ1 + μ2. By remark 4.15 we have either � = κ or � = κ+ 1.
It follows from assumption (c) and lemma 4.1 that

∫
R
(1 + |t|)−βdμ2(t) <∞

and hence �(μ2) � κ. If p(μ) is odd (i.e. � = κ), then∫
R

dμ1(t)
(1 + |t|)β

�
∫

R

dμ(t)
(1 + |t|)β

<∞

and hence, by the symmetry of μ0 and assumption (d),∫
R

t

(1 + t2)κ+1
dμ(t) =

∫
R

t

(1 + t2)κ+1
dμ̂(t) = c2κ.

This shows that assumption 4.13 is satisfied. It follows from lemma 4.16 and
the symmetry of μ0 that

Re q(iy) = RC�[μ](y) + p̃(y) = RC�[μ̂](y) + p̃(y) (5.17)

with p̃ as in lemma 4.16.
Set �̂ := κ when μ1 = 0 and �̂ := �(μ̂) otherwise. It follows in a similar way as
above that, by assumption (b), either μ+

1 = 0 or �(μ+
1 ) = κ or �(μ+

1 ) = κ+ 1,
and similarly for μ−

1 . Since �(μ2) � κ, we have κ � �̂ � � � κ+ 1.
Let us rewrite the expression in (5.17) in the case when �̂ = κ and � = κ+ 1. We
obtain from (2.18) with κ and κ′ there replaced by �̂− 1 and �− 1 respectively
that

t

t2 + y2
· (1 − y2)�

(1 + t2)�
= Re

[
1

t− iy
· (1 + (iy)2)�

(1 + t2)�

]

= Re
[

1
t− iy

· (1 + (iy)2)�̂

(1 + t2)�̂

]
− Re

[
(t+ iy) · (1 + (iy)2)�̂

(1 + t2)�̂+1

]

=
t

t2 + y2
· (1 − y2)�̂

(1 + t2)�̂
− (1 − y2)�̂ · t

(1 + t2)�̂+1
.

Hence

Re q(iy) = RC�̂[μ̂](y) − (1 − y2)κ

∫
R

t

(1 + t2)κ+1
dμ̂(t) + p̃(y)

= RC�̂[μ̂])(y) + p̂(y),

where the polynomial p̂ satisfies

p̂(y) = (−1)κ

[
c2κ −

∫
R

t

(1 + t2)κ+1
dμ̂(t)

]
y2κ

+ O
(
y2κ−2

)
= O

(
y2κ−2

)
= O

(
y2�̂−2

)
by assumption (d).
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In all cases we can write

Re q(iy) = RC�̂[μ̂](y) + p̂(y) = F�̂[μ
+
1 ](y) −F�̂[μ

−
1 ](y) + RC�̂[μ2](y) + p̂(y)

with an even polynomial p̂ of degree at most 2�̂− 2; note that we have used
lemma 4.18 in the last step and that p̂ = p̃ when �̂ = �. We therefore have

1
i
· q(iy)
f(y)

=
Im q(iy)
f(y)

− i
F�̂[μ

+
1 ](y)

f(y)
+ i

F�̂[μ
−
1 ](y)

f(y)
− i

RC�̂[μ2](y)
f(y)

− i
p̂(y)
f(y)

.

(5.18)
3○ We show that

lim
y→∞

F�̂[μ
±
1 ](y)

f(y)
= −(−1)κη±. (5.19)

Let us start with μ+
1 . When μ+

1 = 0, the equality in (5.19) is obvious. Assume
now that μ+

1 �= 0. Let us first consider the case when �(μ+
1 ) = �̂. Then the

assumptions of proposition 4.19 are satisfied for μ replaced by μ+
1 . Hence that

lemma and assumption (e) yield that, when
∫

R
(1 + |t|)−βdμ1(t) = ∞, i.e. � =

κ+ 1,

lim
y→∞

F�̂[μ
+
1 ](y)

f(y)
= lim

y→∞

[
(−1)�̂βyβ−1

∫ y

1

μ+
1 ((−s, s))

sβ+1 ds
/(

β μ0((−y, y))
y

)]
= −(−1)κη+;

a similar calculation proves relation (5.19) also in the case when
∫

R
(1 +

|t|)−βdμ1

(t) <∞. The same considerations can be applied to μ−
1 when μ−

1 = 0 or
�(μ−

1 ) = �̂.
It remains to prove (5.19) for μ+

1 when �(μ+
1 ) < �(μ−

1 ) = �̂ = κ+ 1 or for
μ−

1 when �(μ−
1 ) < �(μ+

1 ). We consider only the first case. It follows from
remark 4.20 (ii) applied to μ+

1 , the first inequality in (4.27) and the already
proved relation (5.19) for μ−

1 (since �(μ−
1 ) = �̂) that, with some c > 0,∣∣F�̂[μ

+
1 ](y)

∣∣ ∼ cy2�̂−2 = cy2κ 	 ∣∣F�̂[μ
−
1 ](y)

∣∣ � f(y).

On the other hand, the relations �(μ−
1 ) = κ+ 1, �(μ+

1 ) < κ+ 1 and lemma 4.1
imply that ∫ ∞

1

μ+
1 ((−s, s))
sβ+1

ds <∞,

∫ ∞

1

μ−
1 ((−s, s))
sβ+1

ds = ∞,

and hence ∫ t

1

μ+
1 ((−s, s))
sβ+1

ds	
∫ t

1

μ−
1 ((−s, s))
sβ+1

ds.

