ON SECOND DERIVATIVE ESTIMATES FOR EQUATIONS

 OF MONGE-AMPÈRE TYPENeil S. Trudinger and John I.E. Urbas

Abstract

We derive interior second derivative estimates for solutions of equations of Monge-Ampère type which extend those of Pogorelov for the case of affine boundary values. A key ingredient in our method is the existence of a strong solution of the homogeneous Monge-Amper equation.

1. Introduction

Interior second derivative estimates for convex solutions of the Monge-Ampère equation
$\operatorname{det} D^{2} u=g(x)$
were derived by Pogorelov [8], [9], under the restriction that the solution u have affine boundary values. Here g is a positive function in $C^{1,1}(\Omega)$ and Ω a convex domain in Euclidean n space, \mathbb{R}^{n}. Pogorelov's method was subsequently extended to encompass MongeAmpère type equations of the form,

$$
\begin{equation*}
\operatorname{det} D^{2} u=g(x, u, D u), \tag{1.2}
\end{equation*}
$$

```
Received 12 April 1984.
```

[^0]where g is a positive function in $C^{1,1}\left(\Omega \times \mathbb{R} \times \boldsymbol{R}^{n}\right)$, in Lions [6,7] and Gilbarg and Trudinger [2]. A somewhat different approach, embracing less smooth functions g, was given by Ivochkina [3]. In this paper we establish interior estimates for solutions subject to $C^{1 / 1}$ boundary data. In particular we prove the following.

THEOREM 1. Let Ω be a $C^{1,1}$, uniformly convex domain in \boldsymbol{R}^{n}, φ a function in $C^{1,1}(\bar{\Omega})$ and g a positive function in $C^{1,1}\left(\Omega \times R \times \mathbb{R}^{n}\right)$. Then if u is a convex classical solution of the Dirichlet problem

$$
\begin{equation*}
\operatorname{det} D^{2} u=g(x, u, D u) \quad \text { in } \Omega, \quad u=\varphi \quad \text { in } \quad \partial \Omega \tag{1.3}
\end{equation*}
$$

we have for any $\Omega^{\prime} \subset \subset \Omega$

$$
\begin{equation*}
\sup _{\Omega^{\prime}}\left|D^{2} u\right| \leqslant C \tag{1.4}
\end{equation*}
$$

where C is a constant depending on l_{y} on $n, \Omega, \Omega^{\prime},|\varphi|_{1,1 ; \Omega}, g,|u|_{0 ; \Omega}$ and the modulus of continuity of u on $\partial \Omega$.

Our derivation of Theorem 1 rests on the following existence theorem for the homogeneous Monge-Ampère equation.

THEOREM 2. Let Ω be a $C^{1,1}$, uniformly convex domain in \mathbb{R}^{n} and $\varphi \in C^{1 / 1}(\bar{\Omega})$. Then there exists a unique, convex solution $u \in C^{1,1}(\Omega) \cap C^{0,1}(\bar{\Omega})$ of the Dirichlet problem.

$$
\begin{equation*}
\operatorname{det} D^{2} u=0 \quad \text { in } \Omega, u=\varphi \quad \text { in } \quad \partial \Omega \tag{1.5}
\end{equation*}
$$

Theorem 2 improves earlier work, in particular that of Rauch and Taylor [10], concerning the existence of generalized solutions of (1.5). As in [10], the solution u is characterized as the lower boundary of the convex hull in \mathbb{R}^{n+1} of the boundary manifold $(\partial \Omega, \varphi)$. We have also been informed that a result similar to Theorem 2 has been proved by Bedford and Taylor. The passage from Theorem 2 to Theorem 1 will be accomplished with the aid of the Pogorelov method.

Theorems 1 and 2 are proved in Sections 2 and 3 of this paper. Notation, unless otherwise indicated, will follow that of the book [2] .

2. The Homogeneous Equation

In this section we will prove Theorem 2. The existence of a unique convex generalized solution of (1.5) was proved in [10] under the weaker hypotheses that Ω is bounded and strictly convex and $\varphi \in C^{0}(\bar{\Omega})$, so we need only prove the regularity assertion. Geometrically, the graph of u is the lower boundary of the convex hull of graph $\left(\left.\varphi\right|_{\partial \Omega}\right)$.

