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Te coronavirus disease 2019 (COVID-19) has wreaked havoc globally, resulting in millions of cases and deaths.Te objective of this
study was to predict mortality in hospitalized COVID-19 patients in Zambia using machine learning (ML) methods based on factors
that have been shown to be predictive of mortality and thereby improve pandemic preparedness. Tis research employed seven
powerful MLmodels that included decision tree (DT), random forest (RF), support vector machines (SVM), logistic regression (LR),
Näıve Bayes (NB), gradient boosting (GB), and XGBoost (XGB). Tese classifers were trained on 1,433 hospitalized COVID-19
patients from various health facilities in Zambia.Te performances achieved by thesemodels were checked using accuracy, recall, F1-
Score, area under the receiver operating characteristic curve (ROC_AUC), area under the precision-recall curve (PRC_AUC), and
other metrics. Te best-performing model was the XGB which had an accuracy of 92.3%, recall of 94.2%, F1-Score of 92.4%, and
ROC_AUC of 97.5%.Te pairwiseMann–WhitneyU-test analysis showed that the second-bestmodel (GB) and the third-bestmodel
(RF) did not perform signifcantly worse than the best model (XGB) and had the following: GB had an accuracy of 91.7%, recall of
94.2%, F1-Score of 91.9%, and ROC_AUC of 97.1%. RF had an accuracy of 90.8%, recall of 93.6%, F1-Score of 91.0%, and ROC_AUC
of 96.8%. Othermodels showed similar results for the samemetrics checked.Te study successfully derived and validated the selected
ML models and predicted mortality efectively with reasonably high performance in the stated metrics. Te feature importance
analysis found that knowledge of underlying health conditions about patients’ hospital length of stay (LOS), white blood cell count,
age, and other factors can help healthcare providers ofer lifesaving services on time, improve pandemic preparedness, and decongest
health facilities in Zambia and other countries with similar settings.

1. Introduction

Infectious diseases have always shaped the world in many
ways, from changing the rules that govern daily life to
restricting movement and travel and thereby disrupting
daily life to the point of bringing the entire world to a total
standstill. Tis has been very evident in the COVID-19
pandemic, which has claimed millions of lives since its
outbreak [1]. Tis study [2] focuses on COVID-19 mortality
in Zambia and how predicting mortality can improve public
health preparedness and save lives.

COVID-19 is caused by the Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2). Te COVID-19
pandemic has challenged how the feld of public health
handles typical infectious diseases and how it conducts
research. At the time of this writing and according to the
data reported by the Johns Hopkins University Center for
Systems Science and Engineering [3], the pandemic had
already afected the global population with some
610, 200, 000 cases and 6, 500, 000 deaths; in Africa, about
12, 060, 000 cases and 256, 000 deaths; and in Zambia, with
over 333, 000 cases and 4, 000 deaths [4]. Te situation
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became extremely overwhelming and attracted the attention
of researchers from various felds of the research
community.

Zambia has experienced surging COVID-19 cases and
mortalities on a national scale.Tis has heavily overwhelmed
local communities and especially public health facilities
which have proven to be ill-prepared since the start of the
pandemic. One of the major challenges Zambia faced was
pandemic unpreparedness which has been shown to be an
essential factor in the fght to control any pandemic [5].
Failure to predict COVID-19 mortality in patients with the
greatest risk posed a public health challenge towards un-
preparedness which in turn caused improper prioritization,
underestimation, and underallocation of funds towards the
government’s pandemic response plan [6].

Many research studies have been done on COVID-19
pandemic so far using both traditional statistical methods
and ML techniques [7]. Tere have been a few past studies
that used ML algorithms for COVID-19 mortality classif-
cation. A study that compared two prediction models based
on statistical and computational ML algorithms to predict
mortality in COVID-19 hospitalized patients [8] found that
between a conventional statistical method of LR and a ML
method of artifcial neural network (ANN) when validated
on 16 features against a sample of 482 laboratory-confrmed
COVID-19 hospitalized patients, the ANN achieved the best
performance with an ROC_AUC of 90%. However, despite
the high performance, the authors of the study acknowl-
edged the limitations associated with having used only two
ML algorithms, having conducted the study at a single center
and on merely 482 participants, which afected the gener-
alizability of their fndings. Te authors also acknowledged
that there were no eforts to address themisclassifcation bias
that may have been potentially introduced by the class
imbalance that existed between 382 (79.25%) who recovered
and 100 (20.74%) who succumbed to the disease, in which
case the use of Synthetic Minority Oversampling Technique
(SMOTE) should have been performed. Another study
conducted on 1710 hospitalized COVID-19 patients de-
veloped and evaluated several ANNs to predict the mortality
risk in hospitalized COVID-19 patients. Te back-
propagation artifcial neural network (BP-ANN) was the
best model and achieved an ROC_AUC of 88.8%. For this
study, the authors acknowledged the limitations presented
by the single-center nature of their selected dataset, and the
use of only two ANN algorithms in diferent confgurations.

Although this research was not focused on proposing
totally new methods and procedures, there are a few com-
ponents that represent the novelty of our study in addressing
certain gaps identifed in past studies. In order to improve the
generalizability of our fndings, we aimed to target a much
larger study sample that included participants from multiple
healthcare facilities. Most studies have not implemented
several ML methods simultaneously and have thus recom-
mended the use of several MLmethods in order to have a clear

picture of how these algorithms perform when compared with
each other. In addition, the procedure for picking the best
model in most of the studies reviewed simply pick the ML
model with the highest value in the metric being considered,
and there are no follow-up attempts to determine if the dif-
ference observed visually between two competing algorithms
is actually statistically signifcant. To address this concern, this
study sought to develop and validate several ML algorithms
that included the following: (1) ecision tree (DT), (2) random
forest (RF), (3) support vector machines (SVM), (4) logistic
regression (LR), (5) Näıve Bayes (NB), (6) gradient boosting
(GB), and (7) XGBoost (XGB). Tese algorithms were
implemented simultaneously after which the procedure for
selecting the best model used pairwise comparisons of each
model compared to all other models for the various metrics
used as explained in the post hoc analysis section of the
Materials and Methods section. Tis helped in determining
whether the diferences observed visually between two com-
peting models were actually statistically signifcant. Tis also
made it possible for this study to have a statistical basis for
proposing and recommending multiple ML algorithms as
alternatives to the top performing model in situations where
there were no statistically signifcant diferences observed
between the best model and the second-best model, something
that is hardly done in ML research.

Tis study was conducted in order to help Zambia’s
healthcare system prepare for current and future pandemics
and sought to predict mortality in hospitalized COVID-19
patients using ML. It employed a special form of ML called
supervised ML [9].Te use of ML in this study was chosen due
to a number of reasons. Progress in computer science and
technology has made the application of ML in public health
research to become more common today. As it has been ob-
served, ML models have been preferred in situations involving
extremely dynamic datasets, automation, and greater com-
puting abilities [10, 11]. Tis study thus sought to develop an
ML pipeline that supports automation, reusability, and re-
producibility. ML algorithms have also been shown in
a number of studies [12] to possess improved and unmatched
performance as these models continually improve signifcantly
as more data become available over time. Another advantage
that favored the use of ML in this research was that, while most
conventional statistical methods are profcient at detecting
simpler univariate and multivariate associations, it often re-
quires more sophisticated ML algorithms to detect complex
interactions and heterogeneous feature associations in which
diferent unspecifed subgroups of instances in the data may
have distinct underlying feature associations with outcome [13].

