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COMPACT QUANTUM GROUPS AND THEIR COREPRESENTATIONS

Huu HUNG BUI

A compact quantum group is defined to be a unital Hopf C*-algebra generated
by the matrix elements of a family of invertible corepresentations. We present a
version of the Tannaka-Krein duality theorem for compact quantum groups in the
context of abstract categories; this result encompasses the result of Woronowicz
and the classical Tannaka-Krein duality theorem. We construct the orthogonality
relations (similar to the case of compact groups). The Plancherel theorem is then
established.

INTRODUCTION

The Gelfand-Naimark theorem provides a contravariant equivalence X i—> C(X)
between the category of compact Hausdorff spaces and the category of commutative
unital C* -algebras. It is known that every compact Lie group is isomorphic as a topo-
logical group to a compact subgroup of GL(n, C) and that every compact group is a
projective limit of compact Lie groups. Woronowicz denned in [14] a compact matrix
pseudogroup to be a unital Hopf C* -algebra generated by the matrix elements of one
invertible matrix; and hence it can be viewed as a compact quantum Lie group. Follow-
ing [3] and [11], we define a compact quantum group as the inductive limit of a family
of Woronowicz's compact matrix pseudogroups.

Monoidal categories now form the right framework for the study of quantum groups,
see [6, 7, 8, 9, 16]. In this paper, we generalise the duality theorem of Woronowicz in
[15] to the case of our compact quantum groups. This is a noncommutative version of
the classical Tannaka-Krein duality theorem. Here we deal with abstract categories in
contrast to these two last results, which were treated in the context of the category of
finite dimensional Hilbert spaces; see also [4]. Another proof, which has more categorical
flavour and is based on the result of Joyal and Street [6], is given in [2].

Woronowicz proved in [14, Section 5] that the matrix elements of two nonequiv-
alent irreducible corepresentations are orthogonal, but the orthogonality of the matrix
elements of each irreducible corepresentation was left open there. In this paper we show
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74 H.H. Bui [2]

that with a suitable basis, the matrix elements of each irreducible corepresentation are
orthogonal. Our formula here is completely similar to the case of compact groups.
We define the Fourier transformation and establish the Plancherel theorem using these
orthogonality relations.

Our work is organised as follows. In Section 1 we define a compact quantum
group to be a unital Hopf C* -algebra generated by the matrix elements of a family of
invertible corepresentations. In Section 2 we establish the existence of the Haar measure
on compact quantum groups. With the Haar measure it is quite easy to decompose an
invertible corepresentation into irreducible subcorepresentations. Then we gather some
important properties of unitary corepresentations, which say that the category of finite
dimensional unitary corepresentations has subobjects and direct sums. The role of the
coinverse is completely ignored in this section. In Section 3 we prove a version of the
Tannaka-Krein duality theorem for our compact quantum groups. We follow [6] by
replacing concrete monoidal C* -categories in [15] by abstract monoidal C* -categories
equipped with faithful monoidal linear *-functors. In Section 4 we use the material
established in Section 3 to prove the orthogonality relations for our compact quantum
groups. We show that the Fourier transformation is a unitary.

1. COMPACT QUANTUM GROUPS

Let AQ be a *-algebra with a unit / . A unital *-homomorphism A : AQ —> AQ®AQ

is called a comultiplication on Ao if (A ® id) o A = (id <g> A) o A. Let V be a finite
dimensional vector space and let B(V) denote the algebra of linear maps on V. An
element a € B(V) ® Ao is called a corepresentation of Ao on V if

(id <g> A)(a) = (a ® I)(id <g> r ) ( a <g> I).

Here r denotes the twist map r(a <g>b) =b<8>a. Pick a basis { ej } for V and let { e* }
denote the dual basis for the vector space V* of linear functional on V. We define
linear maps 6ij : V —> V by 6ij(v) = ej(u)ej. Then for any a € B(V) <g> Ao, there
is a unique matrix { a(t^J)} G Mn(Ao) such that a = $3^*,i ® a(hJ)- We refer to

a(i, j), (i, j = 1 , . . . , n ) , as the matrix elements of a with respect to the basis { ei }.
We say that (a, V) is a unitary corepresentation if V is a Hilbert space and a is a
unitary of the *-algebra B(V) <g> Ao.