To prove that $u \in C^{0,1}(\bar{\Omega})$ we can assume without loss of generality that φ is convex, so that φ is a lower barrier for u. Also, using the convexity of u, we have

$$
\frac{u(x)-u(y)}{|x-y|} \leqslant|D \varphi|_{0 ; \Omega}
$$

for all $y \in \partial \Omega$ and $x \in \Omega$. We thus obtain a global gradient bound for u.

It remains only to prove that $u \in C^{1,1}(\Omega)$. This will be carried out in the following lemmas. Let $M=\operatorname{graph}\left(\left.u\right|_{\Omega}\right), \partial M=\bar{M} \cap(\partial \Omega \times \mathbb{R})$, and for $E \subset \mathbb{R}^{n+1}$ let $\operatorname{conv}(E)$ denote the convex hull of E. If $x, y \in \mathbb{R}^{n+1},[x, y]$ denotes the closed line segment joining x and y. LEMMA 2.1 Let T be a supporting hyperplane of M at $\xi \in M$. Then

$$
\begin{equation*}
T \cap \bar{M}=\operatorname{conv}(T \cap \partial M) \tag{2.1}
\end{equation*}
$$

Proof. For convenience we assume that $u(\xi)=0$ and $T=\left\{x \in \mathbb{R}^{n+1}: x_{n+1}=0\right\}$. Then $T \cap \bar{M}=\{x \in \bar{\Omega}: u(x)=0\}$ and $T \cap \partial M=\{x \in \partial \Omega: u(x)=0\}$.

Suppose $y \in T \cap \bar{M}-\operatorname{conv}(T \cap \partial M)$. Then there is an $n-1$
dimensional plane $S \subset T$ passing between y and conv($T \cap \partial M$) such that $d(y, S)>0$ and $d(S, \operatorname{conv}(T \cap \partial M))>0$. Let S^{+}and S^{-}denote the half spaces in \mathbb{R}^{n} associated with S. We may assume that $S=\left\{x \in \mathbb{R}^{n}: x_{1}=0\right\}$ and $S^{-}=\left\{x \in \mathbb{R}^{n}: x_{1}<0\right\}$. Assume also that conv $(T \cap \partial M) \subset S^{-}$. Then for some $\varepsilon>0$ we have $u>\varepsilon$ on $S^{+} \cap \partial \Omega$ and $u \leqslant 0$ on $S^{-} \cap \partial \Omega$. Hence for $\delta>0$ sufficiently small, $Q=\left\{x \in \mathbb{R}^{n+1}: \delta x_{1}-x_{n+1}=0\right\}$ is a hyperplane containing S,
$y \in\left\{x \in \mathbb{R}^{n+1}: \delta x_{1}-x_{n+1}>0\right\}$ and $\operatorname{graph}\left(\left.\varphi\right|_{\partial \Omega}\right) \subset\left\{x \in \mathbb{R}^{n+1}: \delta x_{1}-x_{n+1}<0\right\}$. Thus $y \notin \operatorname{conv}\left(g r a p h\left(\left.\varphi\right|_{\partial \Omega}\right)\right.$), which is a contradiction.

LEMMA 2.2 For each $\xi \in M$ there are $\zeta_{1} \in \partial M$ and $\zeta_{2} \in M$ such that $\xi \in\left[\zeta_{1}, \zeta_{2}\right] \subset \bar{M}$ and

$$
\begin{equation*}
\left|\xi-\zeta_{2}\right| \geqslant \frac{1}{2 n}\left|\zeta_{1}-\zeta_{2}\right| \tag{2.2}
\end{equation*}
$$

Proof. Let T be a supporting hyperplane of M at ξ. Then by Lemma 2.1 we may choose $n+1$ points $\xi_{1}, \ldots \xi_{n+1}$ in $T \cap \partial M$ such that $\xi \in \operatorname{conv}\left\{\xi_{i}\right\}_{i=1}^{n+1}$. From these points we may choose k points, say ξ_{1}, \ldots, ξ_{k} such that $\xi \in$ int $\operatorname{conv}\left\{\xi_{i}\right\}_{i=1}^{k}$, where int $\operatorname{conv}\left\{\xi_{i}\right\}_{i=1}^{k}$ denotes the $k-1$ dimensional interior of the simplex $P=\operatorname{conv}\left\{\xi_{i}\right\}_{i=1}^{k}$.

Let η_{i} be the unique point in ∂P such that $\xi \in\left[\xi_{i}, \eta_{i}\right]$.
Since $\xi \in$ int P, we have $\eta_{i} \in$ int F_{i} for some face F_{i} of P, and no two η_{i} lie in the same face. We will show that for some i $\zeta_{1}=\xi_{i}$ and $\zeta_{2}=\eta_{i}$ satisfy the conclusion of the lemma.