Tis research is intended to answer two fundamental
questions:

(i) Based on Zambia’s COVID-19 data for the period
March 2020 to October 2021, how accurately can
mortality be classifed among hospitalized
COVID-19 patients?
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(ii) What fundamental factors among those collected by
Zambia’s health facilities hugely infuence
COVID-19 patients’ susceptibility to mortality?

Te main objective of this study was to derive and
validate supervised ML models to predict mortality in
hospitalized COVID-19 patients in Zambia. Tis main
objective was further subdivided into three (3) specifc
objectives:

(i) Perform internal validation for mortality prediction
on the COVID-19 dataset for the period of March
2020 to October 2021 in Zambia

(ii) Quantify the infuence that features have on the fnal
mortality outcome among hospitalized COVID-19
patients in Zambia from March 2020 to
October 2021

(iii) Check the performance evaluation metrics for each
of the candidate models used in predicting mortality
to assess the level of success achieved by each model

Tis paper is organized into six main sections. Te In-
troduction section contains the background of the study and
the description of the research problem and objectives. Te
Literature Review has highlighted important studies that
successfully used similar methods in addressing COVID-19
mortality. Te Materials and Methods section has provided
important guidelines about the design of the study and the
various ML methods implemented in the analysis. Te
Results section presents the results of the various tests
conducted. Tese results are then discussed in detail in the
Discussion section. Te Conclusion section has outlined the
conclusions drawn from the study and the recommenda-
tions proposed for further research. Extra supplementary
materials are also provided and are listed and described in
the Supplementary Materials section.

2. Literature Review

Tis section presents the review of literature published in
various journals on COVID-19 mortality. Te literature
considered were searched from the MEDLINE database
using the PubMed online search engine. For each research
paper reviewed, the focus was on the study design and
setting, study sample, study purpose, methods, and main
results.

Te frst part of the literature review presents papers that
have addressed factors that contribute to severe COVID-19
andmortality [11, 14, 15].Te second focuses on studies that
attempted to predict mortality in COVID-19 patients using
ML methods and the associated performances for various
evaluation metrics. Te fnal part of our literature review has
addressed a few studies that have compared MLmodels with
conventional statistical models in order to appreciate why
ML models were chosen for this study.

First and foremost, there have been a number of studies
that have described predictors of severe COVID-19, which
could probably be in the causal pathway leading to mortality.
In a study entitled: Risk factors for mortality in critically ill
patients with COVID-19 in Huanggang, China: A single-

center multivariate pattern analysis [16], a group of re-
searchers outlined multiple risk factors that led to severe
COVID-19 and even death in a number of extreme cases.
Te paper observed 192 critically ill COVID-19 patients in
which 142 survived and 50 died in hospital. After data were
compared between survivors and nonsurvivors, and per-
forming multivariate pattern analysis to identify possible
risk factors for COVID-19 mortality, several factors were
identifed. Tese included age, duration (time from illness
onset to admission), Barthel index score, whether laboratory
examination indicators included C-reactive protein, white
blood cell count, platelet count, fbrin degradation products,
oxygenation index, lymphocyte count, and D-dimer. In
another study (COVID-19 mortality risk assessment: An
international multicenter study), Bertsimas et al. [17]
addressed many more risk factors of severe COVID-19 and
mortality including age, sex, heart rate, heart disease, di-
abetes, chronic kidney disease, cardiac dysrhythmias, and
a few other features. Tese features were derived from
a population of 3,062 COVID-19 patients.Temortality rate
was 26.84%. In comparison to survivors, nonsurvivors were
older with a median age of 80, whereas survivors had
a median age of 64. Of the nonsurvivors, men were 67.2%
while women were only 58.4%. It was also reported that the
prevalence of comorbidities such as cardiac dysrhythmias,
chronic kidney disease, and diabetes were higher in the
nonsurvivor population versus the survivor population
(9.61%, 4.21% and 15.92% versus 5.56%, 1.74%, and 11.42%,
respectively). In all these studies with varying study settings
and study samples, a few features have appeared in many
multiple studies. Tese are age, sex, hospitalization, pneu-
monia, acute respiratory distress syndrome, HIV, TB, ma-
lignancy, diabetes, cardiac disease, hypertension, chronic
pulmonary disease (CPD), chronic kidney disease (CKD),
and chronic lung disease. Tese features were thus targeted
in this study.

After the review of the literature that attempted to
predict mortality in COVID-19 patients, the following
studies were reviewed. Josephus et al. [18] conducted a study
on 114 Indonesian COVID-19 patients, and the objective of
the study was to make mortality predictions on COVID-19
patients with nonmedical features. Te study used a single
LR model which achieved an accuracy of more than 90%;
further analysis found that age was the most important
predictor of patient’s mortality. Te author recommended
a larger study sample as only 114 patients were used. It was
also noted that more ML methods were missing with which
comparisons should have been made in order to choose the
best model. In a diferent study conducted in China in-
volving a cohort of 2,160 participants analysed retrospec-
tively, Gao et al. [19] built an ensemble mortality risk
prediction model for COVID-19 using four ML methods
including LR, SVM, Gradient-Boosted-DT, and ANN. Te
results found that the ensemble model achieved an
ROC_AUC of 0.9621 (95% CI: 0.9464–0.9778). Some of the
limitations acknowledged by the authors included the fact
that participants were primarily only local residents from
Wuhan, China, and recommended investigation of the
predictive performance of the ML models in other regions
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and ethnicities and the evaluation of the prognostic im-
plications of the ensemble ML model in prospective cohorts
other than the retrospective cohorts used in their study. In
another retrospective study in South Korea involving 3,524
patients, Das et al. [20] conducted a study to predict
mortality among confrmed COVID-19 patients in South
Korea using machine learning. Of the fve ML algorithms
(LR, SVM, KNN, RF, and GB) used, the results showed that
LR was the best model and achieved an ROC_AUC of 83.0%.
Tere were a number of limitations reported by the authors
including unavailability of crucial clinical information on
symptoms and risk factors. A major setback reported by the
author of this study was the reuse of a subset of data for
validation that was also included in the cross-validation
process. Tis may have led to overftting of the models
with the available data. We also noticed that despite the
extreme class imbalance in their dataset which contained
3,529 (97.9%) cases and 74 (2.1%) deaths, there were no
eforts to address the potential misclassifcation bias that
may have been introduced by this imbalance, in which case
balancing of the outcome classes using SMOTE should have
been inevitable. In a much bigger multinational cross-
sectional study involving a huge sample of 2,670,000 par-
ticipants from 146 countries, Pourhomayoun and Shakibi
[21] designed and developed several ML models (SVM,
ANN, RF, DT, LR, and K-Nearest Neighbor (KNN)) to
determine the health risk of patients with COVID-19. Te
study results found the best model to be the RF which
achieved an ROC_AUC of 94.0%. Tis was a high-quality
study with huge study samples; however, the performance
was not exceptional; this could have been due to various
confounding variables and other complex feature in-
teractions that may have crept into the study due to the huge
diferences in population characteristics across national or
regional boarders; thus, results may have been stratifed
according to regions having countries with similar pop-
ulation characteristics.

