ON SECOND DERIVATIVE ESTIMATES FOR EQUATIONS OF MONGE-AMPÈRE TYPE

NEIL S. TRUDINGER AND JOHN I.E. URBAS

We derive interior second derivative estimates for solutions of equations of Monge-Ampère type which extend those of Pogorelov for the case of affine boundary values. A key ingredient in our method is the existence of a strong solution of the homogeneous Monge-Ampère equation.

1. Introduction

Interior second derivative estimates for convex solutions of the Monge-Ampère equation

(1.1)
$$\det D^2 u = g(x)$$

were derived by Pogorelov [8],[9], under the restriction that the solution u have affine boundary values. Here g is a positive function in $C^{1,1}(\Omega)$ and Ω a convex domain in Euclidean n space, \mathbb{R}^{n} . Pogorelov's method was subsequently extended to encompass Monge-Ampère type equations of the form,

(1.2)
$$\det D^2 u = g(x, u, Du),$$

Received 12 April 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 \$A2.00 + 0.00

where g is a positive function in $C^{1,1}(\Omega \times \mathbb{R} \times \mathbb{R}^n)$, in Lions [6,7] and Gilbarg and Trudinger [2]. A somewhat different approach, embracing less smooth functions g, was given by Ivochkina [3]. In this paper we establish interior estimates for solutions subject to $C^{1,1}$ boundary data. In particular we prove the following.

THEOREM 1. Let Ω be a $C^{1,1}$, uniformly convex domain in \mathbf{R}^n , φ a function in $C^{1,1}(\overline{\Omega})$ and g a positive function in $C^{1,1}(\Omega \times \mathbf{R} \times \mathbf{R}^n)$. Then if u is a convex classical solution of the Dirichlet problem

(1.3)
$$\det D^2 u = g(x, u, Du) \quad in \quad \Omega, \quad u = \varphi \quad in \quad \partial \Omega,$$

we have for any $\Omega' \subset \subset \Omega$

$$(1.4) \qquad \sup_{\Omega'} |D^2 u| \leq C$$

where C is a constant depending only on $n, \Omega, \Omega', |\varphi|_{1,1;\Omega}, g, |u|_{0;\Omega}$ and the modulus of continuity of u on $\partial\Omega$.

Our derivation of Theorem 1 rests on the following existence theorem for the *homogeneous* Monge-Ampère equation.

THEOREM 2. Let Ω be a $C^{1,1}$, uniformly convex domain in \mathbb{R}^n and $\varphi \in C^{1,1}(\overline{\Omega})$. Then there exists a unique, convex solution $u \in C^{1,1}(\Omega) \cap C^{0,1}(\overline{\Omega})$ of the Dirichlet problem. (1.5) det $D^2u = 0$ in Ω , $u = \varphi$ in $\partial\Omega$.

Theorem 2 improves earlier work, in particular that of Rauch and Taylor [10], concerning the existence of generalized solutions of (1.5). As in [10], the solution u is characterized as the lower boundary of the convex hull in \mathbb{R}^{n+1} of the boundary manifold $(\partial\Omega, \varphi)$. We have also been informed that a result similar to Theorem 2 has been proved by Bedford and Taylor. The passage from Theorem 2 to Theorem 1 will be accomplished with the aid of the Pogorelov method.

Theorems 1 and 2 are proved in Sections 2 and 3 of this paper. Notation, unless otherwise indicated, will follow that of the book [2] .

Second Derivative Estimates

2. The Homogeneous Equation

In this section we will prove Theorem 2. The existence of a unique convex generalized solution of (1.5) was proved in [10] under the weaker hypotheses that Ω is bounded and strictly convex and $\varphi \in C^0(\overline{\Omega})$, so we need only prove the regularity assertion. Geometrically, the graph of u is the lower boundary of the convex hull of graph $(\varphi|_{\Omega})$.