Let (c*i, V\) and (a2, V2) be corepresentations of Ao • A linear map T € B(Vi, V2)

is said to intertwine a.\ and a 2 if (T® I)ot\ — a.i{T®T). The set of all linear
maps intertwining a.\ and a 2 is denoted by H o m ( a i , a 2 ) . We say that ct\ and a2 are
equivalent if Hom(o:i ,a2) contains an invertible element. The monoidal product of a\

and a 2 is defined by
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a i o a 2 = (id ® 7")(ai ® / ) ( / <g> a 2 ) .

Let Pi E B(V1@V2,Vi) and Ei G P>(Vi, Vi © V2) be the canonical projections and
embeddings. The direct sum of ct\ and a 2 is defined by

2

Note that Pi G Horn (a\ © a2, ai) and Ei G Horn (a^ ax ffi a2) .
Let W b e a subspace of V and let P G B(V, W) and E G B(VF, V) be the

canonical projection and embedding. Set (3 = (P ® I)a(E ® /) G B(W) ® A)- Then
(E1 ® /)/? = a(i? ® /) if and only if a(v ® /) G W ® Ao for all u G W. In this case,
(/3, W) is a corepresentation of Ao; we call V7 an a-invariant subspace and call (/3, W)
a subcorepresentation of (a, V).

Let (a, V) be a corepresentation of Ao. By a conjugate space of V, we mean

a vector space V together with a bijective antilinear map J : V —> V. For each

T G B(V), we define f G B(V\ by f(Ju) = J ( r«) . The conjugate {a,v\ of (a,V)

is defined by a — aJ®*.
Let F be a family of finite dimensional corepresentations of AQ • We denote by

TZp the smallest class of corepresentations that contains F and that is closed under
monoidal products, direct sums, subcorepresentations, conjugates and equivalent corep-
resentations. Then each element a in 1Zp can be written in the form

where each on is the monoidal product of a finite family of elements of F or {/3 : ft G

F}, Si e Horn (a, on) and Ri G Horn (ai, a) such that J2 Ri^i = la •
t=i

PROPOSITION 1 . 1 . Suppose that F is a family of finite dimensional corep-

resentations of Ao • Let Af denote the unital *-subalgebra generated by the matrix

elements of all elements of F. Then Ap is the linear span of elements ( / ® i d ) ( a ) ;

where f G B(Va)* and a is the monoidal product of a finite family of elements of F

or{p : (3eF}.

The proof of this proposition is similar to that of [14, Proposition 2.5].

The following definition is an analogue of the C* -algebra of continuous functions

on a compact group. See [3, Definition 4.1].

DEFINITION 1.2: Let A be a unital C* -algebra equipped with a comultiplication
A. We say that A — (A, A) is a compact quantum semigroup if there is a family F of
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finite dimensional corepresentations of A such that the unital *-subalgebra Ap gener-

ated by the matrix elements of all elements of F is dense in A. A compact quantum

semigroup A is called a compact quantum group if there is an antimultiplicative linear

map K : AF —> Ap such that «(«;(a*)*) = a for all a £ Ap, and (id® «)(a) = a" 1

for all a £ F.

We shall refer to (A, A, F, K) as a compact quantum group. We call K the coinverse

of A.

REMARK 1.3. (a) By arguments similar to those in [14, Proposition 1.8] we can show
that there is a unique *-homomorphism e : Ap —• C such that

H o (K <g> id) o A = fj, o (id <g> K) O A — e,

where fi : A (g> A —> A is defined by fj.(a <g> b) = ab. Furthermore we have

fj, o (e <g> id) o A = fi o (id <g> e) o A = id.

Therefore (^4^, A, e, K) is a Hopf *-algebra in the sense of [12, Definition 2.1].

(b) By arguments similar to those in [14, Proposition 1.9] we can show that

A o K = T o (K<S) K) O A .

2. T H E H A A R MEASURE AND UNITARY COREPRESENTATIONS

Throughout this section, A = (A, A) is a unital C* -algebra equipped with a
comultiplication A; and we shall refer to it as a Hopf C* -algebra. The space of all
continuous linear functionals of A is denoted by A*. The convolution of <j>, ip £ A* is
defined by

4>* ip = ((ptSttp) o A.