Some studies have compared ML models with con-
ventional statistical models in prediction problems, in which
ML models were preferred to conventional statistical
models. One study entitled: Comparison of Conventional
Statistical Methods with Machine Learning in Medicine:
Diagnosis, Drug Development, and Treatment [22].Te study
was a narrative review whose aim was to ofer an expert
perspective on the comparison of traditional statistical
methods with ML, and their corresponding advantages and
limitations in medicine, with a specifc focus on the in-
tegration between the two approaches and its application to
illness detection, drug development, and treatment. It
compared the usefulness and limitations of traditional
statistical methods and ML, when applied to the medical
feld. Tis study recommended a method that best meets the
requirements and best solves the problem at hand. It also
recommended a hybrid approach that integrates both ML
and traditional approaches if doing so can add benefcial
results to the study.

Te current review of the literature suggests that the use
of ML in medical research has not been fully utilized despite
the advantages associated with its use. Moreover, the

newness of ML models and their heavy reliance on pro-
gramming skills have added to the complicatedness of ML
models and hindered most researchers from using ML
methods where they ought to be used. Tis has resulted in
less applicability of ML models. Reproducibility and con-
sistency have always been the anchors of evidence-based
medical research; however, the way in which most ML re-
search studies have been documented has made it harder to
reproduce ML methods. Tus, this study aimed to address
a number of issues identifed in the various studies reviewed.
Tese issues involved the use of larger study samples from
various locations to improve generalizability of fndings, the
implementation of several ML methods from which the best
model should be chosen, the use of SMOTE in inevitable
situations having extreme class imbalance of outcome cat-
egories to remove misclassifcation bias, and the use of
a statistical procedure for selecting the best model that
performs signifcantly better than other models. Te ML
methods used in this study were intended to improve the
reusability of ML pipelines built in order to allow others to
apply similar methods to similar classifcation problems.

3. Materials and Methods

Tis section discusses the various methods used in the study,
which are the design and setting of the study, data analysis,
and the type of ethical approval obtained.

Tis study followed the standard guidelines of a typical
ML research outlined by Luo et al. [23] in the paper
“Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research: A Multidisci-
plinary View.” A visual conceptual framework displayed in
Figure 1 was developed to visually display the outcome
(COVID-19 mortality) and various features that are pre-
dictive of mortality.

To further expand the research conceptual framework,
a more detailed visual graphic of the machine learning
modelling steps implemented in this research was adapted
from Urbanowicz et al. [13] and is shown in Figure 2.

3.1. StudyDesign. Te outcome of interest and the exposures
in this study were analysed simultaneously, and study
participants were selected only based on relevance to the
study objectives and not on the status of the outcome nor
exposures. Tis qualifed the study to use an analytical cross-
sectional design as recommended by Wang and Cheng [24].

3.2. Study Population and Study Setting. Tis study was
conducted in Zambia which is estimated to have a pop-
ulation of about 18 million with the majority of the people
(98%) estimated to be under the age of 65 years of age
[25, 26]. Tis is an important observation since age is an
essential predictor of COVID-19 mortality. Te study
population targeted included all confrmed cases of
COVID-19 that were hospitalized in various health facilities
in Zambia from the period of March 2020 to October 2021.
Te data used were from the Zambia National Public Health
Institute (ZNPHI), which house the combined datasets from
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various health institutions that were selected by the Ministry
of Health to be COVID-19 centres across the country.

3.3. Measurement Variables. Te measurement variables
used in this study were chosen based on recent studies
[16, 17] that have showed that COVID-19 in the presence of
a number of comorbidities is more likely to lead to mortality.
Tus, the comorbidities chosen included age, diabetes, tu-
berculosis, and other underlying conditions, as listed in
Table 1.

3.4. Eligibility Criteria. Tis research targeted the data
collected by ZNPHI from various health facilities in Zambia
for which all confrmed COVID-19 cases hospitalized during
the period of March 2020 to October 2021 were eligible to be
included in the study. However, pregnant women were
excluded from the study due to the variable vaccination
status for which there was no acceptable vaccine for preg-
nant women in Zambia at the time this research was con-
ducted. Other excluded cases involved records that had too
many missing variables for which the application of multiple
imputations would have simply added extra noise to the
dataset.

3.5. Handling of Missing Data. Since the study applied ML
models that do not allow missing values in the dataset,
missing values needed to be imputed for the models to run.
Te Supplementary Material of “Figure S2: Dataset miss-
ingness map” contains details on the level of missingness
associated with each of the features used. Multiple

imputations by chained equations (MICE) [27] was the
method used to impute missing values using the mice
package in R [28].

3.6.Handling of Bias. It was also noted that there was a large
class imbalance in the proportions of the patients who re-
covered and the proportion of patients who died, as shown
in Figure 3. Extreme class imbalance has been widely re-
ported by many ML experts to have the potential to in-
troduce misclassifcation bias or type II error [29, 30]. Tis
prompted the use of Synthetic Minority Oversampling
Technique (SMOTE) [31, 32] to balance the label classes in
the dataset. Results from an imbalanced dataset were then
compared to the results from a SMOTE-balanced dataset in
order to check if balancing classes really helped the ML
classifers in reducing the type II error.

3.7. Data Analysis. Tis section described the various
software packages used in this study, the classifcation
models used, and the performance evaluation metrics
employed.Te data analysis used all the data that were made
available by ZNPHI, involving 1,433 COVID-19 hospitalized
patients.

3.7.1. Statistical Software Packages Used. Te Python pro-
gramming language version 3.8.0 [33] and its libraries scikit-
learn version 1.1.0 [34] and XG Boost [35] were used in ML
model development. Te integrated development environ-
ment (IDE) used included JupyterLab version 3.4.0 [36] and
Visual Studio Code version 1.70.0 [37]. Other minor

LOS

White Blood
Cell Count 

Features Predictive of Mortality

- 
- 
- 
- 
- 
- 
- 

DIED

- 

DECISION TREE (DT)
RANDOM FOREST (RF)
SUPPORT VECTOR MACHINES (SVM)
LOGISTIC REGRESSION (LR)
NAIVE BAYES (NB)
GRADIENT BOOSTING (GB)
XGBOOST (XGB)

ACCURACY
PRECISION
RECALL
SPECIFICITY
F1-SCORE
ROC_AUC 
PRC_AUC

- 
- 
- 
- 
- 
- 

RECOVERED

COVID-19
CONFIRMED CASE MORTALITY

STATUS

CANDIDATE
MODELS

AGE

SEX

DIABETES

TB

HIV

HYPERTENSION

PERFORMANCE

Figure 1: Visual research conceptual framework.
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exploratory analyses were conducted using R version 4.2.0
[38], the recent easy-to-use statistical software packages
jamovi version 2.3.16 [39], and JASP version 0.16.2.0 [40].

3.7.2. Validation Strategy. Due to feasibility and resources
constraints associated with external validation of MLmodels
on a new independent dataset [41], this study only
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Figure 2: Machine learning modelling steps.