To prove that $u \in C^{0,1}(\overline{\Omega})$ we can assume without loss of generality that φ is convex, so that φ is a lower barrier for u. Also, using the convexity of u, we have

$$\frac{u(x)-u(y)}{|x-y|} \leq |D\varphi|_{0;\Omega}$$

for all $y \in \partial \Omega$ and $x \in \Omega$. We thus obtain a global gradient bound for u .

It remains only to prove that $u \in C^{1,1}(\Omega)$. This will be carried out in the following lemmas. Let $M = \operatorname{graph}(u|_{\Omega})$, $\partial M = \overline{M} \cap (\partial \Omega \times \mathbb{R})$, and for $E \subset \mathbb{R}^{n+1}$ let $\operatorname{conv}(E)$ denote the convex hull of E. If $x, y \in \mathbb{R}^{n+1}$, [x, y] denotes the closed line segment joining x and y.

LEMMA 2.1 Let T be a supporting hyperplane of M at $\xi \in M$. Then

(2.1)
$$T \cap \overline{M} = \operatorname{conv}(T \cap \partial M).$$

Proof. For convenience we assume that $u(\xi) = 0$ and $T = \{x \in \mathbb{R}^{n+1} : x_{n+1} = 0\}$. Then $T \cap \overline{M} = \{x \in \overline{\Omega} : u(x) = 0\}$ and $T \cap \partial M = \{x \in \partial \Omega : u(x) = 0\}$.

Suppose $y \in T \cap \overline{M} - \operatorname{conv}(T \cap \partial M)$. Then there is an n-1 dimensional plane $S \subset T$ passing between y and $\operatorname{conv}(T \cap \partial M)$ such that d(y,S) > 0 and $d(S,\operatorname{conv}(T \cap \partial M)) > 0$. Let S^+ and S^- denote the half spaces in \mathbb{R}^n associated with S. We may assume that $S = \{x \in \mathbb{R}^n : x_1 = 0\}$ and $S^- = \{x \in \mathbb{R}^n : x_1 < 0\}$. Assume also that $\operatorname{conv}(T \cap \partial M) \subset S^-$. Then for some $\varepsilon > 0$ we have $u > \varepsilon$ on $S^+ \cap \partial \Omega$ and $u \leq 0$ on $S^- \cap \partial \Omega$. Hence for $\delta > 0$ sufficiently small, $Q = \{x \in \mathbb{R}^{n+1} : \delta x_1 - x_{n+1} = 0\}$ is a hyperplane containing S,

323

324 N.S. Trudinger and J.I.E. Urbas $y \in \{x \in \mathbb{R}^{n+1} : \delta x_1 - x_{n+1} > 0\}$ and graph $(\varphi|_{\partial \Omega}) \subset \{x \in \mathbb{R}^{n+1} : \delta x_1 - x_{n+1} < 0\}$. Thus $y \notin \operatorname{conv}(\operatorname{graph}(\varphi|_{\partial \Omega}))$, which is a contradiction.

LEMMA 2.2 For each $\xi \in M$ there are $\zeta_1 \in \partial M$ and $\zeta_2 \in M$ such that $\xi \in [\zeta_1, \zeta_2] \subset \overline{M}$ and

$$|\xi-\zeta_2| \ge \frac{1}{2n} |\zeta_1-\zeta_2|$$

Proof. Let T be a supporting hyperplane of M at ξ . Then by Lemma 2.1 we may choose n+1 points ξ_1, \dots, ξ_{n+1} in $T \cap \partial M$ such that $\xi \in \operatorname{conv}\{\xi_i\}_{i=1}^{n+1}$. From these points we may choose k points, say ξ_1, \dots, ξ_k such that $\xi \in \operatorname{int} \operatorname{conv}\{\xi_i\}_{i=1}^k$, where $\operatorname{int} \operatorname{conv}\{\xi_i\}_{i=1}^k$ denotes the k-1 dimensional interior of the simplex $P = \operatorname{conv}\{\xi_i\}_{i=1}^k$.

