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Synchronization of turbulence in channel flow
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Synchronization of turbulence in channel flow is investigated using continuous data
assimilation. The flow is unknown within a region of the channel. Beyond this region
the velocity field is provided, and is directly prescribed in the simulation, while the
pressure is unknown throughout the entire domain. Synchronization takes place when the
simulation recovers the full true state of the flow, or in other words when the missing
region is accurately re-established, spontaneously. Successful synchronization depends on
the orientation, location and size of the missing layer. For friction Reynolds numbers up
to one thousand, wall-attached horizontal layers can synchronize as long as their thickness
is less than approximately thirty wall units. When the horizontal layer is detached from
the wall, the critical thickness increases with height and is proportional to the local
wall-normal Taylor microscale. A flow-parallel, vertical layer that spans the height of the
channel synchronizes when its spanwise width is of the order of the near-wall Taylor
microscale, while the criterion for a crossflow vertical layer is set by the advection
distance within a Lyapunov time scale. Finally, we demonstrate that synchronization is
possible when only planar velocity data are available, rather than the full outer state, as
long as the unknown region satisfies the condition for synchronization in one direction.
These numerical experiments demonstrate the capacity of accurately reconstructing, or
synchronizing, the missing scales of turbulence from observations, using continuous data
assimilation.

Key words: turbulence simulation

1. Introduction

Accurate predictions of turbulence must contend with its chaotic and multiscale nature: a
slight deviation in the initial or boundary conditions exponentially amplifies and leads to
an inaccurate prediction of all scales, and, hence, significant deviations of the trajectories

† Email address for correspondence: t.zaki@jhu.edu

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 943 A4-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

39
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:t.zaki@jhu.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.397&domain=pdf
https://doi.org/10.1017/jfm.2022.397


M. Wang and T.A. Zaki

in state space (Deissler 1986; Nikitin 2018). In addition, it is difficult to precisely measure
all the scales of turbulence, especially at high Reynolds numbers due to the larger
separation of scales. Data assimilation methods aim to reconstruct the full state of a
dynamical system from limited observations (Law, Stuart & Zygalakis 2015; Zaki & Wang
2021). These methods provide estimated trajectories that shadow the true state within an
observation time horizon and that forecast the flow evolution beyond the observations,
although, naturally, with progressively decreasing accuracy due to chaos. In homogeneous
isotropic turbulence, recent studies have demonstrated that observing all the scales that
are larger than approximately twenty Kolmogorov length scales is sufficient to recover
all the missing smaller eddies, accurately – a phenomenon termed synchronization of
chaos (Yoshida, Yamaguchi & Kaneda 2005; Lalescu, Meneveau & Eyink 2013). The
notion of synchronization is more restrictive than flow reconstruction: while the latter
may refer to estimating a state that is close to the truth within a short time horizon,
synchronization occurs only when the estimation error asymptotically approaches zero
in time (Boccaletti et al. 2002). In the present work we investigate synchronization in
turbulent channel flow, in physical rather than spectral space. Specifically, we report on
the maximum size of a cloaked region that can be synchronized to the true flow trajectory
using outer observations, and the required observations.

In order to incorporate observations into nonlinear dynamical systems, three types
of data assimilation approaches have been developed: variational methods (Dimet &
Talagrand 1986; Wang, Hasegawa & Zaki 2019b; Li et al. 2020), ensemble methods
(Evensen 2009; Mons et al. 2016) and continuous data assimilation techniques (Charney,
Halem & Jastrow 1969; Yoshida et al. 2005). Variational methods seek the optimal initial
condition that minimizes a cost function, defined in terms of the distance between the
estimated trajectory and available data. The minimization procedure requires the gradient
of the cost function, which is efficiently computed using the adjoint equations. Ensemble
methods do not involve an adjoint model. They consist of a prediction step where an
ensemble of states are advanced using the forward equations, and an analysis step which
assimilates observations to update the estimated flow state. The two classes can be
combined, where an ensemble of forward simulations is adopted to construct a quadratic
approximation of the cost function and to evaluate the gradient, which is generally referred
to as the ensemble variational method (Liu, Xiao & Wang 2008; Mons, Wang & Zaki
2019). All of these techniques are widely adopted by the numerical weather prediction
community and have been applied to estimating turbulent systems. However, due to the
high-dimensional nature of turbulence, these methods are computationally expensive,
require numerous, costly numerical simulations to obtain converged results (Jahanbakhshi
& Zaki 2019; Wang, Wang & Zaki 2019a; Buchta & Zaki 2021), which prohibits their
application for synchronization of the estimated state with the true trajectory, especially at
high Reynolds numbers.

Continuous data assimilation, which includes nudging techniques (Hoke & Anthes 1976;
Lakshmivarahan & Lewis 2013), augments the governing equations with a forcing term
that drives the estimation towards available observations. Therefore, only one forward
numerical simulation is required, which is the lowest cost compared with other approaches.
Accurate predictions depend on the forcing scheme and, most importantly, the available
observations. Construction of the forcing term is referred to as the ‘observer problem’
in control theory: given a dynamical system, the ‘observer’ refers to a forced system
that assimilates limited data with the objective of synchronizing to the original system
(Huijberts & Nijmeijer 2001). Although different forcing strategies have been developed
(Pogromsky & Nijmeijer 1998; Mohan, Liu & Vasudevan 2017), they have a relatively
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Synchronization of turbulence in channel flow

minor influence on the success of synchronization in comparison to the amount of
available observations of the true state. Therefore, we adopt the most straightforward and
well-established approach: direct substitution where we replace part of the state vector by
the corresponding observation data (Pecora & Carroll 1990; Yoshida et al. 2005). This
approach can be viewed as a variant of the nudging technique in the limit of the forcing
term having an infinitesimal relaxation time. The advantage of direct substitution against
other nudging methods is the independence on any artificial parameters, and, thus, we can
focus on the effect of observation on synchronization.

Recent efforts in homogeneous isotropic turbulence (Yoshida et al. 2005; Lalescu
et al. 2013; Vela-Martín 2021) demonstrated that observations of the velocity field at
all scales kη < 0.2, where k is the wavenumber and η is the Kolmogorov length scale,
can guarantee synchronization of the smaller scales. This criterion is independent of the
data assimilation techniques adopted, including direct substitution (Yoshida et al. 2005),
nudging (Clark Di Leoni, Mazzino & Biferale 2020) or adjoint-variational methods (Li
et al. 2020). Nikolaidis & Ioannou (2022) investigated synchronization in plane Couette
flow by enforcing streamwise low wavenumber modes and obtained a similar criterion as in
isotropic turbulence. No previous study has examined synchronization of wall turbulence
in physical space or explored the anisotropy of the synchronization criterion along different
flow directions. In channel flow the variation of the mean shear and streamwise advection
all but eliminate the likelihood of a unified criterion across different locations and along
different coordinates. We will therefore perform continuous data assimilation using direct
substitution in physical space, and report on the maximum volume of turbulence that can
be cloaked and yet synchronizes to the true trajectory by aid of observations of the rest of
the system.

It is helpful to contrast synchronization in physical space to the previous studies that
were performed in spectral space. There, the turbulence was prescribed at all wavenumbers
above a cutoff value, and, hence, observations were available at any spatio-temporal
location for all the energy-containing and inertial scales. Synchronization of a cloaked
subvolume in physical space is markedly different because within the cloaked region,
and for all times, none of the flow scales are known. Therefore, it is more difficult
to anticipate whether the turbulence can be accurately generated from observations of
the true state outside the subvolume. Consider, for example, removing a wall-attached
horizontal layer in turbulent channel flow. This region includes the vorticity flux at
the wall, which generates all the interior vorticity (Lighthill 1963; Wu, Ma & Zhou
2007; Eyink, Gupta & Zaki 2020), and, therefore, synchronization using only outer
observations may be difficult to achieve. If the layer includes the region of peak turbulence
production, again whether it is possible to synchronize this ‘engine’ of turbulence is
uncertain. Non-local interactions, for example, of outer large-scale motions with near-wall
structures (Mathis, Hutchins & Marusic 2009; Bernardini & Pirozzoli 2011; Hwang et al.
2016), may promote synchronization. Previous efforts have remarked on the role of these
interactions in state estimate using linear (Baars, Hutchins & Marusic 2016; Illingworth,
Monty & Marusic 2018) or nonlinear approaches (Sasaki et al. 2019; Wang & Zaki
2021), but none have examined synchronization. When the unknown layer is vertical
and normal to the mean-flow direction, streamwise advection of upstream observations
can aid synchronization. If the unknown vertical layer is, however, parallel to the
flow, synchronization over the entire channel height is anticipated to be relatively more
challenging. In addition, it is difficult to anticipate the amount of external observations
that are required for synchronization to take place. All these considerations will herein be
examined in the context of turbulent channel flow, for the first time.
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Figure 1. Schematic of the reference and synchronization simulations of turbulent channel flow. A sample
cloaked, or unobserved, horizontal region in the synchronization simulation is marked in green.