Table 1: Study variables.

Type of variable Variables Scale of measurement
Outcome variable Mortality Binary

Predictor variables

Age Discrete
LOS Discrete

White blood cell count Continuous
Sex Categorical

Admission ward Categorical
HIV status Categorical
Tuberculosis Categorical
Smoking Categorical
Alcohol Categorical
Diabetes Categorical

Hypertension Categorical
Chronic pulmonary disease Categorical
Chronic kidney disease Categorical
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performed internal validation for the developed ML models.
Te dataset was split into the training and test sets in the
ratio 80 : 20 using 5-fold cross-validation strategy, which has
been shown to be sufcient in assessing the generalization
ability of ML models [42].

Te ML models used were optimized for performance
using the various scikit-learn and XG Boost hyperparameter
tunings [43, 44]. Te ML models were all trained and tested
on the same dataset, after which the performance evaluation
metrics were assessed to identify the best-performing model.
Before running the candidate models, a Pearson correlation
analysis of all pairs of features was conducted to identify
potentially redundant or highly correlated features, followed
by a univariate correlation analysis between outcome and
individual features where numerical features were analysed
using the chi-square test of independence and categorical
features were analysed using the Mann–Whitney U test; this
helped in consolidating the feature importance analysis that
followed after.

3.7.3. Te Decision Tree (DT) Algorithm. Te DTmodel [45]
is a type of supervised ML algorithm used in classifcation
problems in which the model follows a set of if-else con-
ditions to either visualise the data or classify it in accordance
with the possible outcomes presented. Tis study imple-
mented the categorical variable DT during the mortality
classifcation process. Te model used the decision tree
classifer from the scikit-learn library with hyperparameter
tunings shown in the Supplementary Material for “ML
Models Optimization Hyperparameter” in Table S1 [46].

3.7.4. Te Random Forest (RF) Algorithm. Te RF algorithm
[47, 48] is an ensemble learning method that combines many
DTs and averages them to make a fnal decision. Tis
produces a more complex and powerful classifer. Te RF
model uses the random forest classifer from the scikit-learn
library and is implemented with hyperparameter attributes
shown in the Supplementary Material for “ML Models
Optimization Hyperparameter” in Table S2 [49].

3.7.5. Te Support Vector Machine (SVM) Algorithm.
Te SVM [50] is a classifcation algorithm in which each data
point is plotted in the n-dimensional space by using support
vectors, which are the coordinates corresponding to each
individual data point, where n is the number of features that
best diferentiates the two classifcation classes. Te SVM
algorithm performs classifcation by using the SVC (support
vector classifer) from the scikit-learn library. Te SVC
separates the data into their classes using the right hyper-
plane using the hyperparameters shown in the Supple-
mentary Material for “ML Models Optimization
Hyperparameter” in Table S3 [51].

3.7.6. Te Logistic Regression (LR) Algorithm. Te LR model
can be defned as the ML algorithm that is applied in
classifcation problems using the concept of probability in
predictive analysis by assigning observations a logistic cost
function termed as a sigmoid function σ(z) � (1/1 + e− z)

that maps predicted values to their associated probabilities
ranging from 0 to 1; it penalises the model for every wrong
prediction and works towards reducing those mis-
classifcation errors [52].Te LRmodel is a linear model that
uses the logistic regression classifer from the scikit-learn
library with hyperparameter attributes presented in the
Supplementary Material for “ML Models Optimization
Hyperparameter” in Table S4 [53].

3.7.7. Te Naı̈ve Bayes (NB) Algorithm. Te NB model [54]
is a classifcation method that uses the popular Bayesian
method of prior likelihood in the implementation of clas-
sifcation. It is based on Bayes theorem, which states that if
an outcome event is partitioned into k nonintersecting
(mutually exclusive or independent) categories
B1, B2, . . . , Bk, then the probability of an ith event Bi hap-
pening given an event A is given by the following equation:

P Bi|A( 􏼁 �
P A|Bi( 􏼁.P Bi( 􏼁

P A|B1( 􏼁.P B1( 􏼁 + P A|B2( 􏼁.P B2( 􏼁 + · · · + P A|Bk( 􏼁.P Bk( 􏼁
. (1)

Classifcation by the NB algorithm was implemented
using the Gaussian NB classifer (Gaussian Naive Bayes)
from the scikit-learn library, making the assumption that the

likelihoods of features are assumed to be Gaussian such that
parameters σy and μy are estimated using the method of
maximum likelihood. Since the NB classifer is naturally less
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Figure 3: Proportion of patients who recovered and patients
who died.
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complex, all hyperparameters of the Gaussian NB classifer
were left to be run with their default attributes [55].

3.7.8. Te Gradient Boosting (GB) Algorithm. Te GBmodel
[56] builds an additive model in a forward stagewise fashion;
it allows for the optimization of arbitrary diferentiable loss
functions. In each stage, n_classes regression trees are ft to
the negative gradient of the binomial or multinomial de-
viance loss function. Binary classifcation is a special case
where only a single regression tree is induced. Te opti-
mization of the gradient boosting classifer was achieved by
hyperparameter tuning shown in the Supplementary Ma-
terial for “ML Models Optimization Hyperparameter” in
Table S5 [57].

3.7.9. Te XGBoost (XGB) Algorithm. Te extreme gradient
boosting algorithm, popularly known as XGBoost [35], is an
ensemble ML model that employs the gradient boosting
framework during classifcation tasks and provides parallel
tree boosting. Tis study implemented the XGB using the
XGB classifer with the optimization hyperparameter tun-
ings shown in the Supplementary Material for “ML Models
Optimization Hyperparameter” in Table S6 [44].

3.7.10. Performance Evaluation Metrics. Temetrics used to
evaluate the performance of models in this study were ac-
curacy, recall (sensitivity), and specifcity. In order to get
a clearer picture of the models’ performance that is free from
bias from the imbalance between classes in the dataset, the
analysis of the areas under the ROC and PRC curves were
prioritized. To supplement the use of accuracy, the F1-score
was used to optimize the trade-of between precision and
recall [58].

3.8. Post Hoc Analysis. At the end of achieving the desired
results, a procedure for determining the best model was
proposed to go beyond simply picking the ML model with
the highest value in the metric being considered. Te best
model was determined by frst conducting nonparametric
statistical analyses to compare the averages of the perfor-
mance evaluation metrics for every pair of the ML models
used. Secondly, an analysis was done to determine which of
the ML models had evaluation metrics that yielded signif-
icant fndings in the Kruskal–Wallis one-way analysis of
variance (p value ≤ 0.05). Finally, those models were then
run through follow-up pairwise Mann–Whitney U-tests to
compare between all possible pairs of the seven ML models
used to identify the existence of a signifcant diference in
performance. Tus, for each metric assessed, the number of
all possible pairwise MLmodel combinations from the seven
algorithms used resulted in 21 combinations (computed
from C(7, 2) � (7!)/((7 − 2)! × 2!) � 21). Te best model
was then picked based on the existence of a statistically
signifcant diference between a number of competing
models. If multiple outstanding models are competing and
the pairwise Mann–Whitney U-tests do not show the ex-
istence of a statistically signifcant diference, then choosing

the model whose metric has the highest value as the best
model should be accompanied by the argument that, in the
event that the top model could not be implemented, the
other competing models should be used with the same
confdence as though they were the best model.