This and the existence of the limit for η− yield η+ = 0, which shows that (5.19)
holds also for μ+

1 in this case.
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4○ Next let us show that

lim
y→∞

(
RC�̂[μ2](y)

f(y)
+
p̂(y)
f(y)

)
= 0. (5.20)

Let us consider the two possible cases for �̂ separately. First assume that �̂ = κ.
Choose ρ ∈ (max{γ, β − 1}, β) and define the measure ν by ν((−∞, 0)) = 0
and ν([0, t)) = tρ for t > 0. Since ρ ∈ (β − 1, β), we have �(ν) = �̂. It follows
from lemma 4.21 and assumption (c) that

lim
y→∞

F�̂[μ2](y)
F�̂[ν](y)

= lim
t→∞

μ2((−t, t))
ν((−t, t)) = 0.

From (4.24) and (4.26) we obtain

∣∣RC�̂[μ2](y)
∣∣ � ∣∣F�̂[μ2](y)

∣∣ 	 ∣∣F�̂[ν](y)
∣∣ ∼ πρ

2

cos πρ
2

yρ−1.

Since f is regularly varying with index β − 1 = 2�̂ and p̂ is a polynomial of
degree at most 2�̂− 2, relation (5.20) follows in this case; see (A.1).

Now let us consider the case when �̂ = κ+ 1. Then �(μ2) � κ < �̂, and hence
lemma 4.18 and remark 4.20 (ii) imply that∣∣RC�̂[μ2](y)

∣∣ � ∣∣F�̂[μ2](y)
∣∣ ∼ cy2�̂−2

with some c > 0. Without loss of generality assume that �(μ+
1 ) = �̂ (the case

�(μ−
1 ) = �̂ is similar). It follows from assumption (e) and proposition 4.19 that

f(y) � yβ−1

∫ y

1

μ+
1 ([0, s))
sβ+1

ds ∼ 1
β

∣∣F�̂[μ
+
1 ](y)

∣∣ � y2�̂−2,

which yields (5.20) also in this case.
5○ Combining (5.18), (5.16), (5.19) and (5.20) we arrive at

1
i

lim
y→∞

q(iy)
f(y)

= (−1)κ
(π

2
+ i

(
η+−η−

))
,

which, by theorem 3.1, shows the remaining assertions in (i).
6○ Let us now prove item (ii). Assume that f and ω /∈ iR are such that (5.2) holds.

We obtain from theorem 3.2 and remark 3.3 (i) that

lim
t→∞

μ((0, t))
tf(t)

= lim
t→∞

μ((−t, 0))
tf(t)

=
ω

π(α+ 1)
cos

(
arg

(
(−1)mω

))
(5.21)

where α = β − 1 = 2m with m ∈ N0 and
∣∣ arg

(
(−1)mω

)∣∣ � π
2 . Since, by

assumption, ω /∈ iR, we have Re((−1)mω) > 0 and hence

|ω| cos
(
arg

(
(−1)mω

))
= Re

(
(−1)mω)

)
= (−1)m Reω.
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In particular, the limits in (5.21) are non-zero, and therefore (5.1) holds with
ζ = 1 and

lim
t→∞

μ((−t, t))
tf(t)

= (−1)m 2
πβ

Reω. (5.22)

This implies that t �→ μ((−t, t)) is regularly varying with index β, which, in
turn, yields that β = 2κ+ 1 and hence m = κ. Choosing f as in (5.15) we
obtain from (5.22) that Reω = (−1)κ π

2 .

�

To illustrate the Abelian direction of theorem 5.5, let us consider the following
example.

Example 5.7. Let μ be a measure on R that satisfies

μ([0, t)) = t log t+ a+t+ O(tγ),

μ((−t, 0)) = t log t+ a−t+ O(tγ)
(5.23)

as t→ +∞ with a+, a− � 0 and γ < 1. We can write μ as μ = μ0 + μ1 + μ2 where
μ0, μ1, μ2 are measures satisfying

μ0([−1, 1]) = 0; μ0([1, t)) = μ0((−t,−1)) = t log t, t > 1;

μ1([0, t)) = a+t, μ1((−t, 0)) = a−t, t > 0;

μ2((−t, t)) = O(tγ), t→ +∞.

Since
∫

R
(1 + |t|)−1dμ(t) = ∞ (see lemma 4.1), assumptions (a)–(d) in theorem 5.5

are fulfilled with β = 1. For (e) we consider

η±= lim
t→∞

(∫ t

1

a±s
s2

ds
/

2t log t
t

)
=
a±
2
,

which shows that (e) is also satisfied. Now let q(z) = c0 + C̃[μ](z) with c0 ∈ R.
Then, by theorem 5.5 (i), relation (5.2) holds with

f(r) ∼ μ0((−r, r))
r

= 2 log r, ω =
π

2
+ i

a+−a−
2

,

i.e.

lim
r→∞

q(rz)
log r

= −a++a−+iπ

locally uniform for z ∈ C
+. An example of a function q with a measure μ as in

(5.23) is

q(z) = (a−−a++iπ) log(z + i) + π(a++1)i, z ∈ C
+,

where the O(tγ) term is actually O(log t).
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Appendix A. Regularly varying functions and some theorems of
Karamata

In this appendix we provide some classical results about regularly varying func-
tions in slightly extended or rounded-off formulations. A very good source for the
theory of regular variation is [3]; this is our standard reference.

Recall the definition of regular variation in Karamata’s sense.

Definition A.1. A function f : [x0, ∞) → (0, ∞) with x0 > 0 is called regularly
varying with index α ∈ R if it is measurable and

∀λ > 0 : lim
r→∞

f(λr)
f(r)

= λα.

A regularly varying function f with index 0 is also called slowly varying.

Examples include functions f behaving for large r like

f(r) = rα · ( log r
)β1 · ( log log r

)β2 · . . . · ( log · · · log︸ ︷︷ ︸
mth iterate

r
)βm

,

where α, β1, . . . , βm ∈ R. Other examples are f(r) = rαe(log r)β

with β ∈ (0, 1), or
f(r) = rαe

log r
log log r ; see [3, §1.3]. In many respects, regularly varying functions of

index α behave like the power function rα. For instance, if f is regularly varying
with index α, then

f(r) � rα−ε, f(r) 	 rα+ε as r → ∞ (A.1)

for every ε > 0, which follows, e.g. from the Potter bounds; see [3, Theorem
1.5.6 (iii)].

Another property that reflects the power-like behaviour is a fundamental result
by J. Karamata about primitives of regularly varying functions. We state a compre-
hensive formulation collecting what is proved in [3, Section 1.5.6]. More precisely,
item (i) in theorem A.2 follows from [3, Theorem 1.5.11 (i) and Proposition 1.5.9a];
item (ii) follows from [3, Theorem 1.5.11 (ii) and Proposition 1.5.9b].

Theorem A.2 (Karamata). Let x0 > 0 and let f : [x0, ∞) → (0, ∞) be measur-
able and locally bounded. Further, assume that f is regularly varying with index
α ∈ R.

(i) Suppose that α+ 1 � 0. Then the function x �→ ∫ x

x0
f(t) dt is regularly varying

with index α+ 1, and

lim
x→∞

(
xf(x)

/∫ x

x0

f(t) dt
)

= α+ 1.

(ii) Suppose that
∫ ∞

x0
f(t) dt <∞. Then α+ 1 � 0, the function x �→ ∫ ∞

x
f(t) dt is

regularly varying with index α+ 1, and

lim
x→∞

(
xf(x)

/∫ ∞

x

f(t) dt
)

= −(α+ 1).
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In the following we often use integration by parts in its proper measure-theoretic
form as stated in the following lemma.

Lemma A.3. Let −∞ < a < b �∞, let μ and ν be measures on [a, b). Then

∫
[a,b)

μ([a, t)) dν(t) =
∫

[a,b)

ν((t, b)) dμ(t). (A.2)

If these integrals are finite, then limx→b μ([a, x))ν([x, b)) = 0.

Proof. If ν([a, b)) = ∞, then either both sides are zero (when μ is the zero measure)
or both sides are infinite (otherwise). In the case when ν is a finite measure, relation
(A.2) follows from Fubini’s theorem. To show the last assertion, assume that both
sides of (A.2) are finite and let x ∈ (a, b). Then (A.2) applied to [a, x) instead of
[a, b) yields∫

[a,x)

μ([a, t)) dν(t) =
∫

[a,x)

ν((t, x)) dμ(t)

=
∫

[a,x)

ν((t, b)) dμ(t) − μ([a, x))ν([x, b)).

Letting x→ b we obtain the claimed limit relation. �

From theorem A.2 we obtain the next proposition, which relates integrals with
respect to a measure to integrals involving the corresponding distribution function.

Proposition A.4. Let σ be a measure on [1, ∞), which is not the zero measure.
Assume that the distribution function t �→ σ([1, t)) is regularly varying with index
α (since t �→ σ([1, t)) is non-decreasing, we have α � 0).

(i) Let γ ∈ R\{0}. Then

lim
x→∞

(∫
[1,x)

tγ dσ(t)
/∫ x

1

tγ−1σ([1, t)) dt
)

= max{α,−γ}

=

⎧⎨⎩α, α+ γ � 0,

|γ|, α+ γ < 0.
(A.3)

The function x �→ ∫ x

1
tγ−1σ([1, t)) dt is regularly varying with index α+ γ if

α+ γ � 0, and non-decreasing and bounded (in particular, slowly varying) if
α+ γ < 0; if α �= 0 or γ � 0, the same holds for x �→ ∫

[1,x)
tγ dσ(t).

In particular, if
∫
[1,∞)

tγ dσ(t) = ∞, then α+ γ � 0. Moreover, if∫
[1,∞)

tγ dσ(t) <∞ and σ is an infinite measure, then α+ γ � 0.
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(ii) Let ρ > 0 and assume that
∫
[1,∞)

t−ρdσ(t) <∞. Then σ([1, x)) 	 xρ, and
hence α � ρ. Further, we have

lim
x→∞

(∫
[x,∞)

dσ(t)
tρ

/∫ ∞

x

σ([1, t))
tρ+1

dt
)

= α.

The function x �→ ∫ ∞
x
t−(ρ+1)σ([1, t)) dt is regularly varying with index α− ρ;

if α �= 0, the same holds for x �→ ∫ ∞
x
t−ρdσ(t).

Proof.

1○ For the proof of (i) we integrate by parts (using the measure dν(t) := tγ−1 dt
in lemma A.3) to obtain∫

[1,x)

σ([1, t))tγ−1 dt =
∫

[1,x)

(∫ x

t

sγ−1 ds
)

dσ(t)

=
1
γ
xγσ([1, x)) − 1

γ

∫
[1,x)

tγ dσ(t), (A.4)

and therefore ∫
[1,x)

tγ dσ(t)
/∫

[1,x)

tγ−1σ([1, t)) dt

=
(
xγσ([1, x))

/∫
[1,x)

tγ−1σ([1, t)) dt
)
− γ. (A.5)

2○ First we consider the case when α+ γ � 0. We can apply theorem A.2 (i) to
obtain that the integral

∫
[1,x)

σ([1, t))tγ−1 dt is regularly varying with index
α+ γ, and that the quotient on the right-hand side of (A.5) tends to α+ γ.
The asserted limit relation follows. In particular, if α �= 0, also the integral∫ x

1
tγ dσ(t) is regularly varying with index α+ γ.

3○ Now assume that α+ γ < 0. Since α � 0, we have γ < 0 and hence
max{α, −γ} = −γ = |γ|. The integral

∫ ∞
1
tγ−1σ([1, t)) dt converges, and hence

limx→∞ xγσ([1, x)) = 0 and by (A.4)∫
[1,∞)

tγ dσ(t) = |γ|
∫

[1,∞)

tγ−1σ([1, t)) dt <∞.

In particular, the function x �→ ∫
[1,x)

tγ dσ(t) is slowly varying and the asserted
limit relation holds.

4○ For the last statement in (i) assume that
∫
[0,∞)

tγ dσ(t) <∞, that σ is an infinite
measure, and suppose that α+ γ > 0. If α > 0, then

∫
[1,x)

tγ dσ(t) is regularly
varying with positive index α+ γ and hence unbounded, a contradiction. If
α = 0, then γ > 0, and therefore

∫
[1,x)

tγ dσ(t) � σ([1, x)) → ∞ as x→ ∞,
again a contradiction.
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5○ For the proof of (ii) we argue in a similar way. Integrate by parts (using the
measure dν(t) = dt

tρ+1 ) to obtain∫ ∞

1

σ([1, t))
dt
tρ+1

=
1
ρ

∫
[1,∞)

dσ(t)
tρ

, lim
x→∞

σ([1, x))
xρ

= 0.

The second relation shows, in particular, that α � ρ. We integrate by parts
again to obtain∫ ∞

x

σ([1, t))
dt
tρ+1

=
∫ ∞

x

σ([1, x))
dt
tρ+1

+
∫ ∞

x

σ([x, t))
dt
tρ+1

=
1
ρ
· σ([1, x))

xρ
+

1
ρ

∫
[x,∞)

dσ(t)
tρ

,

and hence∫
[x,∞)

dσ(t)
tρ

/∫ ∞

x

σ([1, t))
tρ+1

dt = ρ−
(
σ([1, x))

xρ

/∫ ∞

x

σ([1, t))
tρ+1

dt
)
.

By theorem A.2 (ii) the integral
∫
[1,x)

t−(ρ+1)σ([1, t)) dt is regularly varying
with index α− ρ, and the quotient on the right-hand side tends to ρ− α. The
assertions made in (ii) follow.

�

The following example shows that, when α = 0 and γ > 0 in proposition A.4 (i),
the function x �→ ∫

[1,x)
tγ dσ(t) may fail to be regularly varying. Instead of tγ

we consider an arbitrary function g with g(t) ∼ tγ as t→ ∞. This more general
example is used in example A.12.

Example A.5. Define the discrete measure σ supported on {ek : k ∈ N} with the
following point masses:

σ({ek}) = 1, k ∈ N.

The distribution function satisfies σ([1, t)) = 0 if t � e and σ([1, t)) = n if t ∈
(en, en+1] for n ∈ N. The relation t ∈ (en, en+1] is equivalent to log t− 1 � n <
log t, and hence σ([1, t)) ∼ log t as t→ ∞. This shows that the distribution function
t �→ σ([1, t)) is slowly varying.

Now let g : [1, ∞) → (0, ∞) be a function such that g(t) ∼ tγ as t→ ∞ with
γ > 0, and define the function

f(x) :=
∫

[1,x)

g(t) dσ(t), x ∈ (1,∞).

For x ∈ (en−1, en] we have f(x) =
∑n−1

k=1 g(e
k). It follows easily that, as n→ ∞,

n−1∑
k=1

g(ek) ∼
n−1∑
k=1

eγk =
eγn − eγ

eγ − 1
∼ eγn

eγ − 1
. (A.6)
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Now choose λ =
√
e. From (A.6) we obtain

f(λem)
f(em)

=
∑m

k=1 g(e
k)∑m−1

k=1 g(ek)
→ eγ as m→ ∞,

f(λem+ 1
2 )

f(em+ 1
2 )

=
∑m

k=1 g(e
k)∑m

k=1 g(ek)
= 1,

which implies that f is not regularly varying.
Note that f(x) 
 xγ as x→ ∞, which can be seen from (A.6).

The next topic we discuss is the asymptotic behaviour of Stieltjes transforms:
let μ be a measure on [0, ∞) which satisfies

∫
[0,∞)

(1 + t)−1 dμ(t) <∞; then the
Stieltjes transform of μ is defined by

S[μ](x) :=
∫

[0,∞)

dμ(t)
t+ x

, x > 0. (A.7)

As is common practice in the literature, we use a sign convention that is different
from the one in (1.2) (i.e. different from the convention for the Cauchy transform)
in order to obtain functions that are defined on the positive half-line.

Remark A.6. Let μ be a measure on [0, ∞) which satisfies
∫
[0,∞)

(1 + t)−1

dμ(t) <∞. Then, by the dominated and monotone convergence theorems,

lim
x→∞S[μ](x) = 0, lim

x→∞xS[μ](x) = μ
(
[0,∞)

)
.

In particular, if μ is not the zero measure, then, as x→ ∞,

1
x

 S[μ](x) 	 1 if μ is finite,

1
x
	 S[μ](x) 	 1 if μ is infinite.

Karamata’s theorem about the Stieltjes transform [16, 17] characterizes regular
variation of the Stieltjes transform and gives precise information about the size of
S[μ](x) also when μ is infinite. We use it in a formulation that includes a boundary
case; this is often excluded, e.g. in [3, Theorem 1.7.4] or [31].

