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ON SECOND DERIVATIVE ESTIMATES FOR EQUATIONS

OF MONGE-AMPERE TYPE

NEIL S. TRUDINGER AND JOHN I.E. URBAS

We derive interior second derivative estimates for solutions

of equations of Monge-Ampfere type which extend those of

Pogorelov for the case of affine boundary values. A key

ingredient in our method is the existence of a strong

solution of the homogeneous Monge-Ampfere equation.

1. Introduction

Interior second derivative estimates for convex solutions of the

Monge-Ampe're equation

(1.1) det D2u = g(x)

were derived by Pogorelov [8],[9], under the restriction that the

solution u have affine boundary values. Here g is a positive

function in C1/1(fi) and £2 a convex domain in Euclidean n space,

M . Pogorelov"s method was subsequently extended to encompass Monge-

Amp&re type equations of the form,

(1.2) det Dzu = g(x,u,Du),
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322 N . S . T r u d i n g e r and J . I . E . Urbas

where g i s a posi t ive function in C 1 ' 1 (fixJ? xJT) , in Lions [6,7] and

Gilbarg and Trudinger [2] . A somewhat different approach, embracing

les s smooth functions g, was given by Ivochkina [3] . In th i s paper we

es tabl ish in ter ior estimates for solutions subject to C l r l boundary

data . In par t icular we prove the following.

THEOREM 1. Let SI be a C1'1 , uniformly convex domain in IT 3

(p a function in C1'1(jj) and g a positive function in C1'1 (fixi? xjf") .

Then if u is a convex classical solution of the Dirichlet problem

(1.3) det D2u = g(x,u,Du) in SI , u - (p in 3fi ,

we have for any SI' c c SI

(1.4) sup |D2M| < C

where C is a constant depending only on n,9. ,!!' j |tp| n - » ^ - » l
M l

1,1; il 0;s2

and the modulus of continuity of u on 3fi.

Our derivation of Theorem 1 rests on the following existence theorem

for the homogeneous Monge-Ampere equation.

THEOREM 2. Let Si be a C1'1, uniformly convex domain in if1

and (p £ Clf l(n)- Then there exists a unique, convex solution

u € Clfl(n) D COfl(fi) of the Dirichlet problem.

(1.5) det D2u = 0 in SI , u = ip in dSi .

Theorem 2 improves earlier work, in particular that of Rauch and

Taylor [10], concerning the existence of generalized solutions of (1.5).

As in [10], the solution u is characterized as the lower boundary of

the convex hull in Jt of the boundary manifold (3fi,tp) . We have

also been informed that a result similar to Theorem 2 has been proved by

Bedford and Taylor. The passage from Theorem 2 to Theorem 1 will be

accomplished with the aid of the Pogorelov method.

Theorems 1 and 2 are proved in Sections 2 and 3 of this paper.

Notation, unless otherwise indicated, will follow that of the book [2] .
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Second Derivative Estimates 323

2. The Homogeneous Equation

In this section we will prove Theorem 2. The existence of a unique

convex generalized solution of (1.5) was proved in [10] under the weaker

hypotheses that Q is bounded and strictly convex and (p £ C°(ft), so

we need only prove the regularity assertion. Geometrically, the graph of

u is the lower boundary of the convex hull of graph (<p| ) .

To prove that u £ C0/1(fJ) we can assume without loss of

generality that ip is convex, so that cp is a lower barrier for u .

Also, using the convexity of u , we have

u(x)-u(y) <

for all y £ 3ft and x £ ft . We thus obtain a global gradient bound

for u .

It remains only to prove that u £ C1'1 (fi) . This will be carried

out in the following lemmas. Let M = graph(u| ) , 3M = M 0 OftxjR) ,

and for E c i?n+ let conv(E) denote the convex hull of E . If

x,y £ Ii , [x,y] denotes the closed line segment joining x and y.

LEMMA 2.1 Let T be a supporting hyperplane of M at £ £ M .

Then

(2.1) T (\ M = conv(2TI3M) .

Proof. For convenience we assume that u(E,) = 0 and

T = {x £ l/1+1: xn+1 = 0} . Then T n M = {x € a : u(x) = 0} and

T fi W = {x £ 3fi : w(x) = 0} .