In § 2 we provide details of the computational set-up, and introduce the direct
substitution algorithm. We apply the method in § 3.1 to synchronize a horizontal
wall-attached layer by observing the fully resolved outer flow, and we report the maximum
layer thickness for successful synchronization and the influence on Reynolds number.
Synchronization of wall-detached and of multiple layers are examined in §§ 3.2 and 3.4,
respectively, and the equation for the evolution of synchronization error is derive in
Appendix A. In § 3.5 we assess synchronization of a flow region using surface observations
only, and discuss potential ways to improve the estimation accuracy of this approach.
Additional tests for subdomain synchronization in Kolmogorov flow are presented in
Appendix B. Concluding remarks are provided in § 4.

2. Computational approach

The reference flow configuration is a rectangular channel (see figure 1), which is periodic
in the streamwise (x) and spanwise (z) directions, and bounded by two parallel no-slip
surfaces in the vertical direction (y). The channel half-height h∗ and bulk flow velocity
U∗b are adopted as the reference length and velocity scales, where superscript ∗ denotes
dimensional quantities. When quantities are scaled by inner variables, specifically the
friction velocity u∗τ and kinematic viscosity ν∗, they are marked by superscript +. The
bulk and friction Reynolds numbers are Re ≡ U∗bh∗/ν∗ and Reτ ≡ u∗τ h∗/ν∗, respectively.

Our objective is to perfectly reconstruct the unknown turbulent field within a region
Ωs of the channel, where we do not have any data, from observations of the outer flow
in a region Ωf . For example, in figure 1 the horizontal green layer y ∈ [y0, y0 + ly] is
the cloaked region Ωs and observations are available in the entire outer domain Ωf .
The full data assimilation domain is Ω = Ωs ∪Ωf . Perfect reconstruction of Ωs here
means synchronization to the true flow that generated the outer observations, to within
machine precision. We start by introducing the numerical schemes, computational set-up
and synchronization algorithm.

The velocity field u and pressure p satisfy the incompressible Navier–Stokes equations,

∇ · u = 0, (2.1)

∂u
∂t
+∇ · (uu) = −∇p+ 1

Re
∇2u, (2.2)

where t represents time. These equations are spatially discretized on a staggered grid
with a local volume-flux formulation (Rosenfeld, Kwak & Vinokur 1991), and advanced
using a second-order fractional-step method (Kim & Moin 1985; Bell, Colella & Glaz
1989) that adopts Adams–Bashforth scheme for the advection terms and Crank–Nicolson

943 A4-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

39
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.397


Synchronization of turbulence in channel flow

Parameters Domain size Grid points Grid resolution

Reτ Re Lx/h Lz/h Nx Ny Nz �x+ �y+min �y+max �z+

180 2800 4π 2π 384 256 320 5.9 0.20 3.0 3.5
392 6875 2π π 256 320 192 9.6 0.34 5.1 6.4
590 10 935 2π π 384 384 384 9.7 0.44 6.5 4.8
590 10 935 3π π 576 384 384 9.7 0.44 6.5 4.8
590 10 935 4π π 768 384 384 9.7 0.44 6.5 4.8
590 10 935 8π 3π 1536 384 1152 9.7 0.44 6.5 4.8
1000 20 000 2π π 768 768 768 8.2 0.29 5.8 4.1

Table 1. Computational domains and grid sizes for simulations at different Reynolds numbers.

for diffusion. Due to periodicity in x and z, the pressure Poisson equation is solved using
Fourier transform in these directions and tri-diagonal inversion in the y direction. The
algorithm has been validated and applied in a number of direct numerical simulations of
transitional and turbulent flows (Zaki 2013; Marxen & Zaki 2019).

The true, or reference, system ur(t) is an equilibrium turbulent flow that is sustained
by a constant pressure gradient in the streamwise direction. The domain sizes and grid
resolutions for all the considered Reynolds numbers are summarized in table 1. The two
highlighted configurations, at Reτ = {590, 1000}, will be the focus of the majority of
the discussion. The influence of domain size is examined at Reτ = 590, where a larger
domain (Lx, Lz) = (8π, 3π) is also considered in order to accommodate very-large-scale
structures (Abe, Kawamura & Choi 2004; Del Álamo et al. 2004). The time step size �t
in each case is chosen to guarantee that the Courant–Friedrichs–Lewy number is less than
one half.

The observer system, or synchronization simulation, is denoted us(t) and is performed
in the domain Ω = Ωs ∪Ωf which, unless otherwise stated, is the same as the reference
simulation. Given the fully resolved true velocity field ur(t) in subvolume Ωf , these
data are directly enforced onto the synchronization simulation, us = ur ∀x ∈ Ωf and
t. The reference pressure field pr(t) is not observed, and, hence, the pressure in the
synchronization simulation ps(t) differs from the true state throughout the entire domain
Ω . Infusing the velocity observations into the synchronization simulation is performed
using the direct substitution algorithm 1, which is also illustrated in figure 1. Due to
the non-local nature of the Navier–Stokes solution, errors within Ωs instantaneously
contaminate the solution within Ωf , and, therefore, the direct substitution procedure is
enforced every time step. Once applied, us differs from ur only within the unobserved
region Ωs, where the synchronization error is defined,

Es ≡ 〈‖us − ur‖2〉1/2
Ωs

, (2.3)

where ‖a‖ is the 2-norm of vector a, and 〈•〉Ωs denotes averaging over Ωs. Theoretically,
synchronization refers to

lim
t→∞〈‖us − ur‖2〉1/2

Ωs
= 0 (2.4)

for any arbitrary choice of initial condition us(0) within Ωs. The condition (2.4) also
guarantees that the pressure field ps, which is not observed, converges to the reference
state pr throughout the entire domain. Due to finite numerical precision and integration
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time, the above condition will be approximated by

Es(t) < β, when t < T. (2.5)

The threshold β is set to 10−15 due to our double-precision arithmetic, and T = 80 is
sufficiently long to achieve a conclusive trend.

The initial condition us(t = 0) for x ∈ Ωs is estimated using one of three approaches:
(i) a trivial initial condition us(t = 0) = 0; (ii) the local mean velocity superposed with
white noise proportional to the local root-mean-square (r.m.s.) fluctuations, us = 〈ur〉 +
uε , where ui,ε ∼ N(0, ui,rms) is a Gaussian random field; (iii) a slight perturbation to the
true state, us = ur + εuε , where ε = 10−4. When synchronization occurs, all these initial
conditions lead to an exponentially decreasing estimation error with the same rate, which
is equal to the leading Lyapunov exponent of the sub-dynamics within Ωs. If Ωs exceeds a
certain size or if the available observations within Ωf are insufficient, synchronization is
not possible. In such cases, even simulations starting from the initial estimate (iii), which
is infinitesimally close to the true state, generate exponentially amplifying errors relative
to the reference trajectory. Simulations of type (iii) are initially infinitesimally close to
the true state, and, hence, are designed to probe the linear exponential stability of the
subsystem; these computations will be termed Lyapunov experiments.