Suppose this is not the case. Then

$$
\xi \in G_{i}=\left\{x \in P: d\left(x, F_{i}\right)<\frac{1}{2 n} d\left(\xi_{i}, F_{i}\right)\right\}
$$

for all $i=1, \ldots, k$. For each $j=1, \ldots, k, \bigcap_{i \neq j} G_{i}$ is a $k-1$ dimensional parallelogram with side lengths $\frac{1}{2 n} d\left(\xi_{i}, F_{i}\right)$ for $i \neq j$, and $\xi_{j} \in \bigcap_{i \neq j} F_{i} \subset \bigcap_{i \neq j} G_{i}$ is a vertex of this parallelogram. Thus

$$
\left|\xi-\xi_{j}\right|<\frac{1}{2 n} \sum_{i \neq j} d\left(\xi_{i}, F_{i}\right)
$$

and hence

$$
\begin{aligned}
d\left(\xi_{j}, F_{j}\right) & \leqslant\left|\xi-\xi_{j}\right|+d\left(\xi, F_{j}\right) \\
& \leqslant \frac{1}{2 n} \sum_{i=1}^{k} d\left(\xi_{i} F_{i}\right) .
\end{aligned}
$$

Summing over j from 1 to k we obtain a contradiction, so the lemma is proved.

LEMMA 2.3 Let $x_{0} \in \Omega$ and $\xi_{0}=\left(x_{0}, u\left(x_{0}\right)\right)$. Then if
$x \in B=\left\{x \in \Omega:\left|x-x_{0}\right|<\frac{1}{6 n} d\left(x_{0}, \partial \Omega\right)\right\}$, we have

$$
\begin{equation*}
u(x) \leqslant u\left(x_{0}\right)+D u\left(x_{0}\right) \cdot\left(x-x_{0}\right)+C\left|x-x_{0}\right|^{2} \tag{2.3}
\end{equation*}
$$

where C depends only on $n, \quad|\varphi|_{1,1 ; \Omega}, \operatorname{diam} \Omega, d\left(x_{0}\right.$, , $\left.\Omega\right)$ and a positive lower bound R on the principal radii of curvature of $\partial \Omega$.

Proof. Let $\zeta_{1} \in \partial M$ and $\zeta_{2} \in M$ be the points associated with ξ_{0} as in Lemma 2.2. Assume for convenience that $\zeta_{2}=(0,0)$. Let $\psi: \bar{\Omega}-\{0\} \rightarrow \partial \Omega$ be the radial retraction. Then we clearly have for $x \in \bar{\Omega}-\{0\}$,

$$
\begin{equation*}
|x| \leqslant|\psi(x)| \tag{2.4}
\end{equation*}
$$

and by Lemma 2.2,

$$
\begin{equation*}
d\left(x_{0}, \partial \Omega\right) \leqslant\left|\psi\left(x_{0}\right)\right| \leqslant 2 n\left|x_{0}\right| \tag{2.5}
\end{equation*}
$$

If $x \in B^{\prime}=\left\{x \in \Omega:\left|x-x_{0}\right|<\frac{1}{4 n} d\left(x_{0}, \partial \Omega\right)\right\}$, we have

$$
\begin{align*}
d(x, \partial \Omega) & \geqslant d\left(x_{0}, \partial \Omega\right)-\left|x-x_{0}\right| \tag{2.6}\\
& \leqslant\left(1-\frac{1}{4 n}\right) d\left(x_{0}, \partial \Omega\right)
\end{align*}
$$

and also, from (2.5) ,

$$
\begin{align*}
\frac{1}{|x|} & \leqslant \frac{1}{\left|x_{0}\right|-\left|x-x_{0}\right|} \tag{2.7}\\
& \leqslant \frac{4 n}{d\left(x_{0}, \partial \Omega\right)}
\end{align*}
$$

Assuming initially that $\partial \Omega \in C^{2}$ and $\varphi \in C^{2}(\bar{\Omega})$ we define $\omega: \bar{\Omega} \rightarrow \boldsymbol{R}$ by

$$
\omega(x)= \begin{cases}\frac{|x|}{|\psi(x)|} \varphi(\psi(x)) & \text { if } x \neq 0 \tag{2.8}\\ 0 & \text { if } x=0\end{cases}
$$

Geometrically, the graph of w is the cone with base graph $\left(\left.\varphi\right|_{\partial \Omega}\right)$ and vertex $(0,0)$. Clearly, $w \in C^{2}(\bar{\Omega}-\{0\})$, and $u \leqslant w$ in Ω, by the convexity of u. Consequently the graphs of u and w are tangent at x_{0} whence u is differentiable there with $D u(x)=D w\left(x_{0}\right)$.