Let n_i be the unique point in ∂P such that $\xi \in [\xi_i, n_i]$. Since $\xi \in \text{int } P$, we have $n_i \in \text{int } F_i$ for some face F_i of P, and no two n_i lie in the same face. We will show that for some i $\zeta_1 = \xi_i$ and $\zeta_2 = n_i$ satisfy the conclusion of the lemma.

Suppose this is not the case. Then

$$\xi \in G_{i} = \{x \in P : d(x, F_{i}) < \frac{1}{2n} d(\xi_{i}, F_{i})\}$$

for all i = 1, ..., k. For each j = 1, ..., k, $\bigcap_{i \neq j} G_i$ is a k-1dimensional parallelogram with side lengths $\frac{1}{2n}d(\xi_i, F_i)$ for $i \neq j$, and $\xi_j \in \bigcap_{i \neq j} F_i \subset \bigcap_{i \neq j} G_i$ is a vertex of this parallelogram. Thus

$$|\xi - \xi_j| < \frac{1}{2n} \sum_{i \neq j} d(\xi_i, F_i) ,$$

and hence

$$d(\xi_j, F_j) \leq |\xi - \xi_j| + d(\xi, F_j)$$
$$\leq \frac{1}{2n} \sum_{i=1}^k d(\xi, F_i) .$$

Summing over j from 1 to k we obtain a contradiction, so the lemma is proved.

LEMMA 2.3 Let
$$x_0 \in \Re$$
 and $\xi_0 = (x_0, u(x_0))$. Then if
 $x \in B = \{x \in \Omega : |x-x_0| < \frac{1}{6n} d(x_0, \partial\Omega)\}$, we have

(2.3)
$$u(x) \leq u(x_0) + Du(x_0) \cdot (x-x_0) + C|x-x_0|^2$$
,

where C depends only on n, $|\Psi|_{1,1;\Omega}$, diam Ω , $d(x_0, \partial \Omega)$ and a positive lower bound R on the principal radii of curvature of $\partial \Omega$.

Proof. Let $\zeta_1 \in \partial M$ and $\zeta_2 \in M$ be the points associated with ξ_0 as in Lemma 2.2. Assume for convenience that $\zeta_2 = (0,0)$. Let $\psi : \overline{\Omega} - \{0\} \Rightarrow \partial \Omega$ be the radial retraction. Then we clearly have for $x \in \overline{\Omega} - \{0\}$,

$$|x| \leq |\psi(x)|,$$

and by Lemma 2.2,

$$(2.5) d(x_0, \partial\Omega) \leq |\psi(x_0)| \leq 2n |x_0|.$$
If $x \in B' = \{x \in \Omega : |x-x_0| < \frac{1}{4n} d(x_0, \partial\Omega)\}$, we have
$$(2.6) d(x, \partial\Omega) \geq d(x_0, \partial\Omega) - |x-x_0|$$

$$\leq (1 - \frac{1}{4n}) d(x_0, \partial\Omega) ,$$

and also, from (2.5) ,

(2.7)
$$\frac{1}{|x|} \leq \frac{1}{|x_0| - |x - x_0|}$$
$$\leq \frac{4n}{d(x_0, \partial\Omega)} .$$

Assuming initially that $\partial \Omega \in C^2$ and $\varphi \in C^2(\overline{\Omega})$ we define $\omega : \overline{\Omega} \to \mathbb{R}$ by (|x|)

(2.8)
$$\omega(x) = \begin{cases} \frac{|w|}{|\psi(x)|} \varphi(\psi(x)) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Geometrically, the graph of w is the cone with base graph $(\varphi|_{\partial\Omega})$ and vertex (0,0). Clearly, $w \in C^2(\bar{\Omega} - \{0\})$, and $u \leq w$ in Ω , by the convexity of u. Consequently the graphs of u and w are tangent at x_0 whence u is differentiable there with $Du(x) = Dw(x_0)$. Furthermore, differentiating (2.8) twice, and using (2.4) and (2.7), we obtain

(2.9)
$$|D^2w|_{0;B} \leq C(n, |\varphi, \psi|_{2;B}, d(x_0, \partial\Omega))$$
.