Suppose y £ T D Af - conv(2TI3M) . Then there is an n-1

dimensional plane 5 c T passing between y and conv(2T13M) such that

d(y,S) > 0 and d(5,conv(m3Af)) > 0 . Let S+ and S~ denote the

half spaces in M associated with S . We may assume that

5 = {x £ if1 •. xx = 0} and S~ = {x € J?" : a^ < 0} . Assume also that

conv(TD 3M) a S~ . Then for some e > 0 we have u > e on S+ fl 3fi

and u < 0 on 5 D 3f2 . Hence for 6 > 0 sufficiently small,

Q = {x £ Jr : 6xi - x - = 0} is a hyperplane containing S ,
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y e {x € lP+1 : 6x1 - xn+1 > 0} and graph((p|9n)

Thus j/ <£ conv (graph (tpL _)) , which is a contradiction.

LEMMA 2.2 For each E, £ M there are cx € 3W and t,z €

£ £ U ^ ^ l <= M and

(2.2) |e_C 2|.>2i | C i _ ? 2 | .

Proof. Let T be a supporting hyperplane of M at C • Then by

Lemma 2.1 we may choose n+1 points Ki>--- Kn+1
 i n T n 3A? s u c h t h a t

5 € conv{?-}-_7 - From these points we may choose k points, say
Lr is— J.

k k
C. ,...,£, such that 5 6 int conv{£.}._7 , where int conv{£-}-
denotes the k-1 dimensional interior of the simplex P = conv{£.}. .

"i1 1rm~JL.

Let n- be the unique point in 9P such that £ € [£-,n.] .
If I* Is

Since £ £ int P , we have n. € int F. for some face F • of P , and
Is If is

no two n • lie in the same face. We will show that for some £

t = £. and C = n. satisfy the conclusion of the lemma.
1 If *• Is

Suppose t h i s i s not the case. Then

for all i = l,...,k . For each j = 1, ,& , D G. is a k-1

dimensional parallelogram with side lengths .$- d(E,.,F.) for i ^ j

and ?.£ fl f.<= fi G. is a vertex of this parallelogram. Thus
3 itf % iti ̂

and hence

..F.) < 15-5-|
d <J J
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Summing over j from 1 to k we obtain a contradiction, so the lemma
is proved.

LEMMA 2.3 Let xg E » and Ko = (xQ,u{x0)) . Then if

x £ B = {x 6 a •. | x -x o | < ^-d{xo,*n)} , we have

(2.3) M(X) <u{x0) + Du{x0) • (x-x0) + C|x-xJ2 ,

where C depends only on n , |<p| , diamfl, d(x ,3f2) and a
1 f 1 F "

positive tower bound R on the principal radii of curvature of 3J2.

Proof. Let Cx £ 3W and C2 € A? be the points associated with

50 as in Lemma 2.2. Assume for convenience that £2 = (0,0). Let

ty : SI - {0} -*• 3n be the radial retraction. Then we clearly have for

x € n - {o} ,

(2 .4) | x | <

and by Lemma 2 . 2 ,

(2.5) dix^ZQ) < |*(a:o) | ^2n |xJ .

If x £ B' = {x € a : |x-xj < -^ d(xoJ3n)} , we have

(2.6) d(x,3«) ^d(xo,3£2) - |x-xj

< (1 - i )
4 n

and

(2 .

also,

7)

from (2 .

"I t _ _

5) ,

1

JxJ
<

c

/i2

4^

a

l

|-|x-xj

2

. . . /- y^2Assuming initially that 3« £ C"1 and ip £ C"1 (JJ) we define u : $J -»• J?

by

|*(*)|
if x ± 0

(2.8) u(x)

if x = 0 .
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Geometrically, the graph of W i s the cone with base graph ( i p | ) and

vertex(O,O). Clear ly , W € C2(jj-{O}), and u <W in fl, by the

convexity of u . Consequently the graphs of u and W are tangent a t

x 0 whence u i s d i f f e ren t i ab le there with Du (x ) = ftJ(x0) .

Furthermore, d i f f e r en t i a t i ng (2.8) twice, and using (2.4) and (2 .7) , we

obta in

(2.9) \D2w\Q^B, \ \

We now proceed to obtain a bound for |ij>| „, . Clearly, we have

| tp | „ , ^ diam Q . To obtain derivat ive bounds, i t i s convenient to use

po la r coordinates . We wri te

where 8 ,..., 0 1 are the angular variables. Then we obtain in

ft - {0} ,

(2.11) D .ip = Y D ipZ).9

and

(2.12) D^ = I DQ 9 i,DiQ]DjQl + I DQ VO^.9^ .

