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Body-force modelling in thermal compressible
flows with the lattice Boltzmann method
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Body-force modelling in the lattice Boltzmann method (LBM) has been studied
extensively in the incompressible limit but rarely discussed for thermal compressible flows.
Here we present a systematic approach of incorporating body force in the LBM which is
valid for thermal compressible and non-equilibrium flows. In particular, a LBM forcing
scheme accurate for the energy equation with second-order time accuracy is given. New
and essential in this scheme is the third-moment contribution of the force term. It is shown
via Chapman–Enskog analysis that the absence of this contribution causes an erroneous
heat flux quadratic in Mach number and linear in temperature variation. The theoretical
findings are verified and the necessity of the third-moment contribution is demonstrated
by numerical simulations.
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1. Introduction

Flows involving body forces are widely present in nature and engineering practice.
Examples include gravity-induced natural convection such as in Rayleigh–Bénard
flows, flows in rotating reference system influenced by centrifugal and Coriolis forces,
magneto-fluid influenced by electromagnetic force and many others. In the fast-growing
lattice Boltzmann method (LBM), correctly incorporating the body force has an added
importance as the body force is also used to model inter-particle interactions giving rise to
the rich phenomena of multiphase flows (Shan & Chen 1993; He, Shan & Doolen 1998b).

Although the treatment of body force is rather straightforward in both hydrodynamic
equations and the Boltzmann equation, it remains a non-trivial and sometimes even
controversial topic for the LBM after a substantial amount of effort and literally a
dozen proposed schemes (Mohamad & Kuzmin 2010; Bawazeer, Baakeem & Mohamad
2021). The difficulty can be arguably attributed to the fact that the LBM was developed
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from beginning as a discrete kