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BIFURCATING ATTRACTORS AND GALERKIN APPROXIMATES

R. WELLS AND J.A. BUTTON

Let U = AM + VA-U + J(u) be a Navier-Stokes parameterized

evolution equation in a Hilbert space E and let F- c pc p c

be an increasing sequence of finite dimensional spaces such that

every F 9 JR contains the center-unstable linear subspace

fl" © JR cffeJH of the system u = AQu + \iAjU + J(u), y = 0 .

Then each F 9 JR determines a Galerkin approximant of the

original system, with the same center-unstable linear subspace

a © JR . The flow on the center-unstable manifold of the original

system may be identified with a parameterized flow on Hu given by

x = f (xy\i) . The flow on the center-unstable manifold of the

Galerkin approximant determined by F © JR may be identified with

a parameterized flow on ti given by x = fn(x*v) • It is proved

that Theorem 1 holds: lim / = fm in the C& topology on a

n-*»

compact neighborhood of the origin in a © JH . From this theorem

it is concluded that Theorem 2 holds: If a certain priori bound
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322 R . Wel ls and J .A . Dutton

holds relat ing f^ and f and an asymptotically stable set A of

x = f (x,\x) near the origin, then x = fm(x3\i) has an asymptotically

stable set near the origin with the same Borsuk shape as A .

Conversely, for each asymptotically stable set near the origin of

a; = fj.x, \i) , there i s one of the same Borsuk shape for x = f (x, \i)

provided n i s large enough. Informally, these results amount to

the statement that asymptotically stable sets of the Navier-stokes

equation, bifurcating from a steady solution, are recovered up to

Borsuk shape by those of large enough Galerkin approximants.

1. Introduction

The method of truncated models, or Galerkin approximants, is a much

used practical technique for investigating the evolution of hydrodynamic

and thermo-hydrodynamic systems near steady solutions. (Dutton [4],

Dutton and Wells [5].)

A typical example of such a system is given by the Boussinesq

equations for an incompressible fluid box heated from below.

u
V

w

- %.grad(u)

+ oAV - v.grad(v)

(1.1) 3w/3* = 3P/33 + oAw + 6 - v.grad(w) = N

36/3t = A6 + CJXU = v.grad(d)

0 = 3w/3x + 3U/3J/ + 3u/3s

Here V = (u}v3w) describes the velocity of the fluid at a given point,

8 the temperature and P the pressure, a the Prandtl number and X the

rate of heating. We impose free, conducting boundary conditions by

requiring that

(1.2) 0 = W - du/Zz = 3V/33 at 3 = 0 and s = 1

and

(1.3) 6 = TQ at z = 0 and 9 = Tj at z = 1

so that X is proportional to T« - T~ . If the box i s described by
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Bifurcating attractors 32 3

0 < z < 1, 0 < x < 2d and 0 < y ̂  2d0 , and we impose periodic

boundary conditions on the vertical boundaries, then the 5-tuples of the

form

(1.4)

u

V

w

8

p

=

trig^x^y^z)

trig2(xayiz)

trig3(x,y,z)

trig4(x,y,z)

tria~(x.i/.z)

form a basis B for a Hilbert space in which the dynamical system (1) may

be presumed to evolve, where

(1.5) triq(x,y,z) = [sin or cos] (•na-.x/d^) • [sin or cos](-na0y/dn) •

[sin or COS]("TTWJ3J

with a1t a0} and n integral. A steady solution of (1) is given by the

zero 5-tuple; a member of the Hilbert space near that solution is given by

C = Z{c(e)z\z in B3 o(z) e J?}(1.6)

with

(1.7) 1512 =

small, where the numbers a(e) are suitable positive weights. A finite

truncated model attempting to describe the evolution of small perturbations

of the zero solution is constructed as follows. First one selects a finite

vector subspace F of the Hilbert space. Then any member £ may be

written uniquely

(1.8) 5 =

with T J in F and C E, orthogonal to F . Now, the system determined

by
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(1.9) = T for g in

' 0

0

0

cos (trx/d- ) sin (z )

' 0

0

0

sin(2z)

m 0

35/3*

3? /U

0

evolves in a way that one hopes will reflect in some way the evolution of

the system (1) . We say that (1.9) is the Galerkin or finite truncated

model determined by the subspace F . One choice for the subspace F is

the subspace spanned by the 5-tupules.

sin (Tix/dj ) cos (z)

(1.10) -(T\/d1)cos(vx/d1)si.n(z)

0

0

The resulting truncated model is the celebrated Lorenz model.

The Lorenz model 1101 appears to possess a strange attractor; in

fact, Williams' geometric model of the Lorenz model of the Lorenz system

does contain a strange attractor (Williams, USD- Furthermore, higher

order truncated models of various thermo-hydrodynamic systems generate

highly suggestive but non-conclusive numerical evidence pointing to the

presence of strange attractors (Nese [J2]). Thus, one may expect that the

presence of strange attractors in these finite truncated models eventually

may be rigorously established.

The central problem in this area is whether the original hydrodynamic

and thermo-hydrodynamic system itself possesses strange attractors. And,

unfortunately, even if the presence of strange attractors is established

in an associated finite model, one cannot conclude a priori that the

original system contains these attractors because the truncation obscures

the relations between the two systems. Thus we arrive at the problem of

deciding when the presence of a strange attractor in a suitable finite

truncated model implies the presence of a similar attractor in the original
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system.

Having isolated the latter problem, we must bring it into a more

specific and manageable form. To do so, we examine two issues: the

definition of the notion of a strange attractor and the relevance of a

nearby steady solution. To deal with the first issue, we restrict our-

selves for the moment to finite dimensional flows and note that even for

these the appropriate definition of an attractor is still not clear. The

broadest definition is a partly measure theoretic one and is given by

Guckenheimer and Holmes [6]. This definition requires an attractor to be

an invariant set posessing a dense orbit and a basin of positive measure.

What is intended is that an attractor be an irreducible invariant set

detectable by an iterative numerical approximation of the flow. Since our

methods are not measure theoretic, we turn to an alternate detection

procedure, which, is still computable in principle. This procedure is to

build polyhedra P with the property that the flow at any point of the

frontier FP of P is directed into the interior of P . Then the object

of interest is the w-limit set contained in P . Of course, such an

w-limit set is a compact asymptotically stable set; conversely, a theorem

of Wilson [J9] implies that a compact asymptotically stable set is

contained in a trapping manifold: A trapping manifold is a smooth compact

submanifold M of the phase space, having the same dimension as the phase

space and having the property that at any point of the boundary %M of M

the flow is directed into the interior of M . From such a trapping

manifold, traingulation theorems (Hirsch and Mazur [7]) may be used to

construct the polyhedron P . Thus, compact asymptotically stable sets

are exactly the sets detected by such polyhedra.

What is the relationship between attractors in the sense of

Guckenheimer-Holmes and asymptotically stable sets? Clearly any one of

the latter is one of the former, but Guckenheimer-Holmes attractors may

possess infinitely generated cohomology while asymptotically stable sets

always have the Borsuk shape (Borsuk [2]) of polyhedrons, and thus,

cohomology of finite type. In particular a set which is minimal in the

class of asymptotically stable sets need not be minimal in the class of

Guckenheimer-Holmes attractors. An example of an attractor with infinitely

generated cohomology is the solenoidal flow described by Poston and Stewart
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[74] while in an example of an asymptotically stable set i s Williams'

geometric Lorenz at tractor (Williams USD. In fact, this Lorenz attractor

has the shape of a figure eight, and Williams describes i t as the

intersection of the forward iterates of a polyhedral basin. In general an

asymptotically stable set containing a dense orbit contains no proper

asymptotically stable subsets; Williams' geometric Lorenz attractor is

such a set . Now, a reasonable conjecture is tnat a Guckenheimer-Holmes

at t ractor is a countable nested intersection of a asymptotically stable

sets containing i t . The solenoidal flow of Poston and Stewart is such an

at t ractor and the remarkable curve of Birkhoff [7] appears to be such an

at t ractor . If this conjecture is valid, then an asymptotically stable

set which contains a dense orbit is minimal also in the class of

Guckenheimer-Holmes at t ractors . In any case, we will regard asymptotically

stable sets , their shapes and cohomology groups as justifiable objects of

in teres t in the study of dynamical systems, and i t i s the appearance of

these in the infinite dimensional dynamical system that we will seek to

infer from their appearance in suitable finite truncated models of that

system.

The second issue that we encounter i s the need for a nearby steady

solution. This need is dictated by our technique, which is to apply the

Center Manifold Theorem. Rather than to attempt to define a reasonable

concept of nearness, we include the requirement of nearness by focusing

our attention on bifurcation of asymptotically stable sets from steady

solutions. In this case we obtain our result, spelled out in greater

detai l in the next two sections.

THEOREM. In a Navier Stokes dynamiaaZ system, if an asymptotioally
stable set bifurcates from a steady solution, then an asymptotically stable
set of the same Borsuk shape bifurcates from the corresponding steady
solution in any sufficiently large finite truncated model.

This theorem i s the principal consequence of the more technical
Theorem 1 in Section 2. A par t i a l converse to the theorem above also
appears in the Section as Theorem 2. Here our intention is only to clarify,
with minimum technicality, the claim being made in the theorem above, and
thus in the theorems of Section 2.
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There are two issues involved in the clarification of the theorem

above, the meaning of Borsuk shape and the role played by the possible

breakdown of strong solutions of the Navier Stokes equations.

The technical definition of Borsuk shape is to be found in [2].

It is not necessary for the purpose of this paper to repeat that complicated

definition here, but only to characterize the notion of Borsuk shape for

asymptotically stable sets. A characterization is the following:

Borsuk Shape Two asymptotically stable sets, possibly in distinct

dynamical systems, have the same Borsuk shape if and only if their basins

have the same homotopy type.

This characterization is all we will use to prove the theorem above.

To illustrate the notion of shape for the convenience of the reader, we

point out that a single point, a circle and a figure eight all have

distinct shapes; the Lorenz attractor has the shape of a figure eight; an

Ostlund-Sethna-Siggia-Rand [13] wrinkled torus has the shape of an

ordinary 2-torus; and the solenoidal attractor described by Poston and

Stewart [2] has a shape distinct from all the foregoing. Finally, any

contractible compact space has the shape of a point.

As suggested above, Cech cohomology groups are natural invariants of

shape. A simpler invariant is the Euler Number E(A) of a compact space

A • characterized as follows:

1. If A and g are compact spaces of the same shape, then

E(A) = E{B) .

2. If A is a contractible compact space, then E(A) = 1

3. If A and B are compact subspaces of the same space, then

E(A u S) = E(A) + E(B) - E(A n B) .

With this well-known characterization of the Euler Number, it is easy to

distinguish the shapes of many simple spaces such as spheres and polyhedrons.

For each example, the reader may calculate in a few steps that the Euler

Number of a point is 1 , that the Euler Number of a circle is 0 , and

that the Euler Number of a figure eight is -1 .
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The value of the notion of shape arises from the fact that it affords

a means for a coarse classification of attractors. Of course, the Euler

Number affords the means for an even coarser classification of attractors.

For example, if the Euler Number of an attractor is known to be -1 , then

it cannot possibly be a closed orbit.

Besides that of the meaning of Borsuk shape, the second issue that

the theorem above raises is the problem of the possible breakdown of

strong solutions. Here we remark that for the hypotheses of the Weissler

Theorems [77] (which we describe in Section 3 and thereafter) to be

satisfied, our Hilbert space H = H. in Section 4 must be at least the

classical space V in which strong solutions reside, or a subspace of a

higher Sobolev space. Thus, strong solutions may well break down after

a finite time depending on the V-norm of the initial condition. However,

our asymptotically stable sets are compact, as guaranteed for example by

Constantin, Foias and Temam [3]. Sufficiently small invariant

neighborhoods are then bounded in the 7-norm so that the F-norm of a

solution in such a neighborhood cannot become infinite. Then a result of

Temam [76] implies that the solution is defined for all positive times.

Thus it is legitimate to speak of asymptotically stable sets in V an

higher (divergence free) Sobolev spaces.

Finally, we remark that the approach of this paper was inspired by

the presentation of Lanford's proof of the Center Manifold Theorem in

Marsden-McCracken [77]. Since that book appeals to the Weissler Theorems

rather than the more classical Foias-Temam development, so do we.

Consequently, Sections 3 to 5 contain recollections of this known material

and the necessary adaptation of that material to our purpose. The new

material - the proof of our theorems - begins in Section 6, but we doubt

that it can be read without Sections 3 to 5. Unfortunately, this approach

results in the theorems not being expressed in terms of the standard space

V , but the translation is easily made.

2. The Theorems

If we eliminate the pressure term from a Navier-Stokes thermo-

hydrodynamic system in the usual way, we arrive at an evolution equation

of the form
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(2.1) U = AgU + pAjU + J(u)

U = 0

with AQU, Ajit and J(u) defined for all u in a pre-Hilbert space RQ

(which is a subspace of the C 4-vector fields) with norm | | . The

term J(u) is contributed by the quadratic non-linearities in the Navier-

Stokes equations, so we may assume that 0 = -j— I„ J(su) . We have chosen

a smooth steady solution as the origin of coordinates so that there is no

constant term. Finally, y is a system parameter such as the Rayleigh

number.

0Still preserving a fair degree of generality, we may assume that E

is the algebraic direct sum of the eigenspaces of An. , all finite

dimensional and all but finitely many corresponding to eigenvalues with

negative real parts. Let n be the direct sum of the eigenspaces

corresponding to eigenvalues of A. with non-negative real parts. In the

next section we will impose further conditions sufficient to ensure that

(2.1) has a solution local semigroup i.(u}]i) = (<i>+(u3\i)*v) in H & JR ,

and that this in turn has a center-unstable manifold M at the origin:

M is a U submanifold (for some k ) of H © J? , invariant under the

local semigroup, whose tangent space at the origin is H 9 JR ; it is

not necessarily unique. It is known that M is locally attracting near

the origin with respect to the local semigroup $ ; that is there exists

a. > 0 and for each T there exists e > 0 such that | |x| | + |JJ| < e

implies that Q.(x3\i) is defined for 0 <. t S T with

(2.2) 6i.stance(<tjx1v)t M) < ea"**2 .

Thus it makes sense to identify the "local asymptotic behavior" of $ near

the origin with that of $ restricted to M . Without defining explicitly

what this behaviors may be (different centre unstable manifolds would seem

to lead to different such behaviors, unless we make the definition

carefully), we see that what we are really looking for is the restriction

of $ to one center-unstable manifold; such a restriction suffices to
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determine the local asymptotic behavior. Since the germ at the origin of

an invariant set i s common to a l l centre-unstable manifolds a t the origin,

any one of these suffices to determine i t . Any bifurcation that takes

place a t (u,\i) = (030) i s determined by such a germ; thus we may

regard in particular any bifurcation at (u3 \i) = (0,0) as part of the

local asymptotic behavior of $ near the origin, which i s completely

determined by any single center-unstable manifold.

Since $ restricted to M is a (j local semi-flow on a finite

dimensional u manifold M , i t is completely determined by i t s (C^~ )

vector field L(ut]i) for (u}\i) e M . Let IT: H •+ H be orthogonal

projection. Then there i s a neighborhood U of the origin in F e J? on

which a CT~ vector field L i s well-defined by the characterization

(2.3) fir © id)L(u,v) = L(n(u)3\i) .

The local semiflow f of i is equivalent to that L that is <b\M , via

•n © id , so the local asymptotic behavior of ¥ is equivalent to that of

<b\M and so, in turn to that of $ . Finally then, it is the (j~ vector

field L on the open subset U of H ©iff that we seek.

We wish to determine L as the limit in the C;~ topology of u~

vector fields L on U arising from finite dimensional systems. These

systems will be certain Galerkin approximants of (2,1) in H . We recall

how to construct a Galerkin approximant of a system such as (2.1) : We let

F be a finite dimensional subspace of E ; we let Tr_: H -*• F be the

orthogonal projection and we consider the system on F © JR given by

(2.4) v = TF(AQV + Ui^y + J(v))

V = 0

This system is called the Galerkin approximant of (2.1) determined by the

sub-space F . Clearly, if F => H , then the tangent space to the centre-

unstable manifold of (2.4) at the origin will be precisely the same as that

of $ , namely a © JR . Then the solution local semi-flow of (2.4) will
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determine a CT~ vector field L_ on a neighborhood of the origin in

H ® Iff in exactly the same way that 0 leads to L . To determine our

vector fields (P with u limit L , we let F c F c F ^ c . . . b e a

sequence of finite sums of eigenspaces of ff~ , with

(2.S) fl° = /

and

We set L = L . Then our main result is given by the following theorem.

THEOREM 1. If the system (2.1) satisfies in addition conditions

i), ii), iii) t and iv) of Section 4y then for any k < <*> there exists an

open neighborhood U of the origin in a & IR such that:

a) The fields L, L1\ L2, LS, ... are all defined in U .

b) L = Urn L } where the limit is taken in the u topology.

n-*°

We may assume that U is a compact rather than open neighborhood.

To examine the content of this Theorem, consider an asymptotically

stable invariant set A for the first line of (2.1) and \i = \ig •

Suppose that A and VQ are sufficiently close to 0 so that

A x p^ c intCir" (V)) . since then A x j^ c M n IT" (U) , we may identify

A x y^ with corresponding invariant set in U = ix \ (Xj\ig) e U) . Let

fields L and L on FT be defined by L(x}\iJ = (L (x)y0) and

L (x) = (L (x)}0) . since A x y is asymptotically stable, it follows

from Wilson [19] that there exists a trapping manifold N for A in U

for the flow L . Recall that If is a smooth compact manifold with

bounday, of dimension equal to that of a , with L directed into N
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at every point of W . Since both A and N are compact, asymptotically

stable sets of the flow of L , both with the same basin, it follows

that the Borsuk shape of A is that of N .

n ~J(.—1

On the other hand, since L approximates L in the u

topology, N will be a trapping manifold for the flow of L once n is

large enough. We conclude that for large n the Galerkin approximant

determined by F contains an asymptotically stable set of the same shape

as A . In particular, for example, both will have the same Cech

cohomology groups.

More generally, if an attractor A is the intersection of a

countable nest of asymptotically stable sets, any initial segment of the

nest may be recovered up to shape as above in sufficiently large Galerkin

approximants, so that the shape of A (and thus its cohomology) is

approximated as well as one pleases by that of asymptotically stable

sets in Galerkin approximants.

The problem remains of deciding which trapping manifolds of the

flow of L will not contribute to the cohomology of asymptotically stable

invariant sets of the flow of L (and thus, of the flow of the first part

of (2.1) with y fixed) . We evade this problem by reducing it to

knowledge of an a-priori bound on \L-L \y , where we use the version of

Theorem 1 with U compact and | |.. denotes the CT norm of vector

fields on U . Then the following theorem holds.

THEOREM 2. Let N be a trapping manifold in the interior of U

for the flow defined on H° by Ln . Suppose that for every x e 3N

the inequality

(2.7) \Ln (x)-u(x)\ > \L-Ln\v ,

where the dot indicates inner product and u is the inward unit normal
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field along ZN . Then the flow of equation (2.1) contains an

asymptotically stable set with the shape of N .

3. Weissler's Theorem

We wi l l make use of the Existence and Uniqueness of F. Weissler [J7]

and an immediate coro l la ry . In th i s section we s t a t e tha t theorem and

draw the coro l la ry .

The theorem deals with an i n i t i a l value problem in Hilber t space

(3.1) u(t) = AuCt) + Ju(t) ; u(0) = x .

tA
The operator A is the infinitesimal generator of a C- semigroup e

on E , and J is a non-linear function on a subset of E with J(0) = 0.

In addition the following hypotheses are made:

Hypotheses

tA °°
For every t > 0 , the map e J extends to a C map E ->• E .

With B(p) the closed ball of radius p in E and c (t) equal

to the Lipschitz constant of e J on B(p) , for every p > 0 there is

some e > 0 such that the function o (•) is in L (0}z)
P

Now we may state the theorem.

WEISSLER'S THEOREM. If the hypotheses above hold, then there exists

a unique local semi flow <|>, on E such that

a) For u(t) = $,a and 0 < t < T = existence time of $.a ,
~C a ty

(3.2) u(t) = etA
a + f* e(t~s)AJ(u(s))ds .

b) If v: [tfjT] -s- E is strongly measurable, essentially bounded, and
satisfies (3.2), then v(t) = u(t) .

c) If the existence time T is finite, then \u(t) \ -»• °° as t •* T .

d) If e J extends to a globally Lipschitz map, then T = °° for

all a and <j>. is a global semigroup.
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We will regard (3.2) as the statement that u(t) sa t i s f ies (1.1).

In fact (1.1) implies (3.2); Weissler proves the converse in a strong

tAsense in the case that e J: E -*• E is continuously Frechet differ-

entiable; this condition we subsume here into the hypothesis that
•hA oo

e J: E -> E be C .

We will need a corollary of Weissler1 s Theorem in the following

envi ronmen t:

i) F is another Hilbert space and \: F -*• E is a compact embedding.

ii} An operator A~ on F is the infinitesimal generator of a Cn

tAp
semigroup e on F , such that

(3.3) i o e
 F = eU ° i .

i i i ) e ° J extends to a C map, also denoted by

(3.4) e J : E -> F .

tAF
iv) The latter map e J is globally Lipschitz for all t with a(-)

in L (0tz) as above.

It follows from an application of Weissler's Theorem that we have two

E F
local semigroups $ and <j> , in E and F respectively, such that

E

For uE(t) = $EJ\(a)) and u (t) = /.(a.) we have

(3.6) uE(t) = etA(x(o.)) + /* e(t-s)AJ(uE(s))ds

and

(3.7) u (t) = e• (o.) + fQe tJ(x(u (s)) )ds
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In addition, the existence time IT in E is infintie for all (3 . Now
P

we may state the corollary we will need.

COROLLARY TO WEISSLER'S THEOREM. The existence time / in F is

also infinite for all a .

E FThus both <f>, and <fi. are global semigroups.

Proof of Corollary. Conclusion b) of Weissler's Theorem implies that

i o u^,(t) = Uj-,(t) for 0 S t ̂  T . Conclusion c) implies that
r b a,

\u Ct) | _-»•«> as t -*• T . Then (.3.7) implies that

, (t-s)Av
(3.8) \rQe

 t \

at t •*• T^ . However, our hypothesis iii) , together with the continuity

of u(t) implies that

y. (v

C3.9) t •+ fn e eJ(uvCs))ds in F

is a continuous function of t for all 0 <, t < T = <° , which cannot0 <, t < T = <° ,

approach °° as t -*• T < °°

4. Existence and uniqueness by Weissler's Theorem

To prove Theorem 1, we shall need fairly versatile guarantees of

existence and uniqueness of solution local semi-groups for systems like

(2.1). These are given by Weissler's Theorem [17]. With these in hand, we

may adapt Lanford's proof of the Center-Unstable Manifold Theorem as

presented in Marsden-McCracken [II] to the case of a flow such as that of

(2.1). The linearization at «° in that proof works because of Weissler's

Theorem, and the contraction mapping in that proof appears here as a

contraction semi-group. The center-unstable manifold in Lanford's proof

corresponds to a fixed point of the contraction mapping. Since here we

have a contraction semi-flow, the centre-unstable manifold corresponds

here to a solution of a partial differential equation with singular
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boundary conditions; the solution is unique Cin the right non-linear

function space) since the fixed point of a contraction is unique. The

same procedure may be carried out for the Galerkin approximants of Section

2 to produce solutions for their corresponding partial differential

equations. Now we apply the classic device for existence theorems in

fluid dynamics (Ladyzhenskaya [9]): The function space that contains all

the solutions of the partial differential equations is a bounded subset

of a Hilbert space; the common domain of these functions is an open

subset of the finite dimensional if 9 JR , and the functions are at least

differentiable on that domain. The boundedness and the Cantor process

enable us to select a sequence of solutions weakly convergent on a

countable dense subset of the domain; a compact map makes the convergence

strong; the local equicontinuity resulting from the differentiability

enables us to apply a suitable variant of the Arzela-Ascoli Theorem to

obtain strong convergence. A few more compact maps enable us to improve

the convergence further, so that it is compatible with the partial

differential equations, and the limit of solutions is a solution. Finally,

it is this last fact, suitably interpreted, that implies immediately the

convergence in Theorem 1.

To carry out the program above in some what greater detail, we

begin by arranging our hypotheses so that Weissler's Theorem applies. At

this point we may as well arrange for the occurrence of the compact maps

and smoothness that we need later in the argument. Our hypotheses then

are the following:

i) We are given four Hilbert completions Hj}H2,R\>^^ = B of BQ , with

the last being the completion of the original metric, together with

continuous linear maps

(4.1) H1^H2-2*H3-^-H4= E

induced by the identity on H* and which preserve orthogonality; moreover,

i7 is to be compact. Let their norms be denoted by | | . for
J. Is

i = 1,2,3,4 . Normally, the B. are Sobolev spaces.
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ii) On each of these spaces A~ extends to an operator with compact

resolvent and A. to a bounded operator. Further, we assume that A~

CO

and J extend to C maps R. •> E. , for i = 2,3 . We do not introduce

notation to distinguish the different extensions of the same operator, but

allow the context to determine them.

iiil A. is the generator of a u semigroup on each of the spaces R.

for i = 1,2,3,4 ,

tA
(4.2) e : R% -> R^

iv) for t > 0 and g: E. •*• JJ? a C function, the map

tA0
u •*• e (\iAjU + g(u)J(u)) extends to a C°° map R.-+R. . Let

a. (a,]i,g, t) for i = 1,2,3,4 be the corresponding Lipschitz constant

for the map on the a-balls of E^ . We assume that for some e > 0 and

all a > 0, a-(a,]i,g,') e L (0,e) .
Is

In the case of fluid mechanics, A~ is essentially the Laplacian

tAQ
and e is the solution to the heat equation. Since the latter is

infinitely smoothing for t > 0 and since J(u) is the standard

advection term, a quadratic form that drops differentiability by one, this

hypothesis is easily verified, though it appears complicated.

An immediate consequence of these hypotheses, given by Weissler's

Theorem, is that the system (2.1) has unique solution local semigroups in

E. e IR for i = 1,2,3,4 . Since these are unique, it follows that they

are compatible with the maps £. for i = 1,2,3 .

Finally, we will need to replace these local semiflows with global

ones. We choose 0 < e^ < e^ and we let y: JR •*• JR be a non-increasing

oo

C function such that

(4.3) y(r) = 1 for r ^ z
1
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and

(4.4) y(r) = 0 for e, < r .

Then we observe that the non-linear operator given by

(4.5) u ->• e v(\iAju. + y(\u\pJ(u))

is globally Lipschitz on H. . We may conclude from Weissler's Theorem

that there exists a unique global semiflow for i = 4

(4. 6) *| : Hi 9 m •> Ei © m

where

(4.7) 9pxtV) = (^.(x.v)^)

solving the evolution equation

(4.8) u = Avu + y(\u\Z
4)J(u)

(4.9) U = 0

in the Hilbert space H* . The corollary to Weissler's Theorem then

implies the same for i = 1,2,3 as well.

Since (.2.1) and (4.8) are identical near the origin of H = E. , they

will have the same invariant subspaces near the origin, and the same

center-unstable manifolds. Thus, we may as well assume from now on that we

are dealing with (4.8) rather than (2.1). Notice that outside a bounded

set in H^ , (4.8) agrees with the linear part of (2.1); this is the

generator of the "linearization at °° " of the solution local semigroup of

(2.1) corresponding to Lanford's linearization.

5. Lanford's Argument

Lanford's proof of the Center-Unstable Manifold Theorem applies to a

diffeormorphism rather than to a flow. The first step is to linearize the

diffeomorphism outside a ball; we have taken the corresponding step by
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replacing (2.1) with (4.8) .

We now translate his argument to our setting. Let H. be the closed

subspace of H. spanned by the generalized eigenspaces of A~

corresponding to eigenvalues with real part non-negative, and let a. be

the closed space spanned by those corresponding to eigenvalues with real

part negative. Then we may write for u e. H. ,
If

(5.1) U = V 9 W

wi th v e n. and W e H • . and
^ 1

(5.2) 4).(v 9 w,\i) = a-(v ® U,yJ 9 &.(v 9 w}\i)
"L u i*

or

(5.3) O. fy 9 W,\l) = (a.(V 9 Wjyj 9 B.(V 9 W1]l)iv)
"V 1* Is

w i t h a.(v 9 w.u) e a. and &.(v 9 u , u ) e a.
i % % I-

Define for some r £ 2

(5.4) V*. = {/.- if. o 1R -»- H8. | / is <? , \rPf(y) \ z 1 for a l l 0 <> j < r
If Is Is

and y e B? o Jff; f(0) = 0, Df(O) = 0}

where D is the Jacobian differential operator.

We wish to define for each t > 0 a mapping p.; V. -*• v. by

requiring that

(5.5) 4>|fy 9 f(v,v),\i) = a|eu ® f(v,v)3v)

or, equivalently, that

(5.6) (p -f) (a.(v <

Pis in Marsden-McCracken [II], we may check that for a fixed k > 3f if e

and t are small enough, then p.; v. •*• V\ is defined and contracting
"Is Is If
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for a l l r < k .

So far, we have merely replaced the diffeomorphism in Lanford's

proof with the local semigroup solving (2.1), and the linearization a t »

of that diff eomorphism with the global semigroup 0. , which i s sometheing
Is

like the linearization at <*> of the solution local semiflow of (2.1) .

Then the contraction map p.: v. •*• v. of Lanford's proof appears here with

% "V "V

a parameter t , apparently constrained to small values of t . However,

the global semigroup property of $. , which follows from Weissler's

Theorem, implies that
r r n I t 8 t+S
(5. 7) Pi°Pi= Pi

whenever both sides make sense. From (5.7) and the fact that p. is

globally defined, we may define p. for all t , so that p. is a global

contraction semigroup on V. for v £ k .
Is

Since p. is a global contraction semigroup, it will have a unique

fixed point f. in v. , and thegraph

(5.8) T{(f~) = (v 9 f^V^),^) I V e H^j ]i e JR]

is the (y center-unstable manifold we seek. Furthermore, since IT. is

an invariant subspace of \T. for r = l,...3k under the semigroup p. ,

we see that the fixed point of p.; if. -*• v. is f*. , independent of

r = I3...,k .

6. An infinite dimensional PDE

The advantage we gain by our alteration of Lanford's argument is that

p. is a global semigroup. From this fact and equation (5.6) we see that
cz-
f = f. in if. if and only if f satisfies
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(6.1) j ^ \ 0 fCajlCv \ 4

We re-wri te C4.8) in terms of tt. and h. components,

i> = B v + M(v,w)
(6.2) W

io = C w + H(.v,w)

with M and N the non-linear parts, satisfying

UCO) = 0
(6.3)

Wt(.O) = 0
DNCO) = 0

Then, as in Guckenheimer and Holmes [6, p.131] (6.1) becomes the partial

differential equation

(6.4) Dvf(v)v-)'IB V + M(v3f(vt\>.)~\ = C

with singular boundary conditions

(6.s) f(o) = o, zyYd?; = o

Here Dv denotes the Jacobian differential operator with respect to y

Thus we conclude that (6.4-6.5] has a unique solution in v. , and that

this solution is /. .

Notice that the domain of / in (6.4-6.5) is finite dimensional,

and that it is only the range which is infinite dimensional.

In view of the identity

(6.6) rfl ® m = 3°. 9 m for i = 1,2,3,4,

we may regard (6.4-6.5) as a partial differential equation on at 9 ]R with

values in HZ for i = l32iZi4 - The uniqueness of the solutions 4>.

implies that they are compatible; it follows then that the semigroups p.
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are compatible. Thus

(6.7) ,. °f1 = fi+1 for i - 1,2,3 .

Consequently we may abuse notation slightly and write f = f'. for

i = 1,2,3,4 from now on. Also, we write H° for ff? = H°o = E% = H°.

from now on.

7. The Galerkin approximants and their center-unstable manifolds

By taking sums of generalized eigenspaces of A~ in H. , we may

construct a sequence of f in i te dimensional vector subspaces of H. ,

(7.1) F1 <= F2 c F3

invariant under An and having dense union in if. . Let

(7.2) q. : a. •*• F

be the orthogonal projection. Of course

(.7. 3) q . = q-.-j ° i • .

The finite dimensional vector space a 9 F 9 JB determines a Galerkin

approximant of (4.8) near the origin, which in the form of (6.4) is given

by

b = B v +

(7.4) id
u

C = 0

where

and

for i = 1,2,3,4 . Because of (7.3), the Galerkin approximants obtained

from any H. are the same and we may omit the subscript.
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By repeating Lanford's argument and introducing a p a r t i a l

d i f f e r en t i a l equation as in Sections 5 and 6 for the system (7 .4) , we

conclude t ha t a center-unstable manifold of (7.4) i s given by the graph

(7.7) T(fl) = {(V 9 / V t ^ u ^ y J l u 6 ^ v e ^ l ,

where j is the unique C~ solution with derivatives bounded by 1 of

the singular first order problem

(7.8) j ^ f jj

+ \P(vsf(v5v)) f(0) = 0, vJ*(0) = 0 .