3.9. Ethical Approval. Tis study was approved by the
University of Zambia Biomedical Research Ethics Com-
mittee (UNZABREC), approval number: REF-2106-2021.
Tis study was also registered with the National Health
Research Authority (NHRA) of Zambia, reference number:
NHRA-00009-06-01-2022. All essential requirements as
requested for in Zambia were met and commitment to
uphold all ethical guidelines regarding confdentiality and
proper handling of the patient’s confdential medical records
was ensured.

4. Results

Tis section presents the various fndings of this study. Te
summary statistics presented describe the characteristics of
the data used, followed by the results of the feature im-
portance analysis and the results of the classifcation models
presented with their performance evaluation metrics.

4.1. Sample Characteristics. Te sample involved 1, 433
hospitalized COVID-19 patients with a variety of charac-
teristics. Te overall mean age and standard deviation of the
entire sample was 50.5 (16.3). Te study sample included
911 (63.6%) males and 512 (36.4%) females. Te proportion
of COVID-19 admitted patients who died from the disease
was 129 (10.1%), while the proportion of those who re-
covered from the disease formed a majority class of
1304 (89.9%) patients.

Te results of performing SMOTE on the imbalanced
dataset produced a balanced dataset shown in Figure 4.

Table 2 presents a summary of numerical features in the
form of averages and medians with their respective standard
deviations (SD) and interquartile ranges (IQR) where ap-
propriate. Table 3 presents a summary of categorical features
with their respective proportions in percentages.

Te results in Table 2 describe the numerical features of
the study participants which all showed a strong signifcant
association with COVID-19 mortality. Te median number
of days spent in the hospital (LOS) for patients who re-
covered and those who died was 4.0 (IQR� 5.0) days and 2.0
(IQR� 2.0) days, respectively. For the feature age as it was
expected, the mean age of those who died was as high as 56.6
(SD� 17.1) years, whereas 49.9 (SD� 16.1) years was the
mean age of those who survived. It can also be seen that the
median white blood cell count for patients who died was 7.8
(IQR� 8.5) cells per μL, whereas patients who recovered
recorded 6.7 (IQR� 4.6) cells per μL. Te results in Table 3
also describe eleven categorical features of the study par-
ticipants. Five of these features (diabetes, hypertension,
wave, ward, and CPD) showed a strong signifcant associ-
ation with COVID-19 mortality, whereas the other features
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Figure 4: Proportions of two mortality classes. (a) Imbalanced mortality classes. (b) Classes balanced by SMOTE.

Table 2: Summary of numerical features.

Numerical features Total (1,433) Recovered (1,304) Died (129) P value
LOS (days) 4.9 (4.2)a 4.0 (5.0)b 2.0 (2.0)b <0.001c

Age (years) 50.5 (16.3)a 49.9 (16.1)a 56.6 (17.1)a <0.001c

White blood cell count (/μL) 6.720 (4.9)b 6.7 (4.6)b 7.8 (8.5)b <0.001c

Note.aMean (SD), bmedian (IQR); cp value from chi-square test.

Table 3: Summary of categorical features with their respective proportions.

Categorical features Subcategories Total: 1,433 (100%) n (%) Recovered: 1,304 (89.9%) n (%) Died: 129 (10.1%) n (%) P value

Sex Male 911 (63.6) 828 (63.5) 83 (64.3) 0.925d

Female 522 (36.4) 476 (36.5) 46 (35.7)

HIV Positive 276 (19.3) 251 (19.2) 25 (19.4) 1.000d

Negative 1157 (80.7) 1053 (80.8) 104 (80.6)

Diabetes Yes 352 (24.6) 303 (23.2) 49 (38.0) <0.001d

No 1081 (75.4) 1001 (76.8) 80 (62.0)

Hypertension Yes 729 (50.9) 644 (49.4) 85 (65.9) <0.001d

No 704 (49.1) 660 (50.6) 44 (34.1)

Wave
1st-wave 534 (37.3) 506 (38.8) 28 (21.7) <0.001d

2nd-wave 566 (39.5) 505 (38.7) 61 (47.3)
3rd-wave 333 (23.2) 293 (22.5) 40 (31.0)

Ward

General 496 (34.6) 453 (34.7) 43 (33.3) <0.001d

Suspect 250 (17.4) 242 (18.6 8 (6.2)
Infectious dis. 251 (17.5) 216 (16.6 35 (27.1)
High cost 293 (20.4) 277 (21.2 16 (12.4)

ICU 143 (10.0) 116 (8.9) 27 (20.9)

∗Smoking Yes 65 (4.5) 64 (4.9) 1 (0.8) 0.054d

No 1368 (95.5) 1240 (95.1) 128 (99.2)

∗TB Yes 68 (4.7) 64 (4.9) 4 (3.1) 0.481d

No 1365 (95.3) 1240 (95.1) 125 (96.9)

∗CKD Yes 32 (2.2) 28 (2.1) 4 (3.1) 0.699d

No 1401 (97.8) 1276 (97.9) 125 (96.9)

∗Alcohol Yes 204 (14.2) 185 (14.2) 19 (14.7) 0.971d

No 1229 (85.8) 1119 (85.8) 110 (85.3)

∗CPD Yes 21 (1.5) 13 (1.0) 8 (6.2) <0.001d

No 1412 (98.5) 1291 (99.0) 1296 (93.8)
Note: dp value from Mann–Whitney U test; ∗features omitted in models with selected features.
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did not show a signifcant association with COVID-19
mortality.

4.2. Feature Importance Analysis. Te results of a feature
importance analysis in Figure 5 show both the mutual in-
formation scores and the multisurf scores. Te mutual in-
formation score highly ranked LOS and white blood cell
count with an approximate score of 0.188. Other relatively
important features in order of decreasing importance in-
cluded diabetes, sex, age, wave, and hypertension. Te
multisurf scores, on the other hand, showed which of the
important features were given maximum priority, and what
features were given the least priority. Te frst priority was
primarily given to LOS with a relatively high score of 0.12,
whereas the second priority was given to the features hy-
pertension, diabetes, sex, HIV, white blood cell count, wave,
and age (in descending order of importance). On the other
hand, chronic kidney disease (CKD), alcohol intake, tu-
berculosis, and admission ward were not prioritized.

Figure 6 presents the normalized compound feature
importance plot in the form of stacked bar graphs. Te size
of the portion of the bar for each ML model represents the
proportional contribution of each ML model in comparison
to the total magnitude of importance that each feature was
given. In harmony with the mutual information scores and
the multisurf scores, the normalized compound feature
importance plot for the seven algorithms used also con-
frmed that LOS stood out as the most infuential feature
with a score of almost 2.00. Tis was followed by an ap-
proximate score of 0.70 for age, white blood cell count,
and wave.

Te results of the feature importance analysis com-
plemented the results of the univariate feature analysis and
guided the removal of some features that had little infuence
on the classifcation of mortality.