We now proceed to obtain a bound for $|\psi|_{2;B}$. Clearly, we have $|\psi|_{0;B} \leq \operatorname{diam} \Omega$. To obtain derivative bounds, it is convenient to use polar coordinates. We write

(2.10)
$$\psi(x) = \psi(\theta_1, \ldots, \theta_{n-1}),$$

where $\theta_1, \ldots, \theta_{n-1}$ are the angular variables. Then we obtain in $\bar{\Omega} = \{0\}$,

$$(2.11) D_i \psi = \sum_{k=1}^{n-1} D_{\theta_k} \tilde{\psi}_{D_i \theta_k}$$

and

(2.12)
$$D_{ij}\psi = \sum_{k,l=1}^{n-1} D_{\theta_k}\theta_k \tilde{\psi}_{i}^{j}\theta_k D_{j}\theta_l + \sum_{k=1}^{n-1} D_{\theta_k}\tilde{\psi}_{ij}\theta_k.$$

Let ν be the outer unit normal to $\partial\Omega$ at $\psi(x)$, and T the tangent n-1 plane to $\partial\Omega$ at $\psi(x)$. Then

(2.13)
$$\frac{\psi(x) \cdot v}{|\psi(x)|} = \frac{d(0,T)}{|\psi(x)|} \ge \frac{d(x,\partial\Omega)}{diam \Omega}$$

Using (2.6), (2.7) and (2.13) we obtain from (2.11) the estimate

,

(2.14)
$$|D\psi|_{0:B} \leq C(n, \operatorname{diam} \Omega, d(x_0, \partial\Omega))$$

and from (2.13), also using

(2.15)
$$|D_{\theta_{k}\theta_{k}}\tilde{\psi}|_{0;B} \leq C(n,R,d(x_{0},\partial\Omega)) ,$$

we obtain

Second Derivative Estimates

(2.16)
$$|D^2\psi|_{0;B'} \leq C(n,R,\operatorname{diam}\Omega,d(x_0,\partial\Omega))$$

Thus we have a bound for $|\psi|_{2,R}$, and hence

$$|D^2\omega|_{0;B} \leq C$$

where C depends on $n, R, \text{diam } \Omega, d(x_0, \partial \Omega)$ and $|\varphi|_{2,\Omega}$.

Now let $\{\Omega_m\}$ be an increasing sequence of C^2 uniformly convex subdomains of Ω , U $\Omega_m = \Omega$, and $\{\varphi_m\} \subset C^2(\bar{\Omega})$ a sequence of functions converging in $C^{1,\alpha}(\bar{\Omega})$ to φ , $\alpha < 1$, and satisfying $|\varphi_m|_{2;\Omega} \leq 2|\varphi|_{1,1;\Omega}$. Let $w_m : \bar{\Omega} \neq \mathbb{R}$ be the function defined by

$$\omega_{m}(x) = \begin{cases} \frac{|x|}{|\psi_{m}(x)|} \phi_{m}(\psi_{m}(x)) & \text{if } x \neq 0 \\\\ 0 & \text{if } x = 0 \end{cases}$$

where $\psi_m : \overline{\Omega} - \{0\} \neq \partial\Omega_m$ is the radial retraction. For m sufficiently large, we then have uniform bounds for $|D^2 w_m|_{0,B}$ where $B = \{x \in \Omega : |x-x_0| < \frac{1}{6n} d(x_0, \partial\Omega)\}$, and therefore since w_m converges to w in $C^{1,\alpha}(\overline{\Omega} - \{0\})$, $\alpha < 1$, we obtain $w \in C^{1,1}(\overline{\Omega} - \{0\})$ and

$$(2.19) [Dw]_{1:B} \leq C$$

where C depends only on $n, R, \text{diam } \Omega, d(x_0, \partial \Omega)$ and $|\varphi|_{1,1;\Omega}$.