Furthermore, differentiating (2.8) twice, and using (2.4) and (2.7), we obtain

$$
\begin{equation*}
\left|D^{2} w\right|_{0 ; B^{\prime}} \leqslant C\left(n,|\varphi, \psi|_{2 ; B}, d\left(x_{0}, \partial \Omega\right)\right) \tag{2.9}
\end{equation*}
$$

We now proceed to obtain a bound for $|\psi|_{2 ; B}$. Clearly, we have $|\psi|_{0 ; B^{\prime}} \leqslant \operatorname{diam} \Omega$. To obtain derivative bounds, it is convenient to use polar coordinates. We write

$$
\begin{equation*}
\psi(x)=\tilde{\psi}\left(\theta, \ldots, \theta_{n-1}\right), \tag{2.10}
\end{equation*}
$$

where $\theta_{1}, \ldots, \theta_{n-1}$ are the angular variables. Then we obtain in $\bar{\Omega}-\{0\}$,

$$
\begin{equation*}
D_{i} \psi=\sum_{k=1}^{n-1} D_{\theta_{k}} \tilde{\psi} D_{i} \theta_{k} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{i j} \psi=\sum_{k, l=1}^{n-1} D_{\theta_{k} \theta_{\ell}} \tilde{\psi} D_{i} \theta_{k} D_{j} \theta_{\ell}+\sum_{k=1}^{n-1} D_{\theta_{k}} \tilde{\psi} D_{i, j} \theta_{k} . \tag{2.12}
\end{equation*}
$$

Let v be the outer unit normal to $\partial \Omega$ at $\psi(x)$, and T the tangent $n-1$ plane to $\partial \Omega$ at $\psi(x)$. Then

$$
\begin{equation*}
\frac{\psi(x) \cdot v}{|\psi(x)|}=\frac{d(0, T)}{|\psi(x)|} \geqslant \frac{d(x, \partial \Omega)}{\operatorname{diam} \Omega} . \tag{2.13}
\end{equation*}
$$

Using (2.6), (2.7) and (2.13.) we obtain from (2.11) the estimate

$$
\begin{equation*}
|D \psi|_{0 ; B} \leqslant C\left(n, \operatorname{diam} \Omega, d\left(x_{0}, \partial \Omega\right)\right), \tag{2.14}
\end{equation*}
$$

and from (2.13), also using

$$
\begin{equation*}
\left|D_{\theta_{k} \theta_{\ell}} \tilde{\psi}\right|_{0 ; B}, \leqslant C\left(n, R, d\left(x_{0}, \partial \Omega\right)\right) \tag{2.15}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left|D^{2} \psi\right|_{0 ; B}, \leqslant C\left(n, R, \operatorname{diam} \Omega, d\left(x_{0}, \partial \Omega\right)\right) \tag{2.16}
\end{equation*}
$$

Thus we have a bound for $|\psi|_{2 ; B}$, and hence

$$
\begin{equation*}
\left|D^{2} w\right|_{0 ; B}, \leqslant C \tag{2.17}
\end{equation*}
$$

where C depends on $n, R, \operatorname{diam} \Omega, d\left(x_{0}, \partial \Omega\right)$ and $|\varphi|_{2 ; \Omega}$.
Now let $\left\{\Omega_{m}\right\}$ be an increasing sequence of C^{2} uniformly convex subdomains of $\Omega, \cup \Omega_{m}=\Omega$, and $\left\{\varphi_{m}\right\} \subset C^{2}(\bar{\Omega})$ a sequence of functions converging in $C^{1, \alpha}(\bar{\Omega})$ to $\varphi, \alpha<1$, and satisfying $\left|\varphi_{m}\right|_{2 ; \Omega} \leqslant 2|\varphi|_{1,1 ; \Omega}$. Let $\omega_{m}: \bar{\Omega} \rightarrow R$ be the function defined by

$$
w_{m}(x)= \begin{cases}\frac{|x|}{\left|\psi_{m}(x)\right|} \varphi_{m}\left(\psi_{m}(x)\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