We denote by <j>*n the nth convolution power </>*•••* <f>.

The following result contains the result [14, Proposition 2.7] as a special case. Here

we use the Markov-Kakutani fixed point theorem instead of the Cesaro limit.

PROPOSITION 2 . 1 . Suppose that A = (A,A) is a unital Hopf C*-algebra.
Then for any state <f> of A, there exists a state A^ of A such that

4>* X,), = A^, = A ^ * 4>.

P R O O F : Recall that the space 5 of all states of A is a convex compact set with
respect to the weak *-topology. Fix a <j> 6 S. We define L, R : S —> S by L(rf) — <j>*r]

and R(TJ) — rj*(j>. Then L and R are continuous affine maps and LR = RL. Therefore
by the Markov-Kakutani fixed point theorem [10, Theorem 5.23], there exists Â , G <S
such that L(\<j,) — X^ — -R(A^), and this proves the desired result. D

Using Proposition 1.1 and Proposition 2.1, the proof of the following result is similar
to that of [14, Proposition 4.1].
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PROPOSITION 2 . 2 . Suppose that A = (A, A, F) is a compact quantum semi-
group. Assume that for any a in F, a and a are invertible. Let <f> be a faithful state
of A. Then there exists a unique state X^ of A such that

V * A^ = T / ( / ) A ^ = A^ * 77, V77 € A*.

The following result generalises the result [14, Theorem 4.2].

THEOREM 2 . 3 . Suppose that A = (A,A,F) is a compact quantum semigroup.
Assume that for any a in F, a and a are invertible. Then there exists a unique state
X of A such that

= A* ??, VrjeA*.

P R O O F : Let M be a finite subset of F and let A(M) denote the unital C*-

subalgebra generated by the matrix elements of all a G M. Since A(M) is separable,
A(M) admits a faithful state. Thus by Proposition 2.2 there exists a unique state XM

of A(M) such that for any £ e A(M)*, we have

AM * £ = £ * AM = Z(I)XM.

Now observe that Ap is the union of all AM where M are finite subsets of F.
For any finite subsets M and N of F, by the uniqueness of AM and XN, they are
just the restrictions of AMUAT to A(M) and A(N). Thus for any a € A M f~l A^r,
we have AM (a) = Ajv(a). Therefore we can define a linear functional Ao on Ap by
X0(a) = AM(O) if a S M . Clearly Ao is bounded on AF and hence extends to a
bounded linear functional A on A. Let 77 € A*. For any a € A M , we have

(77 * A)(a) = (»j ® A)(A(a)) = (77M ® AM) (A(o))

= (T)M * A M ) ( « ) = •nM{I)^M{a) = T7(/)A(a).

Therefore 77 * A = 77(7)A. The other equality can be proved in the same way, and hence
we get the desired result. D

We shall refer to the state A as the Haar measure for the compact quantum semi-

group (A,A,F).

We remark that the existence of the Haar measure can be proven in a more general

context, see [13]. - —

By using the Haar measure A, we can show that for any invertible finite dimensional

corepresentation (a, V) of A, there exists a structure of Hilbert space on V so that a

becomes a unitary corepresentation on V; see [14, Theorem 5.2].
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THEOREM 2 . 4 . Any finite dimensional unitary corepresentation of a unital Hopf
C* -algebra A — (A, A) is the direct sum of irreducible unitary subcorepresentations.

PROOF: Let (a, V) be a finite dimensional unitary corepresentation of A. Since
Horn (a, a) is a finite dimensional C* -algebra, there are minimal projections m 6

n
Horn (a, a) such that Hi^j = Sij and Ẑ Mi = la- Put Vi = Hi{V) and let Pi €

t=i

B(V, Vi) be the canonical projections. Since fii G Horn (a, a) , it follows that
{m®I)a{P*®I)=a(P*®I).