Theorem A.7 (Karamata). Let μ be a measure on [0, ∞), which is not the zero
measure and satisfies

∫
[0,∞)

(1 + t)−1 dμ(t) <∞. Then the following two statements
are equivalent:

(i) the distribution function t �→ μ([0, t)) is regularly varying with index α;

(ii) S[μ] is regularly varying with index α− 1.
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If (i) and (ii) hold, then α ∈ [0, 1] and

S[μ](x) ∼ Cα

∫ ∞

x

μ([0, t))
t2

dt, x→ ∞. (A.8)

with

Cα :=

⎧⎪⎨⎪⎩
πα(1 − α)
sin(πα)

, α ∈ (0, 1);

1, α ∈ {0, 1}.
(A.9)

The integral in (A.8) is finite for every x > 0.

As in the usual presentations in textbooks we follow the lines of [16] and reduce
the problem to the Laplace–Stieltjes transform. Recall that the Laplace–Stieltjes
transform of a positive measure ν on [0, ∞) is the function L[ν] : R → [0, ∞] defined
as

L[ν](x) :=
∫

[0,∞)

e−xt dν(t), x ∈ R.

In the proof of theorem A.7 we also need the concept of a regularly varying function
at 0: a function g : (0, x0] → (0, ∞) with x0 > 0 is called regularly varying at 0 with
index β if x �→ g

(
1
x

)
is regularly varying with index −β in the sense of definition A.1.

Proof of theorem A.7.

1○ The relation with the Stieltjes transform is established by Fubini’s theorem: for
x > 0 we have

S[μ](x) =
∫

[0,∞)

1
t+ x

dμ(t) =
∫

[0,∞)

(∫
[0,∞)

e−(t+x)s ds
)

dμ(t)

=
∫

[0,∞)

e−xs

(∫
[0,∞)

e−ts dμ(t)
)

ds =
∫

[0,∞)

e−xs L[μ](s) ds. (A.10)

Let σ be the measure on [0, ∞) with density L[μ], i.e.

σ([0, t)) :=
∫ t

0

L[μ](s) ds, t > 0.

The latter integral is finite since, again by Fubini’s theorem,∫ t

0

L[μ](s) ds =
∫ t

0

∫
[0,∞)

e−sr dμ(r) ds =
∫

[0,∞)

1 − e−tr

r
dμ(r);

the finiteness of the last integral follows easily from the assumption
∫
[0,∞)

(1 +
t)−1dμ(t) <∞. Now (A.10) can be written as S[μ] = L[σ].
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2○ Assume first that x �→ μ([0, x)) is regularly varying with index α. Since
x �→ μ([0, x)) is non-decreasing, α � 0; by proposition A.4 (ii) we have α � 1.
It follows from [3, Theorem 1.7.1] in the form of [3, (1.7.3)] that

L[μ]
( 1
x

)
∼ Γ(1 + α)μ([0, x)), x→ ∞. (A.11)

In particular, the function x �→ L[μ]( 1
x ) is regularly varying with index α. Note

that in [3] the right-continuous distribution function x �→ μ([0, x]) is used.
However, the latter is regularly varying if and only if x �→ μ([0, x)) is regu-
larly varying and μ([0, x]) ∼ μ([0, x)), x→ ∞ if these functions are regularly
varying.

Before we apply the Laplace–Stieltjes transform a second time, we need the
asymptotic behaviour of x �→ σ

([
0, 1

x

))
as x→ ∞. From (A.11) we obtain

σ
([

0, 1
x

))
=

∫ 1
x

0

L[μ](s) ds =
∫ ∞

x

L[μ]
(1
t

) 1
t2

dt

∼ Γ(1 + α)
∫ ∞

x

μ([0, t))
t2

dt, x→ ∞.

It follows from proposition A.4 (ii) that the function x �→ σ
([

0, 1
x

))
is regularly

varying with index α− 1, and hence, t �→ σ([0, t)) is regularly varying at 0 with
index 1 − α. Now [3, Theorem 1.7.1′] implies that

S[μ](x) = L[σ](x) ∼ Γ(2 − α)σ
([

0, 1
x

))
∼ Γ(1 + α)Γ(2 − α)

∫
[x,∞)

μ([0, t))
t2

dt, x→ ∞,

and that S[μ] is regularly varying (at infinity) with index α− 1. It follows
from the reflection formula for the Gamma function that Γ(1 + α)Γ(2 − α) =
α(1 − α)Γ(α)Γ(1 − α) = π(1−α)α

sin(πα) when α ∈ (0, 1).
3○ Conversely, assume that (ii) holds. Again by [3, Theorem 1.7.1′], the function
t �→ σ([0, t)) is regularly varying at 0 with index 1 − α. Since L[μ] is non-

increasing, we can apply [3, Theorem 1.7.2b] to deduce that L[μ] is regularly
varying at 0 with index −α. Finally, we obtain from [3, Theorem 1.7.1] that
(i) holds.

�

Remark A.8. In the case when α < 1 we can use theorem A.2 (ii) to rewrite the
right-hand side of (A.8) to obtain the standard formulation as in [3, Theorem 1.7.4];
namely, under the assumption of theorem A.7 we have

S[μ](x) ∼ πα

sin(πα)
· μ([0, x))

x
, x→ ∞,

where the first fraction on the right-hand side is understood as 1 if α = 0.
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In the proofs of our main results we often need the following elementary facts
where we compare the Stieltjes transforms of two measures.

Lemma A.9. Let μ1 and μ2 be measures on [0, ∞) such that μ2 is not the zero
measure and that

∫
[0,∞)

(1 + t)−1dμi(t) <∞ for i ∈ {1, 2}.

(i) If μ1([0, t)) � μ2([0, t)) for all t ∈ (0, ∞), then S[μ1](x) � S[μ2](x) for all x ∈
(0, ∞).