where $\psi_{m}: \bar{\Omega}-\{0\} \rightarrow \partial \Omega_{m}$ is the radial retraction. For m sufficiently large, we then have uniform bounds for $\left|D^{2} w_{m}\right|_{0 ; B}$ where $B=\left\{x \in \Omega:\left|x-x_{0}\right|<\frac{1}{6 n} d\left(x_{0}, \partial \Omega\right)\right\}$, and therefore since w_{m} converges to ω in $C^{1, \alpha}(\bar{\Omega}-\{0\}), \alpha<1$, we obtain $w \in C^{1,1}(\bar{\Omega}-\{0\})$ and

$$
\begin{equation*}
[D w]_{1: B} \leqslant C \tag{2.19}
\end{equation*}
$$

where C depends only on n, R, diam $\Omega, d\left(x_{0, \partial \Omega}\right.$ and $|\varphi|_{1,1 ; \Omega}$.
We can now obtain the conclusion of the lema by using Taylor's theorem and the fact that $D w\left(x_{0}\right)=D u\left(x_{0}\right)$.

We are now ready to complete the proof of Theorem 2. Let γ be a unit vector in \boldsymbol{R}^{n}, and form the second order difference quotient of u with respect to γ

$$
\begin{equation*}
\Delta_{\gamma \gamma}^{h} u(x)=\frac{1}{h^{2}}\{u(x+h \gamma)+u(x-h \gamma)-2 u(x)\} \tag{2.20}
\end{equation*}
$$

Then for each $\Omega^{\prime} \subset \subset \Omega$, we have, from Lemma 2.3, for all $h>0$ sufficiently small,

$$
\begin{equation*}
\left|\Delta_{\gamma \gamma}^{h} u\right|_{L}^{\infty}\left(\Omega^{\prime}\right) \ll \tag{2.21}
\end{equation*}
$$

Hence we can extract a subsequence $\left\{h_{m}\right\}$ converging to zero such that ${ }_{\Delta}^{\Delta}{ }_{\gamma} m^{h} u$ converges in the weak* topology on $L^{\infty}\left(\Omega^{\prime}\right)$ to a function $w_{\gamma} \in \cdot L^{\infty}\left(\Omega^{\prime}\right)$. Thus it follows that the distributional derivative $D_{\gamma \gamma} u$ is representable by a function in $L_{\text {loc }}^{\infty}(\Omega)$. Since γ is an arbitrary direction, we conclude that $u \in C^{1 / 1}(\Omega)$, and for each $\Omega^{\prime} \subset \subset \Omega$,

$$
\begin{equation*}
[D u]_{1 ; \Omega}, \leqslant C \tag{2.22}
\end{equation*}
$$

where C depends only on $n, R, \operatorname{diam} \Omega, d\left(\Omega^{\prime}, \partial \Omega\right)$ and $|\varphi|_{1,1 ; \Omega}$.

3. Second Derivative Estimates

In this section we will prove Theorem 1. Writing the equation (1.2) in the form

$$
\begin{equation*}
F\left(D^{2} u\right)=\log \operatorname{det} D^{2} u=f(x, u, D u) \tag{3.1}
\end{equation*}
$$

where $f=\log g$, we have

$$
\begin{gather*}
F_{i j}=u^{i j} \tag{3.2}\\
F_{i j, k \ell}=-u^{i k_{u} j \ell}=-F_{i k} F_{j \ell}
\end{gather*}
$$

where $\left[u^{i j}\right]$ denotes the inverse of $D^{2} u$.

Next, we note that any pure second derivative $D_{\gamma \gamma} u$ of a solution $u \in C^{4}(\Omega)$ of (3.1) satisfies the equation

$$
\begin{equation*}
F_{i j} D_{i j \gamma \gamma} u=\dot{F}_{i k} F_{j \ell} D_{i j \gamma} u D_{k \ell \gamma} u+D_{\gamma \gamma} f \tag{3.3}
\end{equation*}
$$

Since u is convex, we have $D_{\gamma \gamma} u \geqslant 0$, so we need only estimate $D_{\gamma \gamma} u$ from above.

```
    We now fix 䛕'\subset\subset \Omega and set }\delta=d(\mp@subsup{\Omega}{}{\prime},\partial\Omega)
\Omega'}={x\in\Omega:d(x,\partial\Omega)>\delta/2} and \Omega'" ={x\in\Omega:d(x,\partial\Omega)>\delta/4}. W
```

first prove a lower bound for $\inf (v-u)$, where v is the convex
solution of the Dirichlet problem (1.5). Let $x_{0} \in \Omega^{\prime \prime}$ and for $\sigma>0$ set

$$
\psi(x)=\psi_{\sigma}(x)=-\sigma\left((\delta / 4)^{2}-\left|x-x_{0}\right|^{2}\right)
$$