Algorithm 1: Direct substitution algorithm.
At initial time t = 0, directly enforce us(0) = ur(0) in the observed region Ωf ;
Estimate us(0) within the unknown region Ωs;
while Es > β and t < T do

Using us(t), evaluate the intermediate velocity in the fractional-step
discretization of the momentum equation (2.2).;

Solve the pressure Poisson equation over the entire domain Ω = Ωs ∪Ωf ;
Project the entire intermediate-velocity field onto the solenoidal space to obtain

us(t +�t);
end
Enforce us(t +�t) = ur(t +�t) ∀x ∈ Ωf ;
Evaluate Es ;
t← t +�t

3. Results

3.1. Synchronization of a horizontal wall-attached layer
We start by attempting to synchronize a wall layer, Ωs = {x ∈ [0, Lx]× [0, ly]× [0, Lz]},
similar to the set-up in figure 1 with the lower boundary on the wall. In the limit ly → 0,
synchronization is essentially trivial. As ly increases, successful synchronization becomes
less inevitable: the absence of the true vorticity source at the wall from the observer
simulation may impede synchronization, while the coupling of the outer observations
within Ωf to the near-wall region may aid in the convergence of the simulation to
the reference trajectory. Ultimately the balance of restoring and destabilizing effects is
anticipated to lead to divergence of the sub-dynamics from the reference simulation, which
in the limit of large ly is again not surprising since the entire streamwise and spanwise
dimensions are eliminated, and all scales/wavenumbers in those dimensions at a given
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Figure 2. Synchronization of a horizontal, wall-attached layer with l+y = 28, at Reτ = 1000. Contours are the
instantaneous streamwise velocity fluctuations, calculated by subtracting the true mean, at z = Lz/2. Results
are shown for (a–c) t+ = {0, 40, 160}; (i) true state; (ii) synchronization simulation. Dashed line: y+ = 28.
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Figure 3. Streamwise pre-multiplied spectra of the streamwise velocity, averaged in the spanwise direction,
log10〈k+x |û+|2〉z. Colours, synchronization simulation of a wall-attached horizontal layer with l+y = 28; lines,
reference simulation. (a–c) t+ = {13, 40, 160}.

height are unknown. The interesting aspect of this problem is therefore not the limiting
behaviours, but whether there exists a specific, or critical, value of ly across which the
behaviour changes and how it depends on the Reynolds number.

A qualitative account of synchronization at Reτ = 1000 is provided in figure 2, when
l+y = 28. The figure shows a side view of the channel, with the top panels displaying the
reference simulation and the bottom panels focused only on the cloaked region y ∈ Ωs of
the synchronization simulation. Panel (aii) is the initial estimate of us(t = 0) within Ωs,
which is the mean flow plus white noise. Synchronization of the wall layer proceeds in two
stages: during an initial transient (panel bii), the white noise decays, and the velocity field
in the vicinity of the outer observations becomes qualitatively more accurate. However,
quantitative accuracy is not yet achieved especially in the near-wall region. In the limit of
long time (panel cii), the entire wall layer is accurately reconstructed. The synchronization
process is examined in Fourier space in figure 3, where the pre-multiplied spectra of the
streamwise velocity is reported. The colour and line contours correspond to ûs and ûr, and
•̂ denotes Fourier transform in the reported direction, e.g. streamwise direction in figure 3.
Here too the two stages of synchronization are evident: immediately after the initial time
(panel a), the small-scale fluctuations are overestimated due to the memory of white noise
in the initial condition. As the outer observations are imposed at all scales, the estimated
spectra converge to the truth at the same rate across all wavelengths (panels b,c).
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Figure 4. Time and wall-normal dependence of the synchronization error. The error is averaged in
the horizontal plane and normalized by the local r.m.s. fluctuation, log10(Exz(q)/q′rms). Results are
shown for (a–d) q = {u, v, w, p}; (a) log10(Exz(u)/u′rms), (b) log10(Exz(v)/v′rms), (c) log10(Exz(w)/w′rms),
(d) log10(Exz( p)/p′rms).
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Figure 5. (a) Temporal dependence of the volume-averaged synchronization error Es normalized by the initial
value Es,0. Results are for Reτ = 1000: (dashed line) l+y = 8; (dashed-dotted line) l+y = 18; (solid line) l+y = 28.
(b) Effect of observation noise level on synchronization error averaged over Ωs, when l+y = 28. Black, blue,
green: ε = {0, 0.1, 0.5}%.

To quantify the accuracy of the synchronization simulations, we introduce the
horizontally averaged error

Exz(q) = 〈(qs − qr)
2〉1/2

xz , q = u, v, w, p. (3.1)

At t = 0, the error Exz(q) is approximately
√

2 of the r.m.s. fluctuations for all three
components, because the superposed white noise in us(0) is uncorrelated with the true
fluctuations. The temporal evolution of Exz is plotted in figure 4, normalized by the local
r.m.s. fluctuations. Unlike the velocity (panels a–c) where the errors vanish in Ωf , the
pressure is not observed and hence has finite error for y+ > 28 (panel d). The two stages
of error decay are evidenced in figure 4. At the initial stage t+ ∼ O(10), the error remains
highest near y+ = 0 due to the delayed impact by observations. Beyond t+ = 100, the
synchronization errors within the entire removed layer are diminishing for both velocity
and pressure, and uniformly tend to zero. As such, it is reasonable to focus on the
volume-averaged error Es (solid line in figure 5a), which decays until it reaches 10−15

dictated by our double-precision implementation.
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Figure 6. Dependence of the synchronization exponents α+ on the thickness l+y of the cloaked wall-attached
layer, at different Reynolds numbers. Green, Reτ = 180; blue, Reτ = 392; red, Reτ = 590; black circles, Reτ =
1000. The dotted line marks α = 0.

We have also examined the effect of observation noise on synchronization. Specifically,
we have contaminated the observed velocities which are imposed within Ωf by Gaussian
random noise, proportional to the local r.m.s. fluctuations, us = ur + εuε ∀x ∈ Ωf and
t, and where ui,ε ∼ N(0, ui,rms). For two levels of observation noise, ε = {0.1, 0.5}%,
the synchronization errors within Ωs were evaluated and are reported in figure 5(b). The
errors do not reduce to machine precision (blue and green curves), but rather saturate at a
similar order of magnitude as the observation noise. It is most important to note that the
synchronization rate remains unaffected by the noise, which demonstrates the robustness
of the phenomenon.

As the thickness of the unknown layer ly is reduced, synchronization is precipitated at a
faster rate, as shown in figure 5(a). The rate is evaluated from Es(t) using an exponential
regression

Es = A exp(αt) = A exp(α+t+), (3.2)

where we have introduced the synchronization exponent α. Only data within the range
10−1 ≤ Es/Es,0 ≤ 10−6 are used for the regression (3.2) in order to eliminate the transient
effects at the beginning of simulations. The dependence of α on ly and on the Reynolds
number is summarized in figure 6. The results demonstrate that indeed as ly increases, the
synchronization rate reduces and ultimately becomes positive beyond a critical value. Note
that, for the diverging α > 0 cases, the exponent was determined using the Lyapunov-type
experiments where the initial estimate us(t = 0) was infinitesimally close to the true
solution within the cloaked region Ωs (case iii, as explained in § 2).

When scaled with viscous units, the profile of α+(l+y ) is essentially independent of the
Reynolds number up to Reτ = 1000. The critical value for ly that corresponds to zero
growth rate,

α(ly,c) = 0, (3.3)

is l+y,c ≈ 32, which is the maximum thickness of the wall layer that can be removed without
disrupting successful synchronization.

The quantitative relation in figure 6 is robust against the initial condition of the reference
simulation ur(0), the initial estimate of us(0) within the cloaked region Ωs, and the global
domain size. In particular, when the global domain size is increased from (Lx, Lz) =
(2π, π) to (Lx, Lz) = (8π, 3π) at Reτ = 590, the value of the synchronization exponent
for l+y = 18 remains unchanged to within less than 1 %. Therefore, synchronization of the
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wall layer is unaffected by the associated change in the very-large-scale structures in the
outer flow (Marusic & Perry 1995; Marusic & Monty 2019).

The critical thickness l+y,c ≈ 32 demonstrates that the dynamics within the viscous
sublayer and buffer layer are interpretable from outer observations. Even the instantaneous
flux of vorticity at the wall is accurately reconstructed by enforcing the fully resolved outer
flow field. Our results also provide a new perspective on the influence of outer large-scale
structures on near-wall turbulence (Del Álamo et al. 2004; Mathis et al. 2009). Previous
studies by Jiménez & Pinelli (1999) indicate that the outer velocity field near y+ = 60
can sustain the near-wall cycle of streaks and streamwise vortical structures, but there was
no guarantee of synchronization since they did not impose the velocity from a reference
simulation. At that height, the predicted near-wall cycle adopts a different trajectory than
when the entire channel is simulated. Our results further demonstrate that providing
reference data and attempting to synchronize the near-wall layer is only possible for a
thinner region, l+y,c ≈ 32. Finally, we remark that y+ ≤ 32 is a diminishing small physical
region as Re is increased, which is indicative of an increasing difficulty of synchronization.
The scales of turbulence that are commensurate with the critical thickness are discussed
in the next section, where we examine the impact of placing the cloaked horizontal layer
at different wall-normal heights.