4.3. Performance of Classifcation Models. Te results of the
seven ML models used in this study are now presented and
include both the results from imbalanced and balanced
mortality classes. Te results have also presented the per-
formance of models that used all features compared to those
that used only selected important features.

To begin with, the results of ML models using the
ROC_AUC are displayed in Figure 7. It was observed that for
the dataset with imbalanced classes, ML models performed
relatively well with ROC_AUC values ranging from 0.743 to
0.816, where LR was the best model and DT was the
underperforming model. However, it was observed that
despite maintaining the same hyperparameter tunings,
ROC_AUC results improved signifcantly for all seven
models when mortality classes were balanced using SMOTE,
with ROC_AUC values now ranging from as high as 0.869 to
a whopping 0.974, where the XGB was the best model
whereas the NB was the underperforming model.

Secondly, the results of ML models using the PRC_AUC
are now presented in Figure 8. It was observed that for this
relatively unbiased metric, all seven models performed
unacceptably poor and worse for the dataset with

imbalanced classes. Te PRC_AUC results ranged poorly
from 0.269 to 0.365, where RF was the best model, whereas
NB was the underperforming model. In a surprising turn of
events, despite maintaining the same hyperparameters
tunings for all models, PRC_AUC results showed tremen-
dous performance improvements for the dataset where
mortality classes were balanced using SMOTE. PRC_AUC
results now ranged from 0.860 to 0.973. Te best model in
PRC_AUC results for the balanced dataset was now the XGB
while the underperforming model was the NB.

Tirdly, having compared the performance improve-
ments of the seven models as indicated by the ROC and PRC
plots, it was clear that balancing mortality classes using
SMOTE led to better performance improvements for all
models used. Following the use of the dataset with balanced
classes as a better choice for removing bias, the study then
sought to determine whether all fourteen features assumed
to be predictive of COVID-19 mortality were helping the
models perform better. Tis led to the removal of some
features that were less important and less predictive of
mortality, as was earlier shown by the mutual information ,
multisurf , and normalized feature importance scores. Tis
resulted in a series of trials that led to the removal of fve less
infuential features: smoking, alcohol, chronic pulmonary
disease (CPD), chronic kidney disease (CKD), and TB.

Te results of models with all fourteen features com-
pared to models with only selected features using
ROC_AUC as the evaluation metric are now presented in
Figure 9. Models that used selected features only left out fve
less infuential features (smoking, alcohol, CPD, CKD,
and TB).

It can be clearly seen from Figure 8 that there are no
signifcant diferences in the performance of the seven
models when the ROC_AUC results for all features are
compared with the ROC_AUC results for the selected
features.Tis invoked the use of the law of parsimony, which
favours the model with fewer features.

Finally, performance results of ML classifers were now
evaluated using various metrics including accuracy, recall
(sensitivity), specifcity, precision, ROC_AUC, and
PRC_AUC, as presented in Table 4. Te performance results
of the seven ML models used are presented in descending
order starting from the best-performing model to the worst-
performing model: XGB, GB, RF, SVM, DT, LR, and NB.

Te post hoc analysis of performance metric results for
each ML model yielded signifcant results from the Krus-
kal–Wallis one-way analysis of variance. Tis result vali-
dated the analysis of a follow-up pairwise Mann–Whitney
U-test for each metric. In order to determine the best model
from the seven ML models used, this study concentrated on
comparing the ROC_AUCs and checking whether a signif-
icant diference existed between each pair since similar
results were also observed in other evaluation metrics
checked.

Te pairwise Mann–Whitney U-test analysis comparing
ROC_AUC results showed that despite the average algo-
rithm performance in ROC_AUC being 93.3%, the algo-
rithms NB, LR, and DT performed signifcantly worse ( p

value ≤ 0.05) than the other ML models used. It was also
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Figure 5: Feature importance analysis. (a) Mutual information scores. (b) Multisurf scores.
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Figure 7: ROC_AUC of models for selected features. (a) For imbalanced classes. (b) For balanced classes.
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Figure 8: PRC_AUC for selected features. (a) Imbalanced classes. (b) Balanced classes.
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found that the SVM algorithm performed signifcantly better
than NB, LR, and DT; however, it still performed signif-
cantly worse than the top three models (RF, GB, and XGB).
As presented in Table 4, among the top three performing
models, the best model was the XGB with ROC_AUC of
98.2% for all features and 97.5% for selected features; it was
followed by the GB, which had ROC_AUC of 97.6% for all
features and 97.1% for selected features; it was also followed
by the RF in third place with ROC_AUC of 96.9% for all
features and 96.8% for selected features. Further observation
found that the pairwise Mann–Whitney U-test analysis of
the top three models did not show any signifcant diference
between the best-performing model (XGB) and the second-
performing model (GB); there was also no signifcant dif-
ference between the XGB as the best model and the RF as the
third-performing model.

5. Discussion

Tis section now discusses the results just presented and
ofers appropriate interpretations of the fndings. A brief
summary of the fndings is presented frst, followed by
a discussion of important features that hugely infuenced
patients’ susceptibility to mortality. Finally, the discussion
of the performance evaluation metrics for the ML models
to guarantee the quality of the predictions made is
presented.

5.1. Summary of Findings. Tis study aimed to apply su-
pervised ML models to predict mortality in hospitalized
COVID-19 patients in Zambia by deriving and validating
seven (7) ML models for mortality prediction on Zambia’s
COVID-19 dataset. Te study successfully performed in-
ternal validation on the dataset and identifed features that
proved to be predictive of mortality. It was found that
hospital length of stay and blood cell count can efectively
help in determining mortality; knowledge of patients’ ages
and diabetes status was also found to be reasonably useful.
Te study then quantifed the infuence that predictive
features have on the fnal mortality outcome among hos-
pitalized COVID-19 patients. Te fndings showed that the
features used can be ranked in order of decreasing impor-
tance, starting with hospital length of stay as the most in-
fuential feature, followed by age, wave, diabetes,
hypertension, and sex, respectively. Te performance of the
MLmodels used was then checked to identify the model that
ftted the data best.Te fndings showed that the XGBmodel
outperformed all other models in the performance evalua-
tion metrics used having an ROC_AUC of 97.5%, followed
by the GB model, which performed signifcantly lower than
the best model and had an ROC_AUC of 97.1%, whereas the
worst-performing model (NB) equally had a reasonably
good ROC_AUC of 86.9%. Tis meant that the XGB model
ftted the dataset better than other models and was thus
recommended in this study.
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Figure 9: ROC_AUC for balanced classes. (a) All features. (b) Selected features.
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5.2. Feature Importance. Te feature importance analysis
used three efective methods: the mutual information score,
the multisurf score, and the normalized compound feature
importance plot. Te results of these analyses noted that all
three methods consistently and unanimously gave coherent
fndings about the features that were most important and
predictive of COVID-19 mortality. Te most important

feature that was found to be the most predictive of mortality
was hospital length of stay, followed by white blood cell
count. It was clearly seen that these two features were very
important and greatly infuenced how the ML models
classifed the mortality status of a COVID-19 patient. Other
infuential factors arranged in order of decreasing impor-
tance included age, wave, diabetes, hypertension, and sex.

Table 4: Performance of ML models for all features compared to selected features in both imbalance and balanced mortality classes.