(ii) We have

lim sup
x→∞

S[μ1](x)
S[μ2](x)

� lim sup
r→∞

μ1([0, r))
μ2([0, r))

. (A.12)

Proof. We use lemma A.3 with the measure dν(t) := dt
(t+x)2 for x > 0 to rewrite the

Stieltjes transforms:

S[μi](x) =
∫

[0,∞)

1
t+ x

dμi(t) =
∫ ∞

0

μi([0, t))
(t+ x)2

dt, x > 0, i ∈ {1, 2}, (A.13)

which immediately yields the assertion in (i).
Let us now prove the statement in (ii). If μ1 = 0 or the right-hand side of (A.12)

is infinite, then there is nothing to prove. Hence we assume that μ1 is not the zero
measure and the right-hand side of (A.12) is finite. Let r0 > 0 be such that μi([0,
r0)) > 0 for i ∈ {1, 2}. From (A.13) we obtain, for x > 0 (and the asymptotic
relations as x→ ∞),

S[μ1](x) =
∫ ∞

0

μ1([0, t))
(t+ x)2

dt =
∫ r0

0

μ1([0, t))
(t+ x)2

dt︸ ︷︷ ︸
� 1

x2 ·r0μ1([0,r0))

+
∫ ∞

r0

μ1([0, t))
(t+ x)2

dt︸ ︷︷ ︸
�μ1([0,r0))· 1

r0+x

∼
∫ ∞

r0

μ1([0, t))
(t+ x)2

dt � sup
t�r0

μ1([0, t))
μ2([0, t))

·
∫ ∞

r0

μ2([0, t))
(t+ x)2

dt

∼ sup
t�r0

μ1([0, t))
μ2([0, t))

·
∫ ∞

0

μ2([0, t))
(t+ x)2

dt = sup
t�r0

μ1([0, t))
μ2([0, t))

· S[μ2](x).

With this we can deduce that lim sup
x→∞

S[μ1](x)
S[μ2](x) � sup

t�r0

μ1([0, t))
μ2([0, t)) . Since r0 was arbitrary,

the assertion follows. �

We also need a comparison result when we integrate powers with respect to two
different measures.

Lemma A.10. Let ν1, ν2 be measures on [0, ∞) and let γ ∈ R\{0}.
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(i) Assume that γ < 0 and that ν1([0, x)) � ν2([0, x)) as x→ ∞. Then∫
[1,x)

tγ dν1(t) �
∫

[1,x)

tγ dν2(t), x→ ∞. (A.14)

If, in addition,
∫
[1,∞)

tγ dν2(t) = ∞, then

lim sup
x→∞

∫
[1,x)

tγ dν1(t)∫
[1,x)

tγ dν2(t)
� lim sup

x→∞
ν1([0, x))
ν2([0, x))

. (A.15)

(ii) Assume that γ > 0 and that x �→ ν2([0, x)) is regularly varying with index
α > 0. Then

lim sup
x→∞

∫
[1,x)

tγ dν1(t)∫
[1,x)

tγ dν2(t)
� α+ γ

α
lim sup

x→∞
ν1([0, x))
ν2([0, x))

. (A.16)

(iii) Assume that γ > 0 and that x �→ νi([0, x)) are regularly varying with index
αi > 0 for i ∈ {1, 2}. Then∫

[1,x)
tγ dν1(t)∫

[1,x)
tγ dν2(t)

∼ α1(α2 + γ)
α2(α1 + γ)

· ν1([0, x))
ν2([0, x))

, x→ ∞.

Proof. If the limit superior on the right-hand side of (A.16) is +∞, then there is
nothing to prove for (ii). Hence, for the proof (ii) we assume that the right-hand
side of (A.16) is finite. In (i) the right-hand side of (A.15) is finite by assumption.
Let M > 0 and x0 > 1 be such that

∀x � x0 :
ν1([0, x))
ν2([0, x))

�M. (A.17)

(i) Assume that γ < 0. For i ∈ {1, 2}, integration by parts yields∫
[1,x)

tγ dνi(t) = xγνi

(
[0, x)

)− νi

(
[0, 1)

)− γ

∫ x

1

tγ−1νi([0, t)) dt

= xγνi

(
[0, x)

)− νi

(
[0, 1)

)
+ |γ|

∫ x0

1

tγ−1νi([0, t)) dt

+ |γ|
∫ x

x0

tγ−1νi([0, t)) dt

= xγνi

(
[0, x)

)
+ |γ|

∫ x

x0

tγ−1νi([0, t)) dt+ ci
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with some ci ∈ R. Together with (A.17) we obtain, for x � x0,∫
[1,x)

tγ dν1(t) = xγν1
(
[0, x)

)
+ |γ|

∫ x

x0

tγ−1ν1([0, t)) dt+ c1

�Mxγν2
(
[0, x)

)
+M |γ|

∫ x

x0

tγ−1ν2([0, t)) dt+ c1

= M

∫
[1,x)

tγ dν2(t) −Mc2 + c1.

This proves (A.14). Now assume that
∫
[1,∞)

tγ dν2(t) = ∞. Then∫
[1,x)

tγ dν1(t)∫
[1,x)

tγ dν2(t)
�M +

c1 −Mc2∫
[1,x)

tγ dν2(t)
→M, x→ ∞,

from which we can deduce that

lim sup
x→∞

∫
[1,x)

tγ dν1(t)∫
[1,x)

tγ dν2(t)
� sup

t�x0

ν1([0, t))
ν2([0, t))

.

Since x0 was arbitrary, the inequality in (A.15) follows.