Therefore Vi are a-invariant subspaces, and hence aj = (Pi <g> I)a(P* ® /) are sub-
corepresentations of A on Vi. Since a is unitary and PiP* = Iv{ and P*Pi =
Hi € Horn (a, a), it follows that o^ are unitaries. Since mnj — Sitj, it follows that
PiPj = Sij and then a is the direct sum of a^. Since Hi are minimal, we deduce that
c*i are irreducible. D

By using the coinverse K, the result [14, Theorem 4.5] is now immediately from
Theorem 2.4.

THEOREM 2 . 5 . Let A = (A,A,F) be as in Theorem 2.3. Suppose that £ is
a family of finite dimensional irreducible unitary corepresentations of A such that the
matrix elements of all elements of C generate a dense subspace Ac of A. Then every
finite dimensional irreducible unitary corepresentation of A is equivalent to an element
of C.

PROOF: Let (/3, Vp) be any finite dimensional unitary corepresentation of A. We
claim that Horn (a,/?) ^ {0} for some a in £. Suppose that Horn (a,/3) = {0} for
all a in £ . Pick an orthonormal basis {ef } for V ,̂ and define Ofj(u) = (it|e^)ef for
u&Vp; and similarly for each (a, Va) in C. We write

Put 7 = (3oa and E = {id® \){i)• Then

7 =

Identify B(VQ, V )̂ with V̂  ® Va by the bijective linear map T \—> J2 Tei ® e ? . a n d

i
we then show that
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Let (,£Vp®Va and let $ € A*. Since <p*\- 4>(I)\, it follows that

4>{I)Et = (id ® 0 ) ( 7 )££ = (id ® <j>) (f3(E£, <8> I)a").

Therefore E£ £ Horn (a,/3) = { 0 }. It then follows that E = 0, and hence

A(/3(M)a(i,i)*)=0, Vi,j,k,l.

Since yl/; is dense in A, we get

)a') =0 , Vfc,Z, V a e A

Therefore (id® \)(@P*) — 0. On the other hand, (id® X)((3[5*) = I0 since /? is a

unitary. This contradiction proves the claim.

Now suppose that (f3, Vp) is irreducible. Pick a nonzero T s Horn (a, (3) for some

a in £ . Since a is irreducible, T*T = cla for some c > 0. We then deduce that

c~l/2T is a unitary of Horn (a, /?). D

REMARK 2.6. (a) Let A = (A,A,F) be as in Theorem 2.3. Pick a complete set
J of mutually nonequivalent irreducible corepresentations belonging to TZp • For each
(a, Va) in J, let a(i, j), (i,j — l,..., dim (a) ) , denote the matrix elements of a with
respect to a basis of Va. Using Proposition 1.1 and Theorem 2.4, we can show that Ap

is the vector space generated by the set

{a(i,j) : i,j = 1 , . . . ,d im(a) , ae J}.

By arguments similar to those in [14, Lemma 4.8], we deduce that this set is a basis

for Ap.

(b) Let A = (A,A,F) be a compact quantum semigroup. Assume that every

element of F is unitary. Then Ap is the linear span of elements ( / ® id) (a), where

/ € B(Va)* and a is the monoidal product of a finite family of elements of F or

{/?* : P 6 F}. We then deduce that Proposition 2.2 and Theorem 2.3 still hold.

3. TANNAKA-KREIN DUALITY FOR COMPACT QUANTUM GROUPS

Throughout this section, 7£ is a strict monoidal C* -category with subobjects and
direct sums in the sense of [4, Section 1]. We denote by Hilf the strict monoidal C* -
category of finite dimensional Hilbert spaces; here the monoidal product is the usual
tensor product, and the monoidal unit is the complex numbers C . If Q = (Q, A, C, j) is
a compact quantum group, we denote by Ucorepf(Q) the strict monoidal C* -category
of finite dimensional unitary corepresentations of Q.
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We recall from [7, Definition 7.2] that a monoidal category C is said to be left au-
tonomous if for any object r , there is an object r and there are arrows dr € Horn (t, rr)

and dr £ Horn {rr, L) such that

where o is the monoidal product, and t is the monoidal unit of C. We call r a left
dual of r , and we refer to the pair (#r,?9r) as an adjunction between r and r. If C is

a C*-category then r is a left dual of r with an adjunction (T?*.I?*J . Note that C is

also right autonomous.