3.2. Synchronization of a wall-detached layer
When the cloaked layer Ωs = [0, Lx]× [y0, y0 + ly]× [0, Lz] is detached from the wall,
y0 > 0, we can anticipate that the critical thickness for synchronization will change just
as the scales of turbulence do, in particular the vertical size of the structures since Ωs
will continue to exclude all the horizontal scales. In these tests, while the true vorticity
flux at the wall becomes part of the observed region Ωf , every new value of y0 is
associated with a shift in the dominant balance of turbulence dissipation, production and
transport. In addition, the scaling of turbulence shifts from viscous units for y+ < 100
(Lee & Moser 2015) to inertia dominated for the large scales in the outer part (Adrian
2007; Smits, McKeon & Marusic 2011). In order to determine the impact of y0 on
synchronization, we focus on two Reynolds numbers that provide sufficiently extended log
regions, Reτ = {590, 1000}. The lower boundary of Ωs is gradually increased from y+0 = 0
up to y+0 = 100, which corresponds to removing part of the outer layer, y0 = {0.17, 0.10}
for Reτ = {590, 1000}, respectively. Synchronization of a horizontal layer located at the
channel centre will also be briefly examined.

The profile of the synchronization exponent α+(l+y ) at y+0 = 100 is shown in figure 7(a)
(dashed line and crosses), and is compared with the exponent when y+0 = 0 (solid line
and circles). When the cloaked layer is thin, l+y � 10, the synchronization process in the
log layer is slower than within the wall layer. As the removed region in the log layer is
expanded, α+ monotonically increases but at a relatively weak slope. As a result, a much
thicker layer l+y,c ≈ 64 is guaranteed to synchronize when y+0 = 100. The synchronization
exponent α+(l+y ) and the critical thickness l+y,c in viscous units are unaffected by the
Reynolds number (figure 7a), which is consistent with the inner scaling of the near-wall
kinetic energy budget. This trend suggests that synchronization of a wall-detached layer
up to y+0 = 100 is still governed by similar dynamical considerations.

Starting from the equations for ur and us, we derive the governing equation for the
squared, volume-averaged synchronization error E2

s = 〈‖us − ur‖2〉Ωs := 〈‖e‖2〉Ωs :
1
2

d
dt
〈‖e‖2〉Ωs = −〈e, e · ∇ur〉Ωs − ν〈‖∇e‖2〉Ωs + B, (3.4)
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Figure 7. (a) Synchronization exponent with (solid line, circle) y+0 = 0 and (dashed line, cross) y+0 = 100.
Red lines, Reτ = 590; black symbols, Reτ = 1000; horizontal dotted line, α+ = 0. (b) Production (blue) and
dissipation (green) of synchronization errors when (solid, dashed) y+0 = {0, 100}. Only the results at y+0 = 100
are shown in the inset. (c) Symbols are the critical thicknesses l+y,c as a function of the wall-normal height of
the cloaked layer. Grey line: critical length scale in isotropic turbulence, 16η+. Blue, green, black: averaged
Taylor microscales based on {u, v, w}.

where the notation 〈a, b〉Ωs = 〈aibi〉Ωs is the inner product between the two vectors,
volume averaged over Ωs. The first two terms on the right-hand side of (3.4) quantify
the production and viscous dissipation of synchronization errors. The last term B is due to
the non-zero divergence of e on ∂Ωs, i.e. on the boundaries of the unobserved region Ωs.
Since B only contains surface integration (see Appendix A for details), it is generally much
smaller than the production and dissipation terms. Similar equations have been derived by
Henshaw, Kreiss & Yström (2003) for isotropic turbulence and adopted to estimate the
critical cutoff wavenumber. Normalizing (3.4) by E2

s and assuming Es = A exp (αt), the
equation for exponent α is

α = 1
〈‖e‖2〉Ωs

(−〈e, e · ∇ur〉Ωs − ν〈‖∇e‖2〉Ωs + B) ≡ Ps −Ds + Bs, (3.5)

where Ps, Ds, Bs are the normalized production, dissipation and boundary terms,
respectively.

The qualitative behaviour of the synchronization exponent and critical thickness in
figure 7(a,b) can be understood with reference to the production and dissipation of errors
in (3.5). These terms are averaged in time after the initial transient, Pst = 〈Ps〉t and
Dst = 〈Ds〉t, and the results are reported in figure 7(b). For a thin layer (ly → 0), viscous
dissipation of the errors (green lines) dominates the balance. As a thicker layer of the flow
is cloaked, the normalized dissipation significantly reduces and the normalized production
rate of errors (blue) increases and exceeds dissipation beyond the critical thickness l+y,c.
Despite a more pronounced dissipation of errors when the cloaked layer is wall attached
(y+0 = 0, solid green) compared with wall detached (y+0 = 100, dashed green), the critical
thickness is smaller due to the faster increase in production near the wall (solid vs dashed
blue curves). The later effect is primarily due to the stronger mean shear, where ∂〈ur〉/∂y
at y+0 = 0 is approximately forty times larger than the value at y+0 = 100.

The dependence of the critical thickness ly,c on distance from the wall is reported in
figure 7(c). At each y0, a bisection approach is adopted to identify the interval [ly,n, ly,n +
�y] (red bars in figure 7c) where the exponent α changes from negative to positive. The
critical thickness (red dot) thus lies within this interval, and the value is estimated by
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linear interpolation using the exponents at ly,n and ly,n +�y. When the lower boundary
of the cloaked layer is within the range 0 ≤ y+0 ≤ 12, i.e. up to the height of peak kinetic
energy production, the critical thickness for synchronization is practically unchanged. In
the context of (3.4), this behaviour is due to a comparable balance between dissipation and
production of errors when the layer starts within y+0 ≤ 12. However, as y0 is more distant
from the wall, a thicker layer of the flow can be synchronized to the reference state, or in
other words the dynamics within Ωs can be discovered from outer observations.

The critical thickness ly,c can be compared with the synchronization criterion from
isotropic turbulence, which was originally expressed in terms of a critical wavenumber
kc = 0.2/η, where η is the Kolmogorov scale. The corresponding resolution of
observations in physical space is �c ≡ π/kc ≈ 16η. For channel flow, we evaluate η =
(Re3Dr)

−1/4, where Dr is the dissipation rate of turbulent kinetic energy, and the curve
16η is compared with ly,c in figure 7(c). Despite the qualitative similarity, the Kolmogorov
length scale is not ideal for this comparison, and cannot account for the anisotropy of
the flow when we consider cloaked layers with different orientations. A more suitable
choice is the Taylor microscale which quantifies the size of flow structures along different
directions. For synchronization in a horizontal layer, the wall-normal Taylor microscale
Λy,i is the most relevant:

Λy,i =
(
−1

2
d2Ri

d(�y)2

∣∣∣∣
�y=0

)−1/2

for i = u, v, w, (3.6)

where Ri(�y) = 〈ui( y)ui( y+�y)〉xzt is the wall-normal two-point correlation, averaged
over the homogeneous horizontal directions and time. The Taylor microscale Λy,i
quantifies the wall-normal size of flow structures, and has recently been related to the
domain of sensitivity of velocity observations (Wang & Zaki 2021). Therefore, we can use
the Taylor microscales at y0 and y0 + ly,

2Λy,i = Λy,i( y0)+Λy,i( y0 + ly), (3.7)

as an estimate of the thickness of the cloaked layer that is entirely within the domain of

sensitivity of the outer observations. The agreement between 2Λ+y,w and l+y,c in figure 7(c)
suggests that the critical thickness is indeed proportional to the domain of sensitivity of
the available turbulence data. A physical interpretation of the dependence on the Taylor
microscale is provided, with reference to its definition in isotropic turbulence,

Λ =
√

15
ν

Dr
u′rms. (3.8)

The square-root term in (3.8) is proportional to the Kolmogorov time scale τη =
√

ν/Dr.
Therefore, physically, the Taylor microscale is a measure of the distance swept by
Kolmogorov eddies during their lifetime, while advected by the root-mean-squared
velocity fluctuations. As long as the flow data down to the Kolmogorov eddies can be
swept from ∂Ωs throughout the cloaked region, prior to their dissipation, synchronization
is guaranteed. In turbulent channel flow the lifetime of Kolmogorov eddies and the swept
height increase with distance from the wall and, as a result, a thicker wall-normal layer
can be decoded from outer observations.