(ii) Now we assume that γ > 0 and that x �→ ν2([0, x)) is regularly varying with
index α. The latter, together with proposition A.4 (i) and theorem A.2 (i),
implies ∫

[1,x)

tγ dν2(t) ∼ α

α+ γ
xγν2([1, x)), x→ ∞. (A.18)

The monotonicity of t �→ tγ and (A.17) yield, for x � x0,∫
[1,x)

tγ dν1(t) � xγν1
(
[1, x)

)
� xγν1

(
[0, x)

)
�Mxγν2

(
[0, x)

)
= Mxγν2

(
[1, x)

)(
1 +

ν2([0, 1))
ν2([1, x))

)
. (A.19)

Since, by assumption, α > 0, we have ν2([1, x)) → ∞. Together with (A.18)
and (A.19), this shows that

lim sup
x→∞

∫
[1,x)

tγ dν1(t)∫
[1,x)

tγ dν2(t)
�Mα+ γ

α
.

Now the assertion follows as in the proof of (i).

(iii) In the same way as in the proof of (ii), we obtain from proposition A.4 (i) and
theorem A.2 (i) that
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[1,x)

tγ dνi(t) ∼ αi

αi + γ
xγνi([1, x)), x→ ∞,

for i ∈ {1, 2}. From this the result follows since νi([1, x)) ∼ νi([0, x)). �

The next proposition contains asymptotic results about Stieltjes transforms of
certain measures; it plays a key role in the proofs of some of the main results of the
paper.

Proposition A.11. Let ν be a measure on [0, ∞). Further, let h : [0, ∞) → [0, ∞)
be a continuous function such that h(t) > 0 for t > 0 and h(t) ∼ tγ , t→ ∞, with
γ ∈ R\{0}. Assume that∫

[0,∞)

h(t) dν(t) = ∞ and
∫

[0,∞)

h(t)
1 + t

dν(t) <∞ (A.20)

and define the measure σ on [0, ∞) by

dσ(t) = h(t) dν(t), t ∈ [0,∞).

Then the Stieltjes transform S[σ] is well defined and satisfies

1
x
	 S[σ](x) 	 1, x→ ∞. (A.21)

Now let α � 0 and consider the following two statements:

(a) t �→ ν([0, t)) is regularly varying with index α;

(b) S[σ] is regularly varying with index α+ γ − 1.

Then the following relations are true.

(i) Assume that (a) holds. Then α+ γ ∈ [0, 1].
If α > 0, then (b) holds and, as x→ ∞,

S[σ](x) ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

πα

sin(π(α+ γ))
· xγ−1ν([0, x)), α+ γ ∈ (0, 1),

α

x

∫ x

1

tγ−1ν([0, t)) dt, α+ γ = 0,

α

∫ ∞

x

tγ−2ν([0, t)) dt, α+ γ = 1.

(A.22)

If α = 0 and γ ∈ (0, 1), then

S[σ](x) 	 xγ−1ν([0, x)), x→ ∞. (A.23)

(ii) If (b) holds and α+ γ > 0, then also (a) holds.

Proof. The relations in (A.20) imply that the Stieltjes transform S[σ] is well defined
and that the measure σ is infinite. Hence (A.21) follows from remark A.6.
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(i) Assume that (a) holds. It follows from (A.20) that
∫
[1,∞)

tγ dν(t) = ∞ and∫
[1,∞)

tγ−1 dν(t) <∞, which, by Proposition A.4 (i), yields that α+ γ � 0
and α+ γ − 1 � 0.

Let us first consider the case when α > 0. The first relation in (A.20) and
proposition A.4 (i) imply that, as x→ ∞,

σ([0, x)) ∼
∫

[1,x)

tγ dν(t) ∼ α

∫ x

1

tγ−1ν([0, t)) dt (A.24)

and that x �→ σ([0, x)) is regularly varying with index α+ γ. Hence we can
apply theorem A.7 to deduce that (b) holds and that

S[σ](x) ∼ Cα+γ

∫ ∞

x

σ([0, t))
t2

dt, (A.25)

where Cα+γ is defined in (A.9). If α+ γ < 1, then theorem A.2 (ii) and (A.24)
yield

S[σ](x) ∼ Cα+γ

1 − α− γ
· σ([0, x))

x
∼ α

Cα+γ

1 − α− γ
· 1
x

∫ x

1

tγ−1ν([0, t)) dt.

In the case when α+ γ = 0, the first fraction in front of the integral is equal
to 1. If α+ γ ∈ (0, 1), we can apply theorem A.2 (i) to arrive at

S[σ](x) ∼ αCα+γ

1 − α− γ
· 1
x
· 1
α+ γ

· xγν([0, x)) =
πα

sin(π(α+ γ))
· xγ−1ν([0, x)),

which proves (A.22) in the first two cases.
Now assume that α+ γ = 1. We obtain from (A.24) and theorem A.2 (i) that

σ([0, x)) ∼ αxγν([0, x)),

which, together with (A.25), implies that

S[σ](x) ∼ αC1

∫ ∞

x

tγ−2ν([0, t)) dt,

which proves (A.22) in the third case.
Let us now assume that α = 0 and γ ∈ (0, 1). It follows again from proposi-
tion A.4 (i) that

σ([0, x)) ∼
∫

[1,x)

tγ dν(t) 	
∫ x

1

tγ−1ν([0, t)) dt. (A.26)

Define the measure μ on [0, ∞) by dμ(t) = tγ−1ν([0, t)) dt. Then∫
[1,∞)

1
t

dμ(t) =
∫

[1,∞)

tγ−2ν([0, t)) dt <∞

since the integrand in the second integral is regularly varying with index
γ − 2 < −1. From theorem A.2 (i) we obtain that x �→ μ([0, x)) is regularly
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varying with index γ, and (A.26) implies that

μ([0, x)) =
∫ x

0

tγ−1ν([0, t)) dt� σ([0, x)).