The category Hilf is left autonomous in the following way. For each object V of
Hilf, let W be an object of Hilf equipped with a bijective antilinear map J : V —> W.

Pick an orthonormal basis {e^} for V, and define

vi) - (vi\v2): V«i,w2 G V-

Then W is a left dual of V with an adjunction (tj,tj). Also V is a left dual of W

with an adjunction [£*,£*) • Note that t* = t _. and t* =t_., with respect to an

orthonormal basis {/j} of W.

If Q is a compact quantum group, then the category Ucorepf(Q) is left au-
tonomous in the following way. For each object (a, Va) of Ucorepf(Q), put 5 = aJ®*,

where J is a bijective antilinear map from Va onto a vector space W. Define an inner
product on W so that (5, W) is a unitary corepresentation. Since a is unitary, it
follows that tj € H o r n ( t , a o a ) and tj € Horn(5 oa,t). Thus (5, W) is a left dual of
(a, Va) with an adjunction (tj,tj).

The following result is a generalisation of the classical Tannaka-Krein duality the-
orem and the result of Woronowicz [15, Theorem 1.3]. See also [6, Section 7, Theorem
3] and [2, Theorem 2.5].

THEOREM 3 . 1 . Suppose that Tt is a left autonomous strict monoidal C* -

category with subobjects and direct sums. Assume that there is a faithful monoidal

linear *-functor H : 1Z. —> Hilf. Then 71 is equivalent to Ucorepf(Q) for some

compact quantum group Q = (Q,A,C,j).

The proof of this theorem will follow from Theorem 3.3 and 3.4.

Our next purpose is to establish the notation for Theorem 3.3. The context here

is more general and more elegant than that in [15]. Our effort is to characterise
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Ucorepf(Q) as an abstract category similar to [4]. The proof of Theorem 3.3 is very
similar to proofs in [15], and for convenience we reproduce some main arguments here.

Let r be an object of TZ. Since H : TZ —> Hilf is faithful, Horn (r , r) is a finite
dimensional C*-algebra. Hence there are minimal projections fii € Horn (r.r) such that

Hi/ij = 6ij and J^Mi — A-- Since TZ has subobjects, there are arrows Vi e Horn (rj,r)
» e

such that and v\vi = Iri and v±v\ = / i j . Thus r = ^ r « - Since {fii} are minimal, {rj}
t

are irreducible. Therefore every object of TZ can be decomposed into the direct sum of
a finite number of irreducible objects.

Put tr = H(dr) and tr = H(dT). Since H is monoidal, (tr,tr) is an adjunction

between H(r) and H(r). Let J : if(r) —> H(r) be the canonical antilinear map.

Then (tr ® /) ( / ® t_ J is a bijective linear map from H(r) onto if(r), and hence

dim(if (r)) = dim(if(r)). Therefore there is a bijective antilinear map J : H{r) —>
H{r) such that (Ju1\Ju2) = (u2|wi) for all ui,u2 € i?(r). Put ip - (tr ® / ) ( / ®tj),
then V is a bijective linear map on if (?). We then deduce that

tr = (I®il>-l)tj, tr = tj(ip®I).

Put JT = ip~1J. Then we have

Put iy = t* and t^. = t*. Since if is a *-functor, we get

, t- = H(dr).

We define a model for (72, if) to be a pair (Qo, T) consisting of a unital *-algebra
Qo and a family of unitaries Tr 6 B(H(r)) ® Qo such that

for all objects r,s and /x 6 Horn(r,s). A model (Qo,T) is called a universal model
if Qo is generated by the matrix elements of all F r , and for any model (B0,H) there
is a homomorphism $ : Qo —> &o of unital *-algebras such that (id® $)(r r ) = flr

for all r. If (Qo,r) and (#o,n) are universal models then there is an isomorphism
$ : Ao —> Bo of unital *-algebras such that (id ® $)(Tr) = Ur for all r.

Let J(TZ) be a complete set of mutually nonequivalent irreducible objects; we
assume that i e J(TZ). Set
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For each r € J(R-), the canonical embedding fr i—>• [/r] from B(H(r))* into Qo is lin-

ear, and hence there exists a unique F r € B(H{r)) ®<2o such that [fr] — (fr <g> id)(Tr).