We have $D_{i j} \psi=2 \sigma \delta_{i j}$, so

$$
\operatorname{det}\left(D^{2} v+D^{2} \psi\right) \leqslant C_{1}(n) \sum_{k=1}^{n} \sigma^{k} M^{n-k}
$$

where

$$
M=\sup _{\Omega^{\prime \prime \prime}}\left|D^{2} v\right|
$$

We also have

$$
\sup _{\Omega^{\circ}}|D u| \leqslant 8 \delta^{-1}|u|_{0 ; \Omega}
$$

and hence

$$
\inf _{\Omega^{\prime \prime \prime}} g(x, u, D u) \geqslant \lambda>0
$$

where λ is a constant depending only on $|u|_{0 ; \Omega}, \delta$ and g.
Choosing $\sigma>0$ so small that

$$
C_{1}(n) \sum_{k=1}^{n} \sigma^{k} M^{n k} \leqslant \lambda
$$

and using the comparison principle, we obtain $v-u \geqslant-\psi$ in $B_{\delta / 4}\left(x_{0}\right)$, and hence

$$
\begin{equation*}
\inf _{\Omega^{\prime \prime}}(v-u) \geqslant \sigma\left(\frac{\delta}{4}\right)^{2} \tag{3.4}
\end{equation*}
$$

We now consider the function

$$
n=\eta_{\varepsilon}=(v-u-\varepsilon)^{+}
$$

in the set $\Omega_{\varepsilon}=\{x \in \Omega: \eta(x)>0\}$. Setting $\varepsilon=\frac{1}{2} \sigma(\delta / 4)^{2}$, we have $\Omega^{\prime \prime} \subset \subset \Omega_{\varepsilon}$, and we can estimate $d\left(\Omega_{\varepsilon}, \partial \Omega\right)$ from below in terms of ε, $|D v|_{0 ; \Omega}$ and a modulus of continuity for u. We then have

$$
\begin{equation*}
\sup _{\Omega_{\varepsilon}}|D u| \leqslant c_{2} \tag{3.5}
\end{equation*}
$$

and hence also

$$
\begin{equation*}
\inf _{\Omega_{\varepsilon}} g(x, u, D u) \geqslant C_{3}>0 \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\varepsilon}\left(|D f(x, u, D u)|+\left|D^{2} f(x, u, D u)\right|\right) \leqslant C_{4}, \tag{3.7}
\end{equation*}
$$

where C_{2}, C_{3} and C_{4} depend on $n,|u|_{0 ; \Omega},|\varphi|_{1,1 ; \Omega}, \Omega, d(\Omega \cdot, \partial \Omega)$, g and a modulus of continuity for u. Here we have used the estimates of the previous section to remove the dependence on v.

We now consider, in the set Ω_{ε}, the function

$$
\omega=\eta h(D u) D_{\gamma \gamma} u
$$

where $h \in C^{2}\left(\mathbb{R}^{n}\right)$ is a positive function to be chosen. We then have

$$
\begin{aligned}
& \frac{D_{i} w}{w}=\frac{D_{i} \eta}{n}+(\log h)_{p_{k}} D_{i k^{u}}+\frac{D_{i \gamma \gamma^{u}}}{D_{\gamma \gamma^{u}}}, \\
& \frac{D_{i j}{ }^{\omega}}{\omega}=\frac{D_{i} \omega D_{j} \omega}{w^{2}}+\frac{D_{i j} \eta^{\eta}}{n}-\frac{D_{i} \eta_{j} D_{j}}{\eta^{2}}+ \\
& { }^{(\log h)_{p_{k} p_{\ell}} D_{i k^{u D}} j \ell^{u+(\log h)} p_{k} D_{i j k} u+, ~} \\
& \frac{D_{i j \gamma \gamma} u}{D_{\gamma \gamma} u}-\frac{D_{i \gamma \gamma} u D_{j \gamma \gamma} u}{\left(D_{\gamma \gamma} u\right)^{2}} .
\end{aligned}
$$