We can now obtain the conclusion of the lemma by using Taylor's theorem and the fact that $Dw(x_0) = Du(x_0)$.

We are now ready to complete the proof of Theorem 2. Let γ be a unit vector in \mathbf{R}^{n} , and form the second order difference quotient of u with respect to γ

(2.20)
$$\Delta_{\gamma\gamma}^{h}u(x) = \frac{1}{h^{2}} \{u(x+h\gamma) + u(x-h\gamma) - 2u(x)\}$$

Then for each $\Omega' \subset \subset \Omega$, we have, from Lemma 2.3, for all h > 0 sufficiently small,

$$|\Delta_{\gamma\gamma}^{h}u|_{L^{\infty}(\Omega')} \leq C$$

Hence we can extract a subsequence $\{h_m\}$ converging to zero such that $\begin{array}{l}h_m\\ \Delta_{\gamma\gamma} u\\ \gamma\gamma \end{array}$ converges in the weak topology on $L^\infty(\Omega^*)$ to a function $w_\gamma \in L^\infty(\Omega^*)$. Thus it follows that the distributional derivative $D_{\gamma\gamma} u$ is representable by a function in $L^\infty_{loc}(\Omega)$. Since γ is an arbitrary direction, we conclude that $u \in C^{1+1}(\Omega)$, and for each $\Omega^* \subset \subset \Omega$,

(2.22)
$$[Du]_{1,0} \leq C,$$

where C depends only on $n, R, \text{diam } \Omega, d(\Omega^{\prime}, \partial \Omega)$ and $|\varphi|_{1,1:\Omega}$.

3. Second Derivative Estimates

In this section we will prove Theorem 1. Writing the equation (1.2) in the form

(3.1)
$$F(D^2u) = \log \det D^2u = f(x,u,Du)$$
,

where $f = \log g$, we have

$$F_{ij} = u^{ij}$$

$$F_{ij,k\ell} = - u^{ik} u^{j\ell} = - F_{ik}F_{j\ell} ,$$

where $[u^{ij}]$ denotes the inverse of D^2u .

Next, we note that any pure second derivative $D_{\gamma\gamma} u$ of a solution $u \in C^{4}(\Omega)$ of (3.1) satisfies the equation

$$(3.3) F_{ij}D_{ij\gamma\gamma}u = F_{ik}F_{jk}D_{ij\gamma}uD_{kk\gamma}u + D_{\gamma\gamma}f.$$

Since u is convex, we have $D_{\gamma\gamma} u \ge 0$, so we need only estimate $D_{\gamma\gamma} u$ from above.

We now fix
$$\Omega' \subset \subset \Omega$$
 and set $\delta = d(\Omega', \partial\Omega)$,
 $\Omega'' = \{x \in \Omega : d(x, \partial\Omega) > \delta/2\}$ and $\Omega''' = \{x \in \Omega : d(x, \partial\Omega) > \delta/4\}$. We

328

first prove a lower bound for $\inf_{\Omega^{"}} (v-u)$, where v is the convex $\Omega^{"}$ solution of the Dirichlet problem (1.5). Let $x_0 \in \Omega^{"}$ and for $\sigma > 0$ set

$$\psi(x) = \psi_{\sigma}(x) = -\sigma((\delta/4)^2 - |x-x_0|^2)$$
.