The previous arguments remain applicable in the bulk region, which is evidenced
by additional synchronization tests for a cloaked horizontal layer located at the
channel centre, Ωs = {x ∈ [0, Lx]× [1− ly/2, 1+ ly/2]× [0, Lz]}. The identified critical
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thickness is l+y,c ≈ 140, for Reτ = 590, which is comparable to twice the Taylor microscale
2(Λy,u, Λy,v, Λy,w) ≈ (139, 163, 110) at the boundary y = 1− ly,c/2. It is noteworthy that
l+y,c ≈ 140 is of the same order of magnitude as the previously reported criterion for
synchronization in homogeneous isotropic turbulence, �+c ≈ 16η+ ≈ 78 at y = 1− ly,c/2
(Yoshida et al. 2005). Despite this similarity, it is important to recall that the interpretation
of the two criteria are fundamentally different. The results for isotropic turbulence are in
terms of a critical wavelength in Fourier space. Specifically, the small-scale turbulence
below �+c can be accurately reconstructed by enforcing all the larger scales in Fourier
space. In contrast, in our configuration, the cloaked layer removes all the streamwise and
spanwise scales, in addition to the thickness l+y,c ≈ 140 in the wall-normal direction; the
present results then demonstrate that all the missing scales can be synchronized from the
outer observations.

3.3. Synchronization of a vertical layer
The discussion thus far has only addressed synchronization in horizontal layers, and it is
expected that the orientation of the cloaked region impacts the synchronization process.
Specifically, when the layer is normal to the wall and spans the height of the channel,
a distinction must be made between flow-parallel and crossflow regions because of the
effect of mean-flow advection in the latter configuration. In addition, the correlation length
scales of the turbulent structures are different in both directions. What remains common,
however, is that the cloaked regions in both scenarios include the near-wall and outer
dynamics and scales of turbulence. In this section we will examine synchronization in
vertical layers that are oriented along either direction, at Reynolds number Reτ = 590.

We first consider a cloaked vertical slab that spans the height of the channel, is parallel
to the flow direction and has spanwise width lz, such that Ωs = {x ∈ [0, Lx]× [0, Ly]×
[z0, z0 + lz]}. The temporal evolution of streamwise-averaged synchronization error is
shown in figure 8, when l+z = 38. Although the initial error is uniformly

√
2 times the

local r.m.s. fluctuations at different wall-normal locations (panel a), the error decreases
more rapidly in the bulk than in the near-wall region (panel b–d). The dominance of
near-wall synchronization error in panel (d) persists until synchronization is achieved. The
inhomogeneous evolution of errors shown in figure 8 can be explained with reference to the
significant variation in the Taylor microscales in the wall-normal direction. The spanwise
Taylor microscale ranges from 2(Λ+z,u, Λ+z,v, Λ+z,w) ≈ (39, 22, 47) at the location of peak
turbulence kinetic energy production, y+ = 12, to 2(Λ+z,u, Λ+z,v, Λ+z,w) ≈ (132, 114, 155)

at the channel centre. As discussed at the end of § 3.2, the smaller Taylor microscale near
the wall is indicative of a shorter swept distance during the short lifetimes of the local
Kolmogorov eddies. As a result, it is more difficult to synchronize the near-wall flow
from the boundary observations. As such, the critical width for which synchronization is
guaranteed is expected to be dictated by the near-wall dynamics. This view is reinforced
by the identified critical width l+z,c ≈ 45, which is the order of the Taylor microscales in
the near-wall region. The criterion l+z,c � 45 ensures that the velocity observations on the
spanwise boundaries can influence the entire layer during the lifetimes of the shortest
surviving Kolmogorov eddies.

Synchronization in a vertical, crossflow layer, Ωs = {x ∈ [x0, x0 + lx]× [0, Ly]×
[0, Lz]}, is fundamentally different from the previous configurations due to the effect of
mean advection. Intuition suggests that it is sufficient to prescribe a single crossflow
plane of observations, akin to simulations of boundary layers with prescribed inflow
and advective outflow conditions. When the inflow data are obtained from a reference
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Figure 8. Synchronization of a vertical flow-parallel layer at Reτ = 590, when the layer width is l+z = 38. The
contours show the streamwise-averaged synchronization error, normalized by the local true root-mean-squared
fluctuations Ex(u)/u′rms. Results are shown for (a–d) t+ = {0, 64, 191, 318}.

simulation, the synchronization simulation will reproduce the reference trajectories
to within machine precision. If the numerical algorithms for the reference and
synchronization simulations differ, or if the inflow data are generated from experiments,
the trajectories from the synchronization simulation are anticipated to diverge downstream
at an exponential Lyapunov rate due to the chaotic nature of turbulence. While this
intuition is helpful, it must be refined for the present channel-flow configuration because
the system is closed, unlike parabolic boundary-layer flows.

We performed a number of synchronization simulations with different cloaked
streamwise extents, lx. Below a critical lx,c the flow synchronizes, and above it the
flow trajectories diverge from the reference simulation. The most instructive case is
reported in figure 9(ai–aiii), with lx = 2.7π and the domain length is Lx = 3π. The
errors within the cloaked region undergo cycles of amplification and decay, and the
synchronization exponent undulates around zero. The first panel 9(ai) shows contours of
the crossflow-averaged synchronization error Eyz(u) as a function of streamwise distance
and time. The pattern of the contours is due to two effects. Firstly, the initial errors
which are uniform within the cloaked region amplify exponentially as the flow advects
downstream (slanted lines in the (x, t) plane, emanating at t = 0). Secondly, an influx
of accurate velocity data (blue region near x = 0) reduces the magnitude of the errors
within the volume. The outcome is an alternation of high- and then low-magnitude errors
near x = lx, which result in an alternating pattern of high and low inflow errors at x = 0,
and the process repeats. The exponential amplification of errors is shown in panel (aiii),
along lines of constant speed U = 0.61. The impact of the errors at x = lx on x = 0 is
despite the direct substitution us = ur within Ωf , because the pressure is not observed.
The pressure errors are reported in panel (aii) vs x ∈ [0, Lx], and indeed its elliptic nature
is evident communicating the errors across the entire length of the channel. These results
suggest that a larger simulation domain, specifically Ωf , could promote synchronization
for this value of lx = 2.7π. Panels (bi–bii) report on extending the channel from Lx = 3π
to Lx = 4π, and repeating the synchronization experiment. Indeed the cloaked layer now
becomes stable and synchronizes to the reference system, both in terms of the velocity
(panel bi) and pressure (panel bii).

For a closed system, when the domain size is fixed, for example, circular Couette flow,
increasing lx simultaneously reduces the forcing region Ωf and, hence, the critical lx,c
is unambiguous. For the channel configuration, the domain length can impact the critical
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Figure 9. Synchronization of a vertical, crossflow layer at Reτ = 590. The streamwise extent of the layer is
lx = 2.7π, and two channel lengths are considered: (a) Lx = 3π; (b) Lx = 4π. (ai, bi) Space–time evolution
of the synchronization errors in the streamwise velocity, averaged in ( y, z) and normalized by the initial value,
log10(Eyz(u)/Eyz,0(u)). (aii, bii) Space–time evolution of error in pressure log10(Eyz( p)/Eyz,0(u)). (aiii) Time
dependence (black) of the errors along the lines x = x0 + U(t − t0) and Lyapunov amplification (red dashed).

length for synchronization lx,c. Nonetheless, the results showed that lx,c is much larger than
the Taylor microscale, and instead scales with the distance travelled by the inflow during
Lyapunov time scale, lx,c ∼ O(Uτσ ), where U is the advection velocity, τσ = 1/σ is the
Lyapunov time scale and σ is the leading Lyapunov exponent. This criterion can also be
interpreted in terms of the inverse cascade of errors (Leith & Kraichnan 1972; Boffetta &
Musacchio 2001): within Ωs, perturbations at the Kolmogorov scale η will contaminate the
dynamics at the larger scale  ∼ 2η, and the expected time of this process is proportional
to the Kolmogorov time scale τη; likewise, errors at  ∼ 2η will be transported towards the
next larger scale  ∼ 4η, and so forth. The summation of eddy turnover times at all scales
is finite, and approximately equal to the Lyapunov time scale τσ (Berera & Ho 2018). In
other words, the criterion lx � O(Uτσ ) prevents the small-scale errors from contaminating
the large scales before the flow reaches the downstream boundary of Ωs. The impact of
the periodic boundary condition can be lessened by extending the forcing region Ωf , and
in the limit of very long Lx the errors at x = lx inappreciably influence the inflow at x = 0.
The set-up then resembles predicting downstream evolution from accurate upstream data,
and any infinitesimal errors due to differences in the numerical set-up still amplify due to
chaos, and, hence, trajectories will diverge relative to the true system at the Lyapunov rate.