Using (3.3), we obtain

$$
\begin{align*}
& \left(\eta^{h}\right)^{-1} F_{i j} D_{i j} \omega \geqslant D_{\gamma \gamma} u\left\{\frac{F_{i j} D_{i j}{ }^{n}}{n}-\frac{F_{i j} D_{i}{ }^{n} D_{j}{ }^{n}}{n^{2}}+\right. \tag{3.8}\\
& \left.(\log h)_{p_{k} p_{\ell}} F_{i j} D_{i k} u D_{j \ell} u+(\log h)_{p_{k}} F_{i j} D_{i j k} u\right\}+ \\
& F_{i k^{F}{ }_{j \ell} D_{i j \gamma} u D_{k \ell \gamma^{u}}-\frac{1}{D_{\gamma \gamma} u} F_{i j} D_{i \gamma \gamma} u D_{j \gamma \gamma} u+D_{\gamma \gamma} f .}
\end{align*}
$$

An obvious choice for h is

$$
h(p)=\exp \left(\beta|p|^{2} / 2\right), \beta>0
$$

so that

$$
{ }^{(\log h)_{p_{k}}=\beta p_{k},(\log h)_{p_{k} p_{\ell}}=\beta \delta_{k \ell} ~}
$$

and hence

$$
(\log h)_{p_{k} p_{\ell}}{ }_{i j} D_{i k} u D_{j \ell} u=\beta F_{i j} D_{i k^{u}} D_{j k}^{u=\beta \Delta u}
$$

by (3.2).
Next, making use of the estimates (3.5), (3.6) and (3.7), we obtain

$$
\begin{aligned}
D_{\gamma \gamma} u(\log h) & p_{k} F_{i j} D_{i j k} u+D_{\gamma \gamma} f=D_{k} u D_{\gamma \gamma} u\left(f_{x_{k}}+f_{z} D_{k} u+f_{p_{i}} D_{i k} u\right)+ \\
& f_{\gamma \gamma}+2 f_{\gamma z} D_{\gamma} u+2 f_{\gamma p_{i}} D_{i \gamma} u+f_{z z}\left(D_{\gamma} u\right)^{2}+ \\
& 2 f_{z p_{i} D_{\gamma} u D_{i \gamma} u+f_{p_{i} p_{j}} D_{i \gamma} u D_{j \gamma} u+f_{z} D_{\gamma \gamma} u+f_{p_{i}} D_{i \gamma \gamma} u} \\
\geqslant & g_{p_{i}}\left\{\frac{D_{i} w}{w}-\frac{D_{i} \eta}{n}\right\}_{D_{\gamma \gamma} u}-C_{5}\left\{1+\left|D^{2} u\right|^{2}+B\left(1+\left|D^{2} u\right|\right)\right\}
\end{aligned}
$$

where C_{5} depends on the same quantities as C_{2}, C_{3} and C_{4}.
In order to handle the other terms in (3.8) we regard $\omega=\omega(x, \gamma)$ as a function on $\Omega_{\varepsilon} \times \partial B_{1}(0)$ and suppose ω takes a maximum value at a point $y \in \Omega_{\varepsilon}$ and direction γ. The derivative $D_{\gamma \gamma} u(y)$ is then the maximum eigenvalue of the Hessian $D^{2} u(y)$ and by a rotation of coordinates we can assume that $D^{2} u(y)$ is in diagonal form with γ a coordinate direction. We now have

$$
\begin{aligned}
F_{i j} D_{i j} \eta & =F_{i j} D_{i j} v-F_{i j} D_{i j} u \\
& \geqslant-n
\end{aligned}
$$

Furthermore, since $D w(y)=0$, we have

$$
\begin{aligned}
& F_{i j} \frac{D_{i} n D_{j} n}{n^{2}}=\frac{\varepsilon F_{i i}\left|D_{i} \eta\right|^{2}}{n^{2}} \\
& \\
& =\sum_{i \neq \gamma} F_{i i}\left(B D_{k} u D_{i k} u+\frac{D_{i \gamma \gamma} u}{D_{\gamma \gamma}^{u}}\right)^{2}+\frac{\left|D_{\gamma} n\right|^{2}}{n^{2} D_{\gamma \gamma}^{u}} \\
& \leqslant \frac{\left|D_{\gamma} n\right|^{2}}{n^{2} D_{\gamma \gamma} u}+\sum_{i \neq \gamma} F_{i i}\left(\frac{D_{i \gamma \gamma} u}{D_{\gamma \gamma}^{u}}\right)^{2}-2 \beta \sum_{i \neq \gamma} \frac{D_{i} n D_{i} u}{n}
\end{aligned}
$$