We have $D_{ij}\psi = 2\sigma\delta_{ij}$, so

$$\det (D^2 v + D^2 \psi) \leq C_1(n) \sum_{k=1}^n \sigma^k M^{n-k} ,$$
$$M = \sup_{\Omega^{1:n}} |D^2 v| .$$

where

We also have

$$\sup_{\Omega'''} |Du| \leq 8\delta^{-1} |u|_{0;\Omega} ,$$

and hence

$$\inf_{\Omega'''} g(x,u,Du) \ge \lambda > 0 ,$$

where λ is a constant depending only on $|u|_{0;\Omega}$, δ and g. Choosing $\sigma > 0$ so small that

$$C_{1}(n) \sum_{k=1}^{n} \sigma^{k} M^{n-k} \leq \lambda$$

and using the comparison principle, we obtain $v - u \ge -\psi$ in $B_{\delta/4}(x_0)$, and hence

(3.4)
$$\inf_{\Omega''} (v-u) \ge \sigma \left(\frac{\delta}{4}\right)^2.$$

We now consider the function

$$\eta = \eta_{\varepsilon} = (v - u - \varepsilon)^{+}$$

in the set $\Omega_{\varepsilon} = \{x \in \Omega : \eta(x) > 0\}$. Setting $\varepsilon = \frac{1}{2}\sigma(\delta/4)^2$, we have $\Omega'' \subset \subset \Omega_{\varepsilon}$, and we can estimate $d(\Omega_{\varepsilon}, \partial\Omega)$ from below in terms of ε , $|Dv|_{0;\Omega}$ and a modulus of continuity for u. We then have (3.5) $\sup_{\Omega_{\varepsilon}} |Du| \leq C_{2}$, and hence also

(3.6)
$$\inf_{\substack{\Omega \\ \varepsilon}} g(x,u,Du) \ge C_3 > 0$$

and

(3.7)
$$\sup_{\Omega_{E}} (|Df(x,u,Du)| + |D^{2}f(x,u,Du)|) \leq C_{\mu},$$

where C_2 , C_3 and C_4 depend on n, $|u|_{0;\Omega}$, $|\phi|_{1,1;\Omega}$, Ω , $d(\Omega',\partial\Omega)$, g and a modulus of continuity for u. Here we have used the estimates of the previous section to remove the dependence on v.

We now consider, in the set $\Omega_{_{\rm F}}$, the function

$$w = \eta h(Du) D_{\gamma \gamma} u$$
,

where $h \in C^2(\mathbb{R}^n)$ is a positive function to be chosen. We then have

$$\frac{D_i w}{w} = \frac{D_i \eta}{\eta} + (\log h)_{p_k} D_{ik} u + \frac{D_{iYY} u}{D_{YY} u},$$

$$\frac{D_{\ldots}w}{w} = \frac{D_{\ldots}wD_{\ldots}w}{w^2} + \frac{D_{\ldots}n}{n} - \frac{D_{\ldots}nD_{\ldots}n}{n^2} + \frac{D_{\ldots}n}{n}$$

$$(\log h)_{p_k} p_k \frac{D_{ik} u D_{jk} u}{p_k v} + (\log h)_{p_k} \frac{D_{ijk} u}{p_k v} + \frac{D_{ijk} u}{p_k v} + \frac{D_{ijk} u}{p_k v} \frac{D_{ijk} u}{p_k v} + \frac{D_{ijk} u}{p_k v} \frac{D_{ijk} u}{p_k v} + \frac{D_{ijk}$$

Using (3.3), we obtain

(3.8)
$$(n^{h})^{-1}F_{ij}D_{ij}w \ge D_{\gamma\gamma}u \left\{ \frac{F_{ij}D_{ij}n}{n} - \frac{F_{ij}D_{i}nD_{j}n}{n^{2}} + (\log h)_{p_{k}}P_{k}F_{ij}D_{ik}uD_{jk}u + (\log h)_{p_{k}}F_{ij}D_{ijk}u \right\} +$$

$$F_{ik}F_{jk}D_{ij\gamma}uD_{kk\gamma}u - \frac{1}{D_{\gamma\gamma}u}F_{ij}D_{i\gamma\gamma}uD_{j\gamma\gamma}u + D_{\gamma\gamma}f.$$

330

An obvious choice for h is

$$h(p) = \exp(\beta |p|^2/2) , \beta > 0$$

so that

$$(\log h)_{p_k} = \beta p_k$$
, $(\log h)_{p_k} p_l = \beta \delta_{kl}$.

and hence

$$(\log h)_{P_k P_k} F_{ij} D_{ik} u D_{jk} u = \beta F_{ij} D_{ik} u D_{jk} u = \beta \Delta u$$

by (3.2).