Note that if { E\tj } is a basis for B(H(r)), and { wr
iti } is the dual basis for B(H(r))*,

that is u)\AEf.A = ^ifc^t, then we have

rr =

and { [u;^-] : i,j = l,... ,dim(H(r)), r e J{Tl) } is a basis for Q0-

For each r € J(1Z), we pick an orthonormal basis { e\ } for H(r). We define

Then {6^-} is a basis for B(H(r)). We denote by { w\tj } the dual basis of { 6T
itj } for

B(H(r)Y. We define

Then { e^ } is a basis for B{H{r)). We denote by { e£^ } the dual basis of { e^- } for

B(H(r))*. If we write

then we get

Let r be any object of 7?.. Pick a decomposition £} MiA** = Ir with

Horn (r i ; r) and n € J(Jl). We define

t=i

Then for any objects r, s and any (j, 6 Horn (r, s), we have
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We define a multiplication operation on Qo by

[fr][f.] = (/r®/.

for all fr G B(H(r))*, fs G B(H(s))* and r,s G J ( f t ) . Then Qo becomes an algebra
with a unit / = [eL]. For any objects r and s, we have

rrs = rrors.

Let r G J{H). For any T G B{H{T)) and for any / r G B(H{r))*, we define

f e B(H(f)) and I G B(H(F)Y by

7Pu) = Jr(Tu), / r ( f ) = 7(T).

We define an involution operation on Qo by

[fr]* = [/r],

for all / r G B(H(r))* and r G ,7 (ft). Then Qo becomes a unital *-algebra. Each Tr

is a unitary of B(H(r)) <g> Qo.

Let (B0,II) be any model for (ft, H). Put

*([/r]) = (/ r ® td)(IIr), V/P G S(ff(r))*.

Then $ is a homomorphism of unital *-algebras, and {id® 3>)(rr) = IIr for all r .

Thus (Qo, T) is a universal model for (ft, H). If we put

9 r = ( r r ® I){id <B> r ) ( r r ® / ) , for all r,

then (Qo <8> Qo; 0 ) is a model for (ft, H). Therefore there is a unital *-homomorphism

Ao : Qo —> Qo ® Qo such that

( id®A 0 ) ( r r ) = 0 r , for all r.

Hence each Tr is a unitary corepresentation of (Qo, Ao).

We define a linear functional h0 on Qo by

P R O P O S I T I O N 3 . 2 . Let r,s e J(TZ) and r ^ s.

(i) For any / r G B(H(r)Y and / , G
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(ii) For any fr, gr e B(H(r))*,

ho([9rV[fr]) = dim^r))-1 £ g~MJ)fr{er
iti).

(iii) For any nonzero a = ^Z [fr] £ Qo >

(iv) For any i,j,k,l=l,..., dim(H(r)) ,

PROOF: (i) We write

r~s = £ (H(W) ® j)rr. (ff(^)

where /n, € Horn(rj,rs) such that ^Zuifi* = I~s, and r{ € J(1Z). We have
i

Note that for any objects r, s and t, /i i—> (J^o/i)(i9-o/t) is a bijective linear map
from Horn (rt,s) onto Horn (t,rs). Since Horn (r,s) = {0}, it follows that H(/j,i) = 0
for all i with r̂  = c. This proves (i).

(ii) By arguments similar to those in (i) with r = s, we get

ho(\9r]*[fr]) = (Sr ® /r)

Since Horn (t, rr) = Ci?r and Horn (rr, i) = C-dr, it follows that

(1)

for some scalar c. For any i with r̂  9̂  i, we have Mî r € Hom(t,rj) = {0}. Hence

rr =
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Thus cirt*{l) = 1. Note that

(2) trt*r(l) =

Now (ii) follows from (1), (2) and (3).

(iii) It is a consequence of (i) and (ii).

(iv) Using (ii), we get

P,Q

For each a E Qo, we put

11exl| = sup{||7r(o)|| : n is a nondegenerate representation on Hilbert spaces}.