3.4. Synchronization of multiple layers
In the previous sections only one layer was cloaked and the rest of the domain was
observed in order to achieve synchronization. An intuitive inquiry is the feasibility of
synchronization in two or multiple layers that are individually below their respective
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critical thicknesses, and that are separated from each other by some observations. In this
section we will examine synchronization in two horizontal layers, and then proceed to
explore synchronization in multiple vertical, flow-parallel layers spaced along the spanwise
directions.

A schematic for simultaneously removing two horizontal layers Ωs,1 = {x+ ∈
[0, L+x ]× [0, 28]× [0, L+z ]} and Ωs,2 = {x+ ∈ [0, L+x ]× [29, 57]× [0, L+z ]} is shown in
figure 10(ai). We recall that these two layers, if removed independently, have different
synchronization exponents that we can denote α1 and α2. The synchronization errors
within Ωs,1 and Ωs,2 are plotted in panel 10(aii) when both layers are simultaneously
cloaked (solid lines) and are compared with the previous experiments where only one
of the layers was removed (dashed lines). The first point to note is that synchronization
is successful, even though only one plane of velocity data is prescribed between the
two regions. Secondly, beyond an initial transient, the error-decay rates in both layers
are similar, and lie between α1 and α2. This behaviour of the errors demonstrates the
co-dependence of the two layers: they do not synchronize independently of one another.
Equation (3.4) governs the synchronization error averaged over the two layers, and we can
derive the following expression, similar to (3.5), for their shared synchronization rate:

α = 1
〈‖e‖2〉Ωs

∑
i=1,2

Ωs,i

Ωs
(−〈e, e · ∇ur〉Ωs,i − ν〈‖∇e‖2〉Ωs,i + Bi)

≡
∑

i=1,2

Ωs,i

Ωs

(Ps,i −Ds,i + Bs,i
)
. (3.9)

This rate is determined by the net sum of four terms on the right-hand side of (3.9):
production Ps,i and dissipation Ds,i in layers i = {1, 2}. These terms depend on local
quantities and therefore their magnitudes do not change appreciably whether one of two
layers are cloaked. The net outcome is therefore expected to be between the two rates
from the separate layers. Specifically, the more negative balance (Ps,2 −Ds,2) of the
wall-detached layer promotes faster decay of errors for the entire system than when the
wall layer alone is synchronized. Therefore, the asymptotic decay rate α when both layers
are removed is bounded by α1 and α2

For synchronization in multiple layers, we examine cloaking of vertical slabs that span
the height of the channel and are parallel to the flow direction, separated by observation
data in the span (figure 10bi). The thickness of each unknown layer is lz, and only one plane
of observation data ur is enforced between adjacent layers. Although we set the starting
location of the first layer at z = 0, this parameter does not affect synchronization due to
the statistical homogeneity of turbulence in the span. The computational set-up is slightly
different from previous sections: for both the reference and synchronization simulations,
the spanwise resolution is refined to �z+ = 2.4 to ensure that each layer is well resolved.
In addition, the direct substitution step us(t +�t) = ur(t +�t) in algorithm 1 is replaced
by a relaxation equation us(t +�t)← (1− γ )ur(t +�t)+ γ us(t +�t) with γ = 0.5,
in order to ensure stability of the synchronization simulation. Additional numerical
experiments using different relaxation factors, down to γ = 0.2, were performed and the
synchronization exponents remain essentially unchanged.

The evolution of synchronization errors is reported in figure 10(bii) for l+z ={29, 39, 48}. Similar to synchronization in horizontal layers, the errors in figure 10(bii)
decay more slowly as the removed layers become thicker. The critical width below which
synchronization in all the layers is guaranteed is l+z,c ≈ 42, which is slightly smaller
than the criterion for removing a single layer, l+z,c ≈ 45 (cf. § 3.3). Since the balance of
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Figure 10. Synchronization of (a) two simultaneously cloaked horizontal layers and (b) multiple vertical
flow-parallel layers, at Reτ = 590. (ai) Schematic of the two unobserved horizontal layers. The lower layer
is attached at the wall, and separated from the upper layer by one observation plane. (aii) Temporal evolution
of the volume-averaged synchronization errors. Dashed lines, only one horizontal layer is cloaked: (black)
Ωs = Ωs,1; (green) Ωs = Ωs,2. Solid lines: both layers are simultaneously cloaked, and errors are averaged
within (black) Ωs,1 and (green) Ωs,2. (bi) Schematic of the cloaked, vertical, flow-parallel layers separated by
one observation plane. (bii) Temporal evolution of the volume-averaged synchronization errors for l+z = 29
(dashed line), l+z = 39 (dashed-dotted line), and l+z = 48 (solid line).

production and dissipation of errors per unit width is statistically stationary in the span,
the difference in the critical width is due to the increase in the number of interfaces.
Specifically, the cumulative contribution from the boundary terms in (3.9) increases as
the number of interfaces between Ωs and Ωf increases.

The synchronization process when l+z = 39 is examined in spectral space in figure 11.
Since the equi-spaced observation planes can capture scales larger than 2l+z , the spectra at
λ+z > 2l+z are already accurately estimated near the initial time (panels (i) and green curves
in panels b,d), including all the energy-containing scales and part of the dissipative scales.
By contrast, the energy and enstrophy in the smaller scales λz < 2lz are poorly estimated
and oscillate due to the discontinuities across the observation planes. At later times (panels
(ii) and blue curves in panels b,d), a wider range of scales becomes better reconstructed.
Eventually the estimated spectra (colours in panels iii) converge to the true state (lines in
panels iii) at all the scales, and synchronization is successfully achieved.

This configuration can also be discussed in relation to earlier studies of synchronization
in spectral space. The availability of data at constant spanwise intervals is comparable
to observing spanwise wavenumbers k+z ≤ 2π/2l+z . Successful synchronization below
l+z,c = 42, or equivalently above k+z,c = 0.0748, is not straightforward to express in terms
of the Kolmogorov length scale which depends on the wall-normal distance. For the
benefit of this discussion, we remark the Kolmogorov scale is approximately η+ = 1.66 at
the location of peak turbulence-kinetic-energy production, where the Taylor microscale
was commensurate with l+z,c. Therefore, l+z,c ≈ 25η+, or kz,cη ≈ 0.12, is similar to the
criterion for synchronization in spectral space (Yoshida et al. 2005; Lalescu et al. 2013).
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Figure 11. Spanwise pre-multiplied spectra of (a,b) the streamwise velocity log10〈k+z |û+|2〉x and (c,d)
enstrophy log10〈k+z ‖ω̂+‖2〉x, for synchronization in multiple spanwise layers with l+z = 39, at Reτ = 590.
The spectra are averaged in the streamwise direction, and reported at t+ = {13, 318, 1270}. Colour contours
are for (a,c) the synchronization field, and line contours at t+ = 1270 are from the reference simulations.
(b,d) The pre-multiplied spectra from the synchronization simulation, extracted at y = 1. Black dashed lines:
λ+z = 2l+z = 78.

Despite this favourable comparison, we note that the present configuration is different,
not least because all the streamwise and wall-normal wavenumbers are unknown within
the cloaked region. More importantly, within the cloaked region, the present configuration
features dynamics that are unique to wall-bounded turbulence that must be synchronized
within the cloaked region (e.g. wall-vorticity flux, wall-normal separation of dissipation
and production, wall-normal dependence of ejections and sweeps, . . . , etc).