Next, making use of the estimates (3.5), (3.6) and (3.7), we obtain

$$\begin{split} D_{\gamma\gamma}^{u}(\log h) & p_{k}^{F} i j^{D} i j k^{u} + D_{\gamma\gamma}^{f} f = \beta D_{k}^{u} D_{\gamma\gamma}^{u} (f_{x_{k}}^{} + f_{z}^{} D_{k}^{u} + f_{p_{i}}^{} D_{i k}^{u}) + \\ & f_{\gamma\gamma}^{} + 2 f_{\gamma z}^{} D_{\gamma}^{u} + 2 f_{\gamma p_{i}}^{} D_{i \gamma}^{u} u + f_{zz}^{} (D_{\gamma}^{u})^{2} + \\ & 2 f_{zp_{i}}^{} D_{\gamma}^{u} D_{i \gamma}^{u} + f_{p_{i}}^{} D_{i \gamma}^{} D_{j \gamma}^{u} + f_{z}^{} D_{\gamma\gamma}^{u} u + f_{p_{i}}^{} D_{i \gamma\gamma}^{u} \\ & \geq g_{p_{i}}^{} \left(\frac{D_{i}^{w}}{w} - \frac{D_{i}^{} \eta}{\eta} \right) D_{\gamma\gamma}^{} u - C_{5}^{} \left\{ 1 + |D^{2}u|^{2} + \beta(1+|D^{2}u|) \right\} \,, \end{split}$$

where C_5 depends on the same quantities as C_2 , C_3 and C_4 .

In order to handle the other terms in (3.8) we regard $w = w(x,\gamma)$ as a function on $\Omega_{\varepsilon} \times \partial B_1(0)$ and suppose w takes a maximum value at a point $y \in \Omega_{\varepsilon}$ and direction γ . The derivative $D_{\gamma\gamma}u(y)$ is then the maximum eigenvalue of the Hessian $D^2u(y)$ and by a rotation of coordinates we can assume that $D^2u(y)$ is in diagonal form with γ a coordinate direction. We now have

$$F_{ij}D_{ij}n = F_{ij}D_{ij}v - F_{ij}D_{ij}u$$
$$\geq -n .$$

Furthermore, since $D\omega(y) = 0$, we have

$$F_{ij} \frac{D_i n D_j n}{n^2} = \frac{\sum F_{ii} |D_i n|^2}{n^2}$$
$$= \sum_{i \neq \gamma} F_{ii} \left[\beta D_k u D_{ik} u + \frac{D_{i\gamma\gamma} u}{D_{\gamma\gamma} u} \right]^2 + \frac{|D_\gamma n|^2}{n^2 D_{\gamma\gamma} u}$$
$$\leq \frac{|D_\gamma n|^2}{n^2 D_{\gamma\gamma} u} \neq \sum_{i \neq \gamma} F_{ii} \left[\frac{D_{i\gamma\gamma} u}{D_{\gamma\gamma} u} \right]^2 - 2\beta \sum_{i \neq \gamma} \frac{D_i n D_i u}{n}$$

at the point y. Also,

$$\frac{1}{D_{\gamma\gamma}u} \left\{ \sum_{i \neq \gamma}^{\Sigma} F_{ii} (D_{i\gamma\gamma}u)^{2} + F_{ij} D_{i\gamma\gamma}u D_{j\gamma\gamma}u \right\}$$

$$= \sum_{i \neq \gamma}^{\Sigma} F_{\gamma\gamma} F_{ii} (D_{i\gamma\gamma}u)^{2} + \sum_{i=1}^{n}^{T} F_{\gamma\gamma} F_{ii} (D_{i\gamma\gamma}u)^{2}$$