Hence we can apply lemma A.9 and remark A.8 to deduce that

S[σ](x) 	 S[μ](x) ∼ πγ

sin(πγ)
· μ([0, x))

x

=
πγ

sin(πγ)
· 1
x

∫ x

0

tγ−1ν([0, t)) dt ∼ π

sin(πγ)
· 1
x
xγν([0, x)),

which proves (A.23).

(ii) Assume that (b) holds and that α+ γ > 0. It follows from theorem A.7 that
x �→ σ([0, x)) is regularly varying with index α+ γ. Since dν(t) = 1

h(t) dσ(t),
t ∈ (0, ∞), we obtain from theorem A.4 (i) that (a) holds. �

The following example shows that the implication (b)⇒ (a) is not valid in general
if α+ γ = 0. The example is also used in examples 4.9 and 5.3.

Example A.12. Let h : [0, ∞) → [0, ∞) be a continuous function such that
h(t) > 0 for t > 0 and h(t) ∼ tγ with γ < 0. Further, let σ be the discrete mea-
sure on [0, ∞) as in example A.5, i.e. with point masses σ({ek}) = 1, k ∈ N. Let ν
be the measure on [0, ∞) such that dσ(t) = h(t) dν(t), t ∈ (0, ∞) and ν({0}) = 0;
it is also discrete and has point masses

ν({ek}) =
1

h(ek)
, k ∈ N.

Since ∫
[0,∞)

h(t) dν(t) =
∫

[0,∞)

dσ(t) = ∞,

∫
[0,∞)

h(t)
1 + t

dν(t) =
∫

[0,∞)

1
1 + t

dσ(t) =
∞∑

k=1

1
1 + ek

<∞,

condition (A.20) is satisfied. Example A.5 shows that the distribution function
t �→ σ([0, t)) is slowly varying. Hence, by theorem A.7, S[σ] is regularly varying
with index −1, i.e. (b) in proposition A.11 is satisfied with α+ γ − 1 = −1. Note
that σ([0, t)) ∼ log t and therefore

S[σ](x) ∼ log x
x

, x→ ∞, (A.27)

by remark A.8. On the other hand, example A.5 with g such that g(t) = 1
h(t) ,

t ∈ [1, ∞), also implies that

x �→ ν([0, x)) =
∫

[0,x)

g(t) dσ(t) = f(x),
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with f from example A.5, is not regularly varying, i.e. (a) in proposition A.11 is not
satisfied. Hence the implication (b)⇒ (a) does not hold in general when α+ γ = 0.

Finally, we need a comparison result for Stieltjes transforms of measures as in
proposition A.11.

Lemma A.13. Let ν1, ν2 be measures on [0, ∞), let h : [0, ∞) → [0, ∞) be a con-
tinuous function such that h(t) > 0 for t > 0 and h(t) ∼ tγ , t→ ∞, with some
γ ∈ R\{0}. Assume that∫

[0,∞)

h(t) dν2(t) = ∞ and
∫

[0,∞)

h(t)
1 + t

dν2(t) <∞ (A.28)

and define the measures σi on [0, ∞) by dσi(t) = h(t) dνi(t), t ∈ [0, ∞), i ∈ {1, 2}.
Further, assume that t �→ ν2([0, t)) is regularly varying with strictly positive index
and that the limit

lim
t→∞

ν1([0, t))
ν2([0, t))

(A.29)

exists in [0, ∞). Then S[σ1] is well defined and

lim
x→∞

S[σ1](x)
S[σ2](x)

= lim
t→∞

ν1([0, t))
ν2([0, t))

. (A.30)

Proof. Since
∫
[1,∞)

tγ−1 dν2(t) <∞ by (A.28), we can use the existence of the limit
in (A.29) and lemma A.10 (i) (when γ < 1) or lemma A.10 (ii) (when γ > 1) to
deduce that

∫
[1,∞)

tγ−1 dν1(t) <∞ (for γ = 1 this follows directly). Hence S[σ1] is
well defined.

Denote the limit in (A.29) by c. Let us first consider the case when c > 0.
Then t �→ ν1([0, t)) is regularly varying with the same index as t �→ ν2([0, t)), and∫
[1,∞)

tγ dν1(t) = ∞ (again by lemma A.10). We now obtain from lemma A.10 (i)
(when γ < 0) or lemma A.10 (iii) (when γ > 0) that

lim
x→∞

σ1([0, x))
σ2([0, x))

= lim
x→∞

∫
[1,x)

tγ dν1(t)∫
[1,x)

tγ dν2(t)
= c.

By lemma A.9, this implies that (A.30) holds.
Now assume that c = 0. From lemma A.10 (i) and (ii) we can deduce that

σ1([0, x)) 

∫

[1,x)

tγ dν1(t) 	
∫

[1,x)

tγ dν2(t) ∼ σ2([0, x)),

which, together with lemma A.9, yields (A.30). �
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19 M. G. Krein and H. Langer. Über einige Fortsetzungsprobleme, die eng mit der Theorie
hermitescher Operatoren im Raume Πκ zusammenhängen. I. Einige Funktionenklassen und
ihre Darstellungen. Math. Nachr. 77 (1977), 187–236.

20 M. G. Krein and H. Langer. Some propositions on analytic matrix functions related to the
theory of operators in the space Πκ. Acta Sci. Math. (Szeged) 43 (1981), 181–205.

21 H. Langer, Spectral functions of definitizable operators in Krein spaces, in: Functional
Analysis (Dubrovnik, 1981), Lecture Notes in Math., Vol. 948 (Springer, Berlin, 1982), pp.
1–46.

22 H. Langer, A characterization of generalized zeros of negative type of functions of the class
Nκ, in: Advances in Invariant Subspaces and Other Results of Operator Theory (Timişoara
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