The success of synchronization of multiple layers, with merely planar observations in
between layers, raises an interesting question: Given planar observations, is it possible to
accurately reconstruct the velocity field in a subdomain bounded by that surface without
simulating the entire system? This question is addressed in the next section.

3.5. Synchronization in subdomain simulations
A large volume of velocity observations could be difficult to acquire and, in practice,
is unlikely to span the entire system beyond Ωs. Even if observations are available for
the complete state outside Ωs, the computational cost of synchronization simulations in
the full system can be prohibitive at high Reynolds numbers. It is therefore desirable to
attempt synchronization of the cloaked region by simulating a subdomain of the full system
and using planar time-dependent observations, which in the context of detailed laboratory
experiments can be obtained using time-resolved particle image velocimetry (PIV) (Hong
et al. 2012). An example using Kolmogorov flow is provided in Appendix B, where we
perform synchronization simulations in a subvolume using velocity observations on the
bounding planes only. In this section we retain our focus on channel flow, and return to
the case of synchronization of a wall-attached layer but with an observer system that is a
subvolume of the reference configuration and more limited observations.
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Figure 12. Instantaneous vortical structures visualized using the λ2 vortex identification criterion with
threshold λ2 = −4. (a) Synchronization simulation in a wall layer l+y = 28. (b) Reference simulation. Results
are shown for (i–iii) t+ = {0, 13, 1000}.

The reference system ur is still turbulent flow in the entire channel, and the velocity
field is observed at one horizontal plane only, Ωf = {y = l̃y}. The numerical scheme of the
synchronization simulation ũs is slightly different from the reference simulation. The full
Navier–Stokes equations are only solved within the wall-attached layer Ω = {y ∈ [0, l̃y]}
instead of the entire channel. In addition, the observed velocity is enforced at y = l̃y as
the top boundary condition, along with a homogeneous Neumann condition ∂p/∂n = 0
on the pressure because p is not observed. Together with periodic boundary conditions in
the horizontal directions and no-slip at the wall, these six faces bound Ωs, without any
additional data. The initial estimate of ũs is either the mean flow superposed with white
noise or the slightly disturbed true state, as explained in § 2. Our objective is to synchronize
the flow in Ωs = {x ∈ [0, Lx]× [0, l̃y)× [0, Lz]} to the reference state ur.

The subdomain synchronization process at Reτ = 590 with l̃+y = 28 is visualized in
figure 12(a), and is compared with the true state in panels (b). The white noise at the
initial time (panel ai) decays quickly and the vortical structures near the top boundary
(panel aii) become similar to the true field, although the wall-attached vortices are absent.
After a sufficiently long time, all of Ωs is affected by the top boundary condition and the
estimated state within the subdomain simulation synchronizes to the reference state: all
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Figure 13. Synchronization in a subdomain of the channel, at Reτ = 590. (a) Volume-averaged errors Es of
the instantaneous velocity, when synchronization simulations are performed in a subdomain (blue), compared
with the full domain (black). The reference velocity ur in the definition of the errors was obtained from a
full-domain simulation. (b) The errors of the subdomain synchronization experiments are re-evaluated using a
reference velocity from a simulation in the same subdomain, Ẽs = 〈‖ũs − ũr‖2〉1/2

Ωs
. Dashed lines, l̃+y = l+y =

18; dashed-dotted lines, l̃+y = l+y = 28; solid lines, l̃+y = l+y = 38.

the scales and structures in panel (aiii) identically match those in (biii), to within machine
precision. These qualitative properties are similar to the full-domain synchronization
results in figure 2, although here the observer system is only a subdomain simulation with
height l+y = 28.

The errors from the subdomain synchronization are reported in figure 13(a) (blue lines),
where they are compared with results using the approach from § 3.1 for full-domain
synchronization (black lines). We verified that the critical layer thickness remains
unchanged, l̃+y,c = l+y,c ≈ 32. When the subdomain height is larger than this value, l̃y > ly,c,
the errors diverge similar to the previously reported behaviour in § 3.1. For smaller
layer heights, below the critical value, the errors decay exponentially which indicates
convergence towards the true flow trajectories, initially at the same rate as the full-system
configuration. However, a significant difference can be observed: the errors in the
present subdomain approach do not decay to machine precision, but rather saturate
at approximately 10−3 of the initial value, or equivalently, three orders of magnitude
lower than the reference r.m.s. fluctuations. These persistent long-time errors are not
due to failure of synchronization of the dynamics as described by the Navier–Stokes
equations, but are rather due to the differences in the numerical solutions of the governing
equations in a subdomain vs the full channel, specifically the fractional-step method.
In support of this argument, we performed a new reference simulation ũr within the
wall-attached layer, i.e. same subdomain as the synchronization simulation and with the
same numerical method. The only difference between ũs and ũr is the initial condition, the
former starting from white noise and the latter from the true initial condition. This new
reference simulation ũr does not match the original ur from the global domain, and the
difference is of the order of 10−3 – a matter that we return to below. More importantly,
the synchronization solution ũs from an arbitrary initial condition converges to ũr to
within machine precision (figure 13b); the subsystem is therefore Lyapunov stable and
can accurately synchronize when l̃y < l̃y,c = ly,c.

The reason that the reference simulations in the sub- and full domains, ũr and ur,
differ can be explained using a similar analysis as Wu, Zaki & Meneveau (2020).
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Briefly, in addition to the same initial condition, the intermediate velocity of the
fractional-step algorithm for solving the Navier–Stokes equations must be enforced at
y = l̃y to eliminate the mismatch. This velocity is not physical, and is only introduced for
the purpose of numerically solving the equations. We have demonstrated synchronization
to ũr in the subsystem, and the deviation from the full system is a matter of a difference
in the numerical model. Notwithstanding this technical detail, the results presented here
and in Appendix B demonstrate that with only planar observations, synchronization in
a subdomain that satisfies the critical size criteria can accurately converge onto the true
trajectories of the full system, to within the errors of the numerical model (figure 13a,b),
and, hence, is sufficiently accurate to evaluate any flow quantity of interest including
velocity gradients or vortical structures (cf. figure 12).

4. Conclusions

Synchronization of chaos in turbulent channel flow was attempted using continuous data
assimilation techniques. Fully resolved observations of the turbulence are available outside
a cloaked, or unobserved, region of the flow. These observations are directly substituted in
the synchronization simulation at every time step in order to drive the missing flow towards
the reference state. The temporal evolution of the estimation error was adopted to evaluate
a synchronization exponent, which determines the success and rate of synchronization.
When synchronization is successful, all the turbulence scales in the cloaked region are
accurately re-established, and the synchronization exponent is independent of the initial
condition.

Synchronization was examined in detail for a cloaked, wall-attached horizontal layer.
After the initial transient, a successful synchronization features monotonic decay of the
errors within the layer. The synchronization rate, when scaled in wall units, is independent
of the instantaneous reference state and the Reynolds number up to Reτ = 1000. The
critical layer thickness is l+y,c ≈ 32, which indicates that the near-wall turbulence, including
the true vorticity source, are interpretable from outer observations.

When the unknown horizontal layer is detached from the wall, its synchronization
rate and critical thickness depend on its wall-normal distance, y0. A thin layer has a
relatively slow synchronization rate compared with a wall-attached counterpart, but the
critical thickness increases monotonically with y0. Up to y+0 = 100, the synchronization
rate and critical thickness expressed in wall units are independent of the Reynolds number.
These trends are the outcome of the balance in the equation governing the synchronization
errors, which features a source term at the boundary of the cloaked region, production
of errors against the mean shear and viscous dissipation of errors. Relative to the scales
of turbulence, the critical thickness of a cloaked layer is comparable to twice the Taylor
microscale which quantifies the distance traversed by Kolmogorov eddies within their
lifetimes as they are transported by the r.m.s. velocity.

Simultaneous synchronization in multiple volumes was investigated by considering two
horizontal layers separated by a single plane of observations. The synchronization rate was
bounded by the exponents that correspond to cloaking each layer alone. We also examined
synchronization of vertical layers that are parallel to the flow, and separated by a single
observation plane. The critical layer width that ensured synchronization was identified,
l+z,c ≈ 42, and is of the order of the near-wall Taylor microscale of the turbulence. The
criterion for synchronization of a vertical, crossflow volume is set by the mean advection
and the Lyapunov time scale, and is therefore less restrictive than the criteria in the other
directions for the range of Reynolds numbers examined herein.
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The present results thus extend the synchronization criteria for isotropic turbulence
to wall-bounded turbulence. The identified conditions based on the Taylor microscale
and Lyapunov time scale accommodate inhomogeneity and anisotropy of turbulence and,
therefore, can be applied in various configurations.