$$\leq \sum_{i,j=1}^{n}^{F} F_{ii} F_{jj} (D_{ij\gamma}u)^{2}$$

$$= F_{ik} F_{jk} D_{ij\gamma} u D_{kk\gamma}u$$

at y, by virtue of our choice of coordinates. Taking the above estimates into account in (3.8), and then choosing β sufficiently large, we obtain by virtue of the strong maximum principle, ([2], Theorem 9.6)

$$D_{\gamma\gamma} u(y) \leq C_6 \left(1 + \frac{1}{\eta(y)}\right)$$
,

and hence

$$\sup_{\Omega_{\varepsilon}} w \leq C_{\gamma}$$

where C_6 and C_7 depend on the same quantities as C_2 , C_3 , C_4 and C_5 . Making use of (3.4), we obtain (1.4) as required.

Remarks (i) When φ vanishes on $\partial\Omega$ we can assume that Ω is an arbitrary bounded convex domain in \mathbf{R}^n .

(ii) Using Theorem 1, we may infer existence theorems for the Dirichlet problem (1.3) by direct approximation from the globally smooth case treated by Caffarelli, Nirenberg and Spruck (1], Krylov (5] and Ivochkina [4]. In particular we may obtain the results of [6], [7], [11] in this way, without having to invoke regularity considerations for generalized solutions.

(iii) Note that we only need $u \in W^{4,n}(\Omega) \cap C^{3}(\Omega) \cap C^{0}(\overline{\Omega})$ in the loc proof of Theorem 1; the assumptions on g automatically ensure such regularity for classical solutions $u \in C^{2}(\Omega) \cap C^{0}(\overline{\Omega})$, ([2], Lemma 17.16).

References

- [1] L. Caffarelli, L. Nirenberg, J. Spruck, "The Dirichlet problem for nonlinear second order elliptic equations, I. Monge-Ampère equation. Comm. Pure Appl. Math. 37 (1984), 369-402.
- [2] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, 2nd edition (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983).
- [3] N.M. Ivochkina, "Construction of a priori bounds for convex solutions on the Monge-Ampère equation by integral methods", Ukrain. Math. J. 30 (1978), 32-38.
- [4] N.M. Ivochkina, "Classical solvability of the Dirichlet problem for the Monge-Ampère equation", Zap. Naučn. Sem. Leningrad, Otdel. Mat. Inst. Steklov. (LOMI) 131 (1983) 72-79.
- [5] N.V. Krylov, "Boundedly inhomogeneous elliptic and parabolic equations in domains", Izvestia Akad. Nauk. SSSR, 47, (1983), 75-108.
- [6] P.L. Lions, "Sur les equations de Monge-Ampère I", Manuscripta Math.
 41 (1983), 1-43.
- [7] P.L. Lions, "Sur les equations de Monge-Ampère II" Arch. Rat. Mech. Anal. (to appear).
- [8] A.V. Pogorelov, "On the regularity of generalized solutions of the equation $det(\partial^2 u/\partial x_i \partial x_j) = \varphi(x_1, \dots, x_n) > 0$ ", Dokl. Akad. Nauk SSSR, 200 (1971), 1436-1440.

- [9] A.V. Pogorelov, The Minkowski multidimensional problem, (Wiley, New York 1978).
- [10] J. Rauch, B.A. Taylor, "The Dirichlet problem for the multidimensional Monge-Ampère equation", *Rocky Mountain J. Math.* 7 (1977), 345-364.
- [11] N.S. Trudinger, J.I.E. Urbas, "The Dirichlet problem for the equation of prescribed Gauss curvature", Bull. Austral. Math. Soc. 28 (1983), 217-231.

Centre for Mathematical Analysis Australian National University G.P.O. Box 4 Canberra A.C.T. 2601 Australia.