Then ||a|| is finite, and then ||-|| is a C*-seminorm on Q o . The ideal Io of Qo consisting
of elements of seminorm zero is closed under the involution operation *. The canonical
quotient map q : Qo —> Qo/^o is a unital *-homomorphism. Let Q denote the
completion of Qo/Xo. We represent the C* -algebra Q on a Hilbert space by a faithful
nondegenerate representation, and then see that

| | < | | a | | , Va G Qo.

We then deduce that there is a comultiplication A : Q —> Q ®Q such that

= (g®g)oA 0 (o) , VaeQo-

Each (3r = (id ® g)(Fr) is a unitary corepresentation of (Q, A), and the matrix elements
of the family {/3r} generate Q. By Remark 2.6(b) there exists a unique Haar measure
h for (Q, A, {A-})- Let r e J"(7l) with r ^ L. Since the unit / of Qo is not in Io, it
follows that q(I) is not in the linear span of qr([tx7 "̂J]) for all i,j. By the Hahn-Banach
theorem, we can choose rj g Q* such that ?j(g(/)) = 1 and v{Q{[^itj})) = 0 for all i,j.

Using Theorem 2.3, we get

= E
k
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Therefore h o q = h0. If n is the cyclic representation of Q induced by the positive

linear functional h, then it follows from Proposition 3.2(iii) that TT O q is a faithful

nondegenerate representation of Qo- Therefore I o = {0} and || • || is a C*-norm.

We define an antimultiplicative linear map j : Qo —> Qo by

Then j(j(a)) = a and j(a*) = j(a)* for all aeA0, and {id® j)(Tr) = T* for all r.
We summarise the above discussion in the following result.

THEOREM 3 . 3 . With the above notation, Q = (Q, A, C, j) is a compact quantum

group, where £ = { r r : r 6 J(R-)} •

We define a functor H : 7Z —> Ucorepf(Q) by

H(r) = Tr and H(fj.) = H(JM).

THEOREM 3 . 4 . With the above notation:

(i) H is a fully faithful monoidal linear * -functor.

(ii) The categories H and Ucorepj (Q) are equivalent.

PROOF: (i) It is easy to show that H is a faithful monoidal linear *-functor.

To prove that H is full, let T € B(H{r),H(s)) such that

We write

J),

where Hk € Horn (rfc,r) with X f̂cMJt = IT, and ut 6 Horn (si,s) with ^vivf — Is,
k i

and rk,st £ J(H). We have

It then follows that
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If si ^ rjt, choose a linear functional rj on Qo such that

i ( [ < J ) =Srk,tSm,n> V m , n = l , . . . ,dim(H(t)),

for all i € J{71). We then deduce that H(u^)TH(nk) = 0. If s/ = rk then

for all i,j — l,... ,dim(H(rk)) • It then follows that H{vf)TH(iik) commutes with all
elements of B(H(rk)), and hence H(vf)TH(nk) = c(k,l)IH(rk) for some scalar c(k,l).
Now we get

and this proves that H is full.

(ii) The family C consists of mutually nonequivalent irreducible corepresentations

of Q, and the matrix elements of all elements of C generate Qo • By Theorem 2.4, every

object a of Ucorepf(Q) is the direct sum of irreducible unitary subcorepresentations
e

a j . By Theorem 2.5, each o^ is equivalent to an element Tri of C. If we put r = J^r t >
i

then /?(r) = F r is equivalent to Yl Tr i • Therefore a is equivalent to H(r), and hence
t

i / is an equivalence. D

4. T H E ORTHOGONALITY RELATIONS AND THE PLANCHEREL THEOREM

In this section A = (A,A,F,n) is a compact quantum group, and A is the Haar
measure for A. Let J be a complete set of mutually nonequivalent irreducible unitary
corepresentations belonging to TZp, where Up was defined just before Proposition 1.1.
We assume that the trivial one dimensional corepresentation t = 1 <g> I is in J. For
each (a, Va) in J, we pick an orthonormal basis { ef } for Va. Let Ja : Va —>• V^ be
the bijective antilinear map defining the conjugate a — aJa®* of a. We define

Then { efj } is a basis for B(Va). We denote by { efj } the dual basis of { eftj } for

B(H{r))*. We write

Then the set
{a ( i , j ) : i , j = 1 , . . . ,dim(a!), a £ J}
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is a basis for the vector space AF, where AF was defined in Proposition 1.1. We define

6?tj{u) = (u\e?)ef, \/ueVa.