Imbalanced classes Balanced classes
All features Selected features All features Selected features

XGB

Accuracy 0.734 0.718 0.934 0.923
Recall (TPR) 0.675 0.706 0.945 0.942

Specifcity (TNR) 0.740 0.731 0.923 0.904
Precision (PPV) 0.218 0.226 0.925 0.907

F1-score 0.325 0.335 0.934 0.924
ROC_AUC 0.793 0.776 0.982 0.975
PRC_AUC 0.347 0.353 0.983 0.974

GB

Accuracy 0.623 0.906 0.921 0.917
Recall (TPR) 0.279 0.279 0.933 0.942

Specifcity (TNR) 0.968 0.968 0.908 0.892
Precision (PPV) 0.472 0.446 0.911 0.897

F1-score 0.348 0.340 0.922 0.919
ROC_AUC 0.731 0.774 0.976 0.971
PRC_AUC 0.289 0.337 0.974 0.967

RF

Accuracy 0.721 0.789 0.907 0.908
Recall (TPR) 0.636 0.628 0.926 0.936

Specifcity (TNR) 0.807 0.805 0.889 0.880
Precision (PPV) 0.246 0.248 0.893 0.886

F1-score 0.354 0.352 0.909 0.910
ROC_AUC 0.811 0.811 0.969 0.968
PRC_AUC 0.392 0.374 0.966 0.964

SVM

Accuracy 0.705 0.697 0.897 0.880
Recall (TPR) 0.713 0.784 0.928 0.914

Specifcity (TNR) 0.696 0.689 0.865 0.845
Precision (PPV) 0.191 0.202 0.874 0.856

F1-score 0.301 0.320 0.900 0.884
ROC_AUC 0.792 0.813 0.941 0.941
PRC_AUC 0.340 0.351 0.922 0.928

DT

Accuracy 0.703 0.726 0.880 0.882
Recall (TPR) 0.713 0.660 0.888 0.906

Specifcity (TNR) 0.702 0.733 0.872 0.857
Precision (PPV) 0.191 0.198 0.874 0.864

F1-score 0.301 0.303 0.881 0.885
ROC_AUC 0.752 0.743 0.909 0.907
PRC_AUC 0.351 0.345 0.922 0.918

LR

Accuracy 0.723 0.718 0.831 0.819
Recall (TPR) 0.737 0.753 0.840 0.832

Specifcity (TNR) 0.723 0.715 0.823 0.806
Precision (PPV) 0.210 0.208 0.826 0.812

F1-score 0.326 0.325 0.832 0.821
ROC_AUC 0.810 0.817 0.908 0.901
PRC_AUC 0.370 0.365 0.911 0.903

NB

Accuracy 0.886 0.895 0.785 0.792
Recall (TPR) 0.247 0.225 0.728 0.806

Specifcity (TNR) 0.950 0.962 0.841 0.778
Precision (PPV) 0.327 0.371 0.821 0.784

F1-score 0.280 0.278 0.770 0.794
ROC_AUC 0.762 0.774 0.856 0.869
PRC_AUC 0.266 0.270 0.844 0.860
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Te implications of the feature importance analysis
fndings show that if healthcare providers know exactly the
factors adding to the length of hospitalization of a patient
and if they have full knowledge of a hospitalized patient’s age
and sex and the type of variant (represented by the variable
wave) and whether the patient is diabetic or hypertensive,
then they can well estimate the possibility of a COVID-19
case deteriorating into a severe disease or mortality. Tis
knowledge can also help government agencies responsible
for public health to secure enough funding that can be used
in implementing measures that prioritise the healthcare of
hospitalized COVID-19 patients that have the highest risk of
mortality in Zambia. Tis can also be applied in other
countries with a similar setting as Zambia.

5.3.MLModelPerformance. Tis discussion is focused on the
results of ML models that were run on selected features since
the conditions for which a parsimonious model should be
preferred were satisfed. Firstly, it was found that the appli-
cation of SMOTE to balance the classes in the dataset was
extremely essential and signifcantly improved the perfor-
mance of the ML models across all performance evaluation
metrics used. Tis was evidently observed in the metric
precision (PPV) for which most of the ML models fared
poorly. For the dataset with imbalanced mortality classes, the
two worst-performing models were DT, which had the
precision of 19.1% and 19.8% for all features and selected
features, respectively, and SVM, which had the precision of
19.1% and 20.2% for all features and selected features, re-
spectively. However, after the mortality classes in the dataset
were balanced using SMOTE, the performance of the ML
classifers improved signifcantly such that the DT recorded
a precision of 87.4% and 86.4% for all features and selected
features, respectively, whereas the SVM recorded a precision
of 87.4% and 85.6% for all features and selected features,
respectively. Tis study thus recommends the use of SMOTE
in ML classifcation problems in which class imbalances are
huge enough to introduce potential misclassifcation bias.

All theMLmodels used in this study achieved reasonably
high performance as compared to other studies presented in
the Literature Review section. As presented in Table 4, the
top threeMLmodels that achieved outstanding performance
for the balanced dataset using selected features were the
XGB, GB, and RF. Te other ML models, such as the SVM,
DT, LR, and NB, also achieved similar results despite those
results being signifcantly lower when compared to the top
three models as observed from the pairwise Mann–Whitney
U-test analysis.

Te results of the post hoc analysis helped to establish
that the best-performing model in this study, the XGB
classifer, together with the second-best model, the GB, and
the third-best model, the RF, did not difer signifcantly,
since it was shown that both the GB and the RF did not
perform signifcantly worse than the XGB. Tis implies that
the top three models of our study, the XGB, GB, and RF are
all best suited for the dataset used and can thus be rec-
ommended in similar classifcation problems in which
higher performance is sought to be achieved.

Te implications of the reasonably high performances
recorded by the ML algorithms used can greatly help in
future modelling of COVID-19 data. Since all seven ML
models used performed reasonably well, future modelling of
COVID-19 mortality may have to seriously consider the
models used with special attention given to the XGB model
as the most efective in mortality predictions for hospitalized
COVID-19 patients. Other models that may have to be
considered are the GB and the SVMmodels. Te application
of these ML models may have serious implications for ef-
fectively and accurately predicting COVID-19 mortality
including other similar health conditions which may greatly
help in the control of both current and future pandemics.

5.4. Comparison of Findings with Other Studies. Te fndings
of this study were consistent with other studies, like those
presented in the literature review. Current literature in-
dicates that factors such as age, diabetes, hypertension, sex,
and HIV are predictive of COVID-19 mortality. Tis was
clearly evident in the fndings of this study where LOS, age,
white blood cell count, and type of variant (wave) were
shown to be infuential in helping classify the mortality
status of the participants. Furthermore, like other studies
have shown, ML models can be very powerful in modelling
how factors associated with COVID-19 mortality can help in
the classifcation of the health outcome in hospitalized
patients. Te performance of ML models for various eval-
uation metrics under proper conditions and with the right
hyperparameter tunings can achieve higher values for ac-
curacy, precision, ROC_AUC, PRC_AUC, and other metrics
as clearly observed in this study, although it is not unusual to
record poor results for some models if the data do not ft
such models well.