Let v be the outer unit normal to 3fl at ty (x) , and T the

tangent n-1 plane to 3ft at i\>(.x) . Then

(2.13) iji(x) .v d(O,T) ^ d(x,3n)
|i|)(x) I |t|i(ar) | diam U

Using (2.6), (2.7) and (2.13.) we obtain from (2.11) the estimate

(2.14) |£ty| „, <C(n,diam ft,

and from (2.13), also using

(2.15) \D

k"SL ""•

we obtain
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(2.16) |02t()|0_gl

Thus we have a bound for | lp | _, and hence

(2.17) l ^ l <

where C depends on rt,i?,diamft ,<i(Xp, 3fi) and |q>| .

Now l e t {SI } be an increasing sequence of C2 uniformly convex

subdomains of SI, U Si = SI , and {(p } c; C2 (fj) a sequence of functionsm m

converging in C1' (£5) to <p , a < 1 , and sat isfying

| t p | o < 2 | i p | n . Let W : Q -*• J? be the function defined by
'it £ f it ± a ± / iv Til

|x[ ,, . , ,
n—' ' i tp Ity (x)) i f x ?* 0

D i f x = 0 ,

where ii :JJ-{O}->-3fJ is the radial retraction. For m sufficiently
m m

large, we then have uniform bounds for I^^mln-B w n e r e

B = {x £ n : |x-x I < — d{x ,3fl)} , and therefore since W converges

to W in ClfCt(n-{0}) , a < 1 , we obtain w £ Clfl(n-{0}) and

(2.19) [Du)]i-B < ° '

where C depends only on n,i?,diam fi,d(x.,3fi) and |(p| . n .

We can now obtain the conclusion of the lemma by using Taylor's

theorem and the fact that ftJ(x0) = Du(.x0) .

We are now ready to complete the proof of Theorem 2. Let y be a

unit vector in IT , and form the second order difference quotient of u

with respect to y

(2.20) Ah M(X) = ̂ r iu(x+hy) + u[x-hy) - 2w(x)} .
YY h2

Then for each SI' cc SI , we have, from Lemma 2 .3 , for a l l h > 0

suff ic ient ly small,
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(2.21) \Syu\L-iat) < C .

Hence we can extract a subsequence {h } converging to zero such that
m

171 * °°

A u converges in the weak topology on L (J)') to a function

W E L (ft1). Thus it follows that the distributional derivative D u

CO

is representable by a function in L. (fi) . Since y is an arbitrary

direction, we conclude that u € Clfl(ft) , and for each P,1 cell ,

(2.22) l-n

where C depends only on n,i?,diam n,d(n',3Q) and |(p| o .

3. Second Derivative Estimates

In this section we will prove Theorem 1. Writing the equation (1.2)

in the form

(3.1) F(D2u) = log det Dzu = f(x,u,Du) ,

where f = log g , we have

(3.2) F..=u^

where [u ] denotes the inverse of D2u .

Next, we note that any pure second derivative D u of a solution

u e C"*(fi) of (3.1) satisfies the equation

(3.3) F. .D. . u = F..F..D. . uD, . u + DF..F..D. . uD, . u + D f

Since u is convex, we have D w > 0 , so we need only estimate D u

from above.

We now fix W c c ft and set 6 = d(il' ,dil) ,

SI" = {x£Q : d(x,Zil) > 6/2} and W" = {x £ fi : d(x,3JJ) > 6/4} . We
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firs t prove a lower bound for inf (v-u) , where V i s the convex
a"

solution of the Dirichlet problem (1.5). Let arfl £ Q" and for a > 0

set

=i(ia(x) = - a((6/4)
2 - |x-xj2) .

We have D. .ty = 2a6. . , so

!<»> I< C

where M = sup |D V\ .
SI'"

We also have

sup \Du\ < 86"1|w|

and hence

inf g(x,u,Du) > X > 0 ,

where X is a constant depending only on |a| . ,6 and g

Choosing a > 0 so small that

C (n) I a rf1 < X

and using the comparison principle, we obtain u - u > - i/) in B... (xo)i

and hence

(3.4) inf (V-u) > a - .

fi" ^ -1

We now consider the function

n = n = (V-u-z)

in the se t (I = {x £ SI : r](x) > 0} . Sett ing e = i a ( 6 / 4 ) 2 , we have

Si" c c £5 , and we can estimate d[Sl ,3ft) from below in terms of e ,
C £

|Z>y| o and a modulus of continuity for u . We then have
0; W

(3.5) sup \Du\ < Cz
e
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and hence also

(3.6) inf g{x,u,Du) 2 C, > 0inf g(x,u,Du)
e

and

(3.7) sup(\Df(x,u,Du) | + \D2f(x,u,Du)

where C,,, C^ and C ̂ depend on n, |w|0.fi , |ip|x 1.n , fi

g and a modulus of continuity for u . Here we have used the estimates

of the previous section to remove the dependence on V .