We denote by {wftj } the dual basis of {0?j } for B(H(r))*.

The following result is the orthogonality relations for our compact quantum groups;
see [5, Chapter IX]. It improves the orthogonality relations of [14, Theorem 5.7.4].

THEOREM 4 . 1 . For any (a,Va) and ((3,V0) in J, we have

A(a(i,i)*/3(*,0) = dim (a)'16a06ik5jh

for all i, j = 1, . . . , dim (a) and k, I = 1,... , dim (/3).

PROOF: Let H = Ucorepf(AF). Then TZ is a left autonomous strict monoidal
C*-category with subobjects and direct sums. The forgetful functor H(a, Va) = Va is
a faithful monoidal linear *-functor. Let Qo, T and A be constructed as in Theorem
3.3. Observe that J is a complete set of mutually nonequivalent irreducible objects of
the category 72.. We define a model (̂ 4,11) for (1Z,H) by

IIa = a, for all a € 72..

Since (Qo,T) is a universal model, there is a homomorphism $ : Qo —> Ap of unital
*-algebras such that 4>([e"J]) = a(i,j) for all i, j = 1, . . . ,dim(FQ) and a in J. Now
we write

We then deduce that ^ ( [ C T ^ ] ) = ae(i, j) for all i, j . Let (a, Va) in J with a ^ t. By

the Hahn-Banach theorem, we can choose 7? 6 A* such that r](I) = 1 and r]{ag{i, j)) =

0 for all i,j. Using Theorem 2.3, we get

for all i,j. Therefore Ao$ = h0 on Qo, where ho was defined just before Proposition
3.2. It then follows that for any (a,Va) and {(3,Vp) in J, we have

for all i , j = 1, . . . ,dim(a) and k,l = 1, . . . ,dim(/3). Now using (i) and (iv) of
Proposition 3.2 we get the desired formula. D

https://doi.org/10.1017/S0004972700031439 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031439


[17] Compact quantum groups 89

REMARK 4.2. The proof of Theorem 4.1 is dependent only on Theorem 3.3 and is
independent of [14, Theorem 5.7 and Theorem 5.3]. To get the orthogonality relations
of [14] we proceed as follows. If we write

then efj = £ ca(k,i)6%j. It then follows that

Therefore the matrix elements of a with respect to the orthonormal basis { ef } are

<*e(i,j) = ^2 ca{i,p)a(p,j).
p

We then deduce that

)) = dim ( a ) " 1 Sap5

which is essentially the formula of [14, Theorem 5.7.4]. In the same fashion, we can
establish the orthogonality ralations for the matrix elements of (a, VQ) in J with
respect to any basis of B(Va).

Now we define an inner product on Ap by

(a\b) = X(b*a), Va,beAF.

The completion of Ap under the norm induced by this inner product is denoted by
L2(A). Let (a, Va) be an element of J. The Hilbert subspace of L2(\) generated by
the matrix elements of a is denoted by L2

a{\). By the orthogonality relations, the set

{dim(a)1/2a(i,j) : i,j = l,... ,dim(a)}

is an orthonormal basis for L^(A). Define an inner product on Xa = B(Va) so that
the set

{dim(a)-1/2e?,. : ij = 1,. . . , dim (or) }

is an orthonormal basis for Xa.
We define the Fourier transformation Ta : L\(X) —> B(Va) by

) , V£Q G L2(A),
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where ald®* denotes the image of a under the map id®*. Let X denote the Hilbert
space direct sum of all Hilbert spaces Xa with a £ J. Observe that L2{\) is the
Hilbert space direct sum of all Hilbert spaces L^(X) with a e J. We define the

©
Fourier transformation T : L2{\) —)• X by T= J2 ?<*•

aeJ
The following result is an analogue of the Plancherel theorem for compact groups.

PROPOSITION 4 . 3 . The Fourier transformation F : L2(A) —> X is a unitary.

PROOF: Observe that for each a in J, we have

fa(U = X) (U<x(iJ)) efd, V£Q e L2
a(X).

We compute
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