5.5. Interesting Findings. Tis study also yielded some in-
teresting fndings discussed in this section. It has not
commonly been seen in most studies that the LOS of ad-
mitted patients is an important feature in most classifcation
problems of COVID-19 mortality. Tis could be due to the
fact that the variable LOS is rarely collected since it varies for
every day a patient remains admitted to a health facility.
Surprisingly, LOS was the most important variable in the
dataset used, and this was observed for all seven algorithms
validated. Another feature which was ranked as the second
most important was the white blood cell count. Tis also
came as a surprise, as it has not been frequently used in most
of the classifcation models as the literature review indicated.
Te reason for the rare use of the variable white blood cell
count seems to also be associated with the rare events in
which the variable is collected.

Te feature “wave” was deliberately chosen to represent
the type of COVID-19 variant that is on the rampage and
was equally shown to be predictive of COVID-19 mortality.
Te feature “ward” was also predictive of mortality. On the
other hand, the features smoking, alcohol, chronic pulmo-
nary disease (CPD), chronic kidney disease (CKD), and TB
were not shown to be important, and removing them did not
signifcantly afect the performance of the ML models.
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5.6.ExternalValidityofFindings. Temethods implemented
in this study and the results found may be efectively applied
to various study settings other than the Zambian setting in
which this study was conducted.

Te participants selected for this study, as described in
the eligibility criteria, involved every hospitalized confrmed
COVID-19 case with an exception of pregnant women only.
Tus, participants included various individual traits that
were characteristic of the various health facilities in Zambia
from which they came. Tis led to a reasonably large study
sample that was highly inclusive, representative, and free
from potential sources of sampling bias, which in turn added
to the external validity of the study. Te generalization
ability of the ML models used was also strengthened by the
use of the 5-fold cross-validation strategy as recommended
by Berrar [42]. Tis study also followed strictly the strong
ML methodologies, standards, and guidelines proposed by
Luo et al. [23], making it possible for any researcher to easily
apply our methods to reproduce our fndings in another
study setting similar to the one in which this study was
conducted by reusing ourML pipeline codes available on the
open science framework through the links provided in the
supplementary materials section.

5.7. Strengths and Limitations of Study. As seen from the
higher performances obtained from the ML models used,
this can be attributed to the quality of the methods used and
how they conform to the standards of ML guidelines,
methodological procedures, and conventions. Tis section
discusses some of the strengths and limitations associated
with our study.

Tis study used proven methodological procedures and
well-documented guidelines, such as those recommended by
Urbanowicz et al. [13], for the various hyperparameters
proposed after a number of trials and simulations. Te level
of automation associated with the ML pipeline that was
created for this study has enabled our ML algorithms to be
almost completely reproducible in similar settings upon the
availability of a dataset. Tis may greatly help similar studies
that may need to reproduce the results presented or employ
similar methods in another study setting. Since the study
sample was large and participants came from various health
facilities of Zambia, this has made the fndings of our study
to be more generalizable as compared to other studies.
Despite the huge class imbalance observed in the dataset, the
use of SMOTE signifcantly reduced misclassifcation bias in
the study and led to increased performance of ML models.
Another strength of our study was our use of multiple ML
models and the use of a statistical procedure in selecting the
best-performing model.

It is now important to also weigh the limitations asso-
ciated with our study. Tere were two major limitations in
our study. Te frst limitation was due to having a higher
percentage of missingness (18%), as shown in the Supple-
mentary Material of “Figure S1: dataset missingness map.”
Despite the use of the MICE procedure to handle missing
values, it has been shown that imputing a dataset that has
a higher percentage of missingness may introduce noise into

the dataset. Tus, similar studies would record performance
improvements if a dataset with a lower percentage of
missingness was used. Te second limitation was that most
of the Zambian health facilities lack efective screening and
diagnostic test equipment, which hinders the collection of
well-known clinical features that have been shown to be
predictive of COVID-19 mortality. Similar studies that seek
to reproduce our fndings should involve several clinical
features that were missing in our study to improve the
quality and reliability of the results.

6. Conclusion

Predicting mortality in hospitalized COVID-19 patients
using factors that have an infuence on the severity of the
health condition is an essential undertaking in public health
and epidemiology. In conclusion, it can be reasonably stated
that, like other studies have shown, the classifcation models
of XGB, GB, RF, SVM, DT, LR, and NB successfully achieved
the primary objective of this study by efectively showing
their strength in predicting mortality in 1,433 hospitalized
patients in Zambia using the features collected from patients
with reasonably higher values of accuracy, recall (sensitiv-
ity), specifcity, precision, F1 Score, ROC_AUC, and
PRC_AUC. Te fndings obtained, if put to use, have the
potential to improve preparedness in health facilities, proper
prioritization of funds, and healthcare to save the lives of
COVID-19 patients with the greatest risk of mortality.

Having successfully derived and validated the seven ML
models that achieved sufciently higher performances, it can
be concluded that the XGB classifer, which was chosen to be
the ideal and best-performing model, performed well in our
classifcation problem and that it should be highly consid-
ered in classifcation problems in similar settings. It can also
be added that the GB and RF can also be efective alternatives
to the XGB for similar studies. It has been seen that there are
many factors that were shown to infuence the susceptibility
of hospitalized COVID-19 patients to mortality. Te factors
LOS and white blood cell count strongly infuenced the
classifcation process, while other factors like age, sex, hy-
pertension, diabetes, and ward also showed noticeable in-
fuence in determining the mortality outcome. Tis implies
that healthcare providers should be fully aware of underlying
health conditions of their patients in order to ofer lifesaving
services that may help in both improving preparedness and
decongesting health facilities.

6.1. Recommendations for Public Health Practice and Further
Research. Having stressed the importance of factors that are
predictive of COVID-19 mortality, we greatly recommend
that health facilities where COVID-19 patients are admitted
should carefully and accurately keep track of each patient’s
LOS and also collect patients’ white blood cell count, in
addition to other routine variables discussed in this study.
Tere should be sustained prioritization of admitted patients
that are identifed as having the greatest risk of mortality,
and vaccination should be encouraged as soon as it is
necessary. Due to the drawbacks associated with the
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interpretability of ML models [59], this study also recom-
mends that similar studies try to use a hybrid approach that
uses both ML and conventional statistical classifcation
methods to help in having more interpretable results that
will go beyond identifying features as important but also
describe the nature of the infuence on the classifcation
problem, that is, whether the predictive features identifed
increased or reduced mortality and with what value they
either increased or reduced mortality.Tis would powerfully
combine the advantages associated with both methods re-
garding high performance and having interpretable fndings.

To add to the body of knowledge and consolidate the
fndings obtained in this study, especially the interesting
fndings stated, we greatly recommend studies that might
simply aim to reproduce the fndings of this study in another
study setting. Te success of such studies would help to
frmly accept the interesting fndings of this study as re-
producible and reliable.
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Models Optimization Hyperparameters.pdf”) contains
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models validated. Table S1 shows the hyperparameters for
the decision tree classifer for the DT model. Table S2
contains hyperparameters for the random forest classifer for
the RF model. Table S3 contains hyperparameters for the
SVC (support vector classifer) for the SVM model. Table S4
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