at the point y. Also,

$$
\begin{aligned}
& \frac{1}{D_{\gamma \gamma} u}\left\{\sum_{i \neq \gamma} F_{i i}\left(D_{i \gamma \gamma} u\right)^{2}+F_{i j} D_{i \gamma \gamma} u D_{j \gamma \gamma} u\right\} \\
& =\sum_{i \neq \gamma} F_{\gamma \gamma} F_{i i}\left(D_{i \gamma \gamma}\right)^{2}+\sum_{i=1}^{n} F_{\gamma \gamma} F_{i i}\left(D_{i \gamma \gamma} u\right)^{2} \\
& \leqslant \sum_{i, j=1}^{n} F_{i i} F_{j j}\left(D_{i j \gamma} u\right)^{2} \\
& =F_{i k} F_{j \ell} D_{i j \gamma} u D_{k \ell \gamma} u
\end{aligned}
$$

at y, by virtue of our choice of coordinates. Taking the above estimates into account in (3.8), and then choosing β sufficiently large, we obtain by virtue of the strong maximum principle, ([2], Theorem 9.6)

$$
D_{\gamma \gamma} u(y) \leqslant C_{6}\left(1+\frac{1}{n(y)}\right),
$$

and hence

$$
\sup _{\Omega} w \leqslant C_{7}
$$

where C_{6} and C_{7} depend on the same quantities as C_{2}, C_{3}, C_{4} and C_{5}. Making use of (3.4), we obtain (1.4) as required.

Remarks (i) when φ vanishes on $\partial \Omega$ we can assume that Ω is an arbitrary bounded convex domain in \boldsymbol{R}^{n}.
(ii) Using Theorem 1, we may infer existence theorems for the Dirichlet problem (1.3) by direct approximation from the globally smooth case treated by Caffarelli, Nirenberg and Spruck [1], Krylov [5] and Ivochkina [4]. In particular we may obtain the results of [6], [7], [11] in this way, without having to invoke regularity considerations for generalized solutions.
(iii) Note that we only need $u \in W_{l^{4}{ }^{n}(\Omega) \cap C^{3}(\Omega) \cap C^{0}(\bar{\Omega}) \text { in the }}$ proof of Theorem 1; the assumptions on g automatically ensure such regularity for classical solutions $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$, ([2], Lemma 17.16).

References

[1] L. Caffarelli, L. Nirenberg, J. Spruck, "The Dirichlet problem for nonlinear second order elliptic equations, I. Monge-Ampère equation. Comm. Pure Appl. Math. 37 (1984), 369-402.
[2] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, 2nd edition (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983).
N.M. Ivochkina, "Construction of a priori bounds for convex solutions on the Monge-Ampère equation by integral methods", Ukrain. Math. J. 30 (1978), 32-38.
[4] N.M. Ivochkina, "Classical solvability of the Dirichlet problem for the Monge-Ampère equation", Zap. Nauc̆n. Sem. Leningrad, Otdel. Mat. Inst. Steklov. (LOMI) 131 (1983) 72-79.
[6] P.L. Lions, "Sur les equations de Monge-Ampère I", Manuscmipta Math. 41 (1983), 1-43.
[7] P.L. Lions, "Sur les equations de Monge-Ampère II" Arch. Rat. Mech. Anal. (to appear).
[8] A.V. Pogorelov, "On the regularity of generalized solutions of the equation $\operatorname{det}\left(\partial^{2} u / \partial x_{i} \partial x_{j}\right)=\varphi\left(x_{1}, \ldots, x_{n}\right)>0^{\prime \prime}$, Dokl. Akad. Nauk SSSR, 200 (1971), 1436-1440.
[9] A.v. Pogorelov, The Minkowski multidimensional problem, (Wiley, New York 1978).
[10] J. Rauch, B.A. Taylor, "The Dirichlet problem for the multidimensional Monge-Ampère equation", Rocky Mountain J. Math. 7 (1977), 345-364.
[11] N.S. Trudinger, J.I.E. Urbas, "The Dirichlet problem for the equation of prescribed Gauss curvature", Bull. Austral. Math. Soc. 28 (1983), 217-231.

Centre for Mathematical Analysis
Australian National University
G.P.O. Box 4

Canberra A.C.T. 2601
Australia.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$ \mathrm{~A} 2.00+0.00$