Our final experiments, which are of practical interest, attempted reconstruction of the
cloaked region using simulations of a subdomain of the reference system, and with
limited observations. We revisited synchronization of a wall layer, when the available
data are one plane of instantaneous velocity observed from the reference channel-flow
system. The observer system is then the cloaked near-wall layer and that plane of data
only. The reconstructed flow fields perfectly matched resimulations of the subdomain
using the true initial conditions, and both exhibited some deviation from the true, full
channel-flow system due to the discretization scheme of the Navier–Stokes equations.
This mismatch can be reduced by increasing the number of observed velocity planes. The
practical implication of these results is the possibility of accurately predicting the near-wall
flow and the wall stresses from velocity measurements at a wall-parallel plane at y+ �
32; if the measurements are performed beyond y+ = 32, variational data assimilation
techniques must be adopted and can provide bounds on the accuracy of the estimated
near-wall flow as a function of the measurement height. A more general configuration
was investigated in Appendix B for Kolmogorov flow. We demonstrated the feasibility of
synchronization in a subdomain using observations on the surrounding six faces only, as
long as the critical dimensions are obeyed. All together, the present results demonstrate
the potential of augmenting detailed experimental observations, e.g. time-resolved planar
PIV measurements, using continuous data assimilation techniques that are efficient, easy
to implement, and can provide access to entire true flow trajectories.
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Appendix A. Equation for volume-averaged synchronization error

In this appendix we outline the procedures to derive the equation for the volume-averaged
synchronization error, Es = 〈‖e‖2〉1/2

Ωs
. By subtracting the Navier–Stokes equations for us

and ur, we obtain the equations governing e := us − ur and ζ := ps − pr,

∂e
∂t
+ e · ∇ur + ur · ∇e+ e · ∇e = −∇ζ + ν∇2e+ f , (A1)

∇ · e = b(xb)δ(x− xb). (A2)

The forcing f represents direct substitution of the observations in Ωf , which ensures that
e = 0 for all x ∈ Ωf . Note that the pressure difference ζ is non-zero through the entire
channel because the reference pressure pr is not observed. Due to discontinuity between
the observed and estimated velocity fields at all xb ∈ ∂Ωs, the corresponding divergence
of the synchronization error is not zero, which leads to the source term b(xb) in (A1). The
specific form of the source term depends on the numerical discretization. By calculating
the dot product of (A1) with e and then averaging over Ωs, the equation for E2

s = 〈‖e‖2〉Ωs
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can be derived, i.e.

1
2

d
dt
〈‖e‖2〉Ωs = −〈e, e · ∇ur〉Ωs − ν〈‖∇e‖2〉Ωs + B. (A3)

Other terms that can be written in conservative form vanish, either by virtue of e = 0 on
the boundaries of Ωs or appropriate boundary conditions, for example, periodicity in the
horizontal directions for a horizontal slab and no-slip conditions on the wall. The boundary
term in the kinetic energy equation is

B = 1
Ωs

∫
Ωs

b(xb)δ(x− xb)ζ(x) dV = 1
Ωs

∫
∂Ωs

b(xb)ζ(xb) dS. (A4)

This term only contains a surface integration over the boundary ∂Ωs and is generally much
smaller than the production and dissipation in (A3). For the wall-attached horizontal layer
Ωs = {x ∈ [0, Lx]× [0, ly]× [0, Lz]} discussed in § 3.1, the boundary term (A4) becomes

B = 1
Ωs

∫
Ωs

b(x, z)δ( y− ly)ζ(x, y, z) dV = 1
Ωs

∫
∂Ωs

b(x, z)ζ(x, ly, z) dx dz. (A5)

Appendix B. Subdomain synchronization in Kolmogorov flow

In § 3.5 we demonstrated that the wall layer in turbulent channel flow can be accurately
recovered by performing the synchronization simulation in a subdomain, with the limited
observations of the velocity on the top boundary only. The synchronization subdomain
thus spanned the horizontal dimensions of the entire channel, with all the streamwise
and spanwise turbulent scales being unknown. Motivated by practical limitations, in this
appendix we consider the more specialized case where the synchronization subdomain is a
general, three-dimensional, rectangular subvolume that is neither periodic nor attached to
a boundary, and the observations are limited to the velocity data on the surrounding planes
only. The synchronization experiments are performed in Kolmogorov flow which was the
subject of previous studies of synchronization, albeit solely in Fourier space (Lalescu et al.
2013).

The reference simulation is performed in a tri-periodic, cubic box with sides L =
2π, and driven by a body force f b = (0.2 sin y, 0, 0). The Reynolds number is ReΛ =
u′rmsΛ/ν = 146, where the Taylor microscale Λ = √15ν/D u′rms is evaluated using global
dissipation D. The computational domain is discretized on a uniform grid with 256
points in each direction. The incompressible Navier–Stokes equations are solved using the
same numerical algorithm as in § 2. Due to periodicity, the pressure Poisson equation is
solved using Fourier transform in all three directions. Once the flow reaches a statistically
stationary state (see sample snapshots in figure 14a), instantaneous velocity data on six
faces of a cubic subdomain [l0, l0 + l̃]3 are extracted and stored.

The synchronization simulations are performed in subdomains bounded by these six
faces, and the velocity observations are prescribed as Dirichlet boundary conditions.
Since pressure is not observed, Neumann boundary conditions ∂p/∂n = 0 are adopted,
and Fourier-cosine transforms are performed to solve the pressure Poisson equation.
The starting location of the subdomain is fixed l0 = L/16, and three subdomain sizes
l̃ = {1/8, 1/4, 1/2}L are considered. The initial estimate for the first two cases is white
noise proportional to the root-mean-squared velocity fluctuations, and a Lyapunov-type
experiment is performed for l̃ = L/2.
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Figure 14. Instantaneous visualizations of synchronization in Kolmogorov flow. (a) Contours of the reference
spanwise velocity wr, plotted at x = L/2. (b) Enlarged, three-dimensional views of the reference subdomain of
interest and (c) of synchronization using a subdomain simulation. (a–c) The three snapshots from bottom to
top correspond to t = {0, 1, 4}.

0 5 10 2015

t

10–6

10–4

10–2

102

104

100

E s/
E s,

0

l � =  L/2

l � =  L/4

l � =  L/8

Figure 15. Temporal behaviour of errors in subdomain synchronization simulations of Kolmogorov flow. The
volume-averaged errors Es are normalized by their initial value Es,0. Dashed line, l̃ = L/8; dashed-dotted line,
l̃ = L/4; solid line, l̃ = L/2.

The subdomain synchronization simulation for l̃ = L/4 is visualized in figure 14(c) at
t = {0, 1, 4}, and compared with the true state in panel (b). The velocity field on the surface
of the cube is identical to the true state because the continuous data assimilation in this
configuration is effectively prescribed as the time-dependent velocity boundary condition.
Deviations from the reference state occur only at interior points (see figure 14b,c), and
diminish as the flow evolves in time. The volume-averaged synchronization error is plotted
in figure 15 (dashed-dotted line), normalized by its initial value. The error decays to 10−4
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and then saturates, similar to the behaviour discussed in § 3.5 when the reference velocity
is obtained from the full-domain simulation. Note that the error would decay to machine
precision if compared with a reference simulation in the subdomain, starting from an
accurate initial condition.

Figure 15 shows the synchronization errors for all three cases, l̃ = {1/8, 1/4, 1/2}L. The
critical subdomain size l̃c lies between l̃ = L/4 and l̃ = L/2. Because the large-scale flow
is inhomogeneous in the y direction, the local Taylor microscales are evaluated at each y
position from the two-point correlations. The maximum value over y and the {u, v, w}
components are 2Λx,u = 0.95, 2Λy,v = 0.82 and 2Λz,w = 0.75, which are all smaller
than L/4. Similar to removing streamwise layers in § 3.4, the critical subdomain size in
x exceeds 2Λx because of the mean advection effect. In effect, as long as the subdomain
size is below the threshold for synchronization in one direction, the flow can synchronize
to the reference state by enforcing planar velocity data on the six faces.
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