Now, the functions j ; a 9 JR -*• F may be regarded as functions

f : a 9 ]R -y H. , and so, as members of V. . But then for

j = 0}l3...,k-l and i = 1 , the sequence of jth der iva t ives

(7.9) rPf1, iPf, iPf,....

is strongly equicontinuous. In order to make use of this fact, we make two

simple observations for a finite dimensional space F , Hilbert spaces H

and H' i and L(F}H) the Banach space of linear maps F •*• H:

I) Since L(F,E) is isomorphic as a Banach space to H 9 9 H with

dim F terms, the unit ball in L(FiH) is weakly compact.

II) Suppose that H' -*• H is compact; since the induced map

L(F,H') •*• L(FjH) is essentially the map H' 9 ... 9 H' -*• H 9 ... 9 H,

it too is compact.

Now, given any subsequence of (7.9), using (I), we may select a

subsequence which converges weakly on the rational points of IT 9 Jff .

Regarding the maps f now as maps into WL » using (II) and the

compactness of 8. + 8 , , we see that our second subsequence now converges

strongly on the rational points of a 9 TR . Moreover, regarded as

arising from maps into ff~ , our original sequence (7.9) is even more

strongly equicontinuous than it is when regarded as arising from maps into
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lit . Thus, we are in a position to apply the Arzela-Ascoli Theorem

to conclude that our second subsequence converges strongly on all of

a ® JR when i t i s regarded as arising from maps into fi . Thus, any

subsequence of the sequence

(7.101 i,fi,f,f,...:nu*m+£,

contains a subsequence h yh }h 3... converging strongly to a u~

function h e V^'2 .

Consider such a sequence,

(7.11) fK = h * : [ T 9 2 R + F t

with rij < n« < w, < ... . For any given n , we will have n < n. for

large SL and we may conclude from (7.8) that

(7.12} qn
3lDvh

ZCv}V)-B V + Mv,hl(.v3v)) - C hl(v}v) - Mvrffv,^))] = 0

for large I . Notice that we have increased our subscript i from 2 to

3 ; the equation (4.2) holds with i = 2 also but i t is with i = 3 that

we will need i t . In fact, hypothesis ii) in Section 4 guarantees that the

two maps from I , x iB to ff_ given by

(7.13) (utvl+A^u

(Uj\i) -y J(u)

are continuous. Assuming in addition that k ^ 2 , we see then that we

may take the limit as SL •*• °° in the arguments of (7.12) and conclude that

the next equation holds.

(7.14) qn
3iDvh(v,v)-Bvv + U(vth(v3v)l - Ch(v^) - H(v,h(v,v))'] = 0

Since n i s arbitrary, we see that the (T~ function h: H © Hi •*• n7

o
a solution in VZ~ of (6.4-6.5). Hence h must be the unique (and soo

CT ) solution f .
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Our conclusion then is that

XtJsj,... : H° 9 m •*• fft must contain a subsequence which converges to

f° in the (f~ topology. I t follows iimnediately that

lim f = f(7.19)

in the (f~ topology on V^ . That is, the center-unstable manifolds

3
generated by Lanford's argument in our Galerkin approximants approach that

of the system (4.8) with i = 3 or 4 .

8. The dynamical systems on their center-unstable manifolds

In any dynamical system in a Hilbert space the flow near a fixed
point on i t s center-unstable manifold, may be identified with a flow near
that point, on the tangent space to that manifold at the point. Normally
one carries out this identification by means of orthogonal projection onto
that tangent space. However, in the case of the systems (6.2) and (7.4),
the center-unstable manifolds are the graphs of the globally defined

functions f° and f1 respectively, and i t i s more convenient to carry

out the identification by means of the functions f and f . One sees
immediately then that the dynamical system on the center-unstable manifold
is equivalent to the system.

(8.1)
B v +

V

t.

= L(v,\i)

(8. 2) = Ln(V:,V)

for t he system (6.2) and,

B V +

0 j

for the system (7.4) . Our hypothesis ii) implies that the function

is u . Consequently, both systems (8.1) and (8.3) are v ; moreover, it

follows from equation (7.15) that
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(8. 4) lim Ln = L

in the (y~ topology. Finally, on restr ict ing to the e--ball about 0

in H ® JR , we obtain a local center-unstable manifold for our original

system (.2.1); the system (8.1) now is equivalent to (2.1) on that manifold,

and the systems (8.2) approximate i t in the u topology.

The proof of Theorem 1 i s now complete.
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