We now consider, in the set fl , the function

w = r\h{Du)D u ,

where h € C2 (M ) is a positive function to be chosen. We then have

D.w D.T\
-^- = — + (log h) D..u

D. u

D..W D.WDJJ 0 . . n D .rp .r\

~lr~ w2 + n " n2

D. . u D. uD. u
ZJYY tYY JYY

Using (3.3) , we obtain

(3.8) ^h^F^D^W > Dyyu .
F. .D. .n F . .C.nD.

T-3 13 1-3 T< 3

( l o g h) F..D.,uD..u+ (log h) F..D..,u > +
p? %3 %k 3 pk %3 V3

F.,F..V. .vuDvnvu - •= F..D. uD. u + D f .
%k 3*- ^JY k*-Y D u ^t7 vyy JYY YY"̂
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An obvious choice for h i s

hip) = exp(B|p|z/2) , 0 > 0 ,

so that

(log fc)pfe = BPfe . dog h

and hence

( l o g

by (3.2).

Next, making use of the estimates (3.5), (3.6) and (3.7), we obtain

V ( l o g h)Pk
FijDmu + V =

2 / D uD. u + f D. uD . u + f D u + f D. u
Jzpi y ly ViVj *y J Y s YY pi *yy

D.W D.Tt)

i ~\ Drtu~ C
5

 { 1 +
 I D 2 " I 2

where Cs depends on the same quantities as C2, C and C^ .

In order to handle the other terms in (3.8) we regard W = w(x,y)

as a function on fi x 3B (0) and suppose w takes a maximum value at

a point y € fi and direction y • The derivative D u(y) is then

the maximum eigenvalue of the Hessian Dzu(y) and by a rotation of

coordinates we can assume that D2u(y) is in diagonal form with y a

coordinate direction. We now have

F. .D. -n = F. .D. .V - F. .D. .u
t̂7 13 %o 13 13 id

> - n .

Furthermore, since Dw{y) = 0 , we have

https://doi.org/10.1017/S0004972700002069 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002069


332 •N.S. T r u d i n g e r and J . I . E . Urbas

F. .
n2 n2

I *«
D. u
t-YYD, uD . u +

k -Lk D u
YY 0 u

YY

T\2D u if
YY

at the point y . Also,

1 *<,\ D. u
•z-YY

D u
YY

- 2 6
D. vD.

YY
.•L. F;.-(D. u)z+F . .D. uD. u\

^3 •Z-YY «7YY J

? F..(D. u) + I F F..{D. u)
YY 11- t-YY tti YY U

F..F..(D.. u)2

1

at j/, by virtue of our choice of coordinates. Taking the above

estimates into account in (3.8), and then choosing 3 sufficiently

large, we obtain by virtue of the strong maximum principle, ([2],

Theorem 9.6)

and hence

sup w <« C

a 7

where C and C depend on the same quantities as C , C . C

C Making use of (3.4), we obtain (1.4) as required.

Remarks (i) When (p vanishes on 3ft we can assume that ft is an

arbitrary bounded convex domain in IT .

and

https://doi.org/10.1017/S0004972700002069 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002069


Second Derivative Estimates 333

(ii) Using Theorem 1, we may infer existence theorems for the

Dirichlet problem (1.3) by direct approximation from the globally smooth

case treated by Caffarelli, Nirenberg and Spruck [1], Krylov [5] and

Ivochkina [4]. In particular we may obtain the results of [6], [7], [11]

in this way, without having to invoke regularity considerations for

generalized solutions.

(iii) Note that we only need u € {/""(«) n C3 (ft) 0 C° (fj) in the
loc

proof of Theorem 1; the assumptions on g automatically ensure such

regularity for classical solutions u € C2 (Q) fi C° (£5) , ([2], Lemma 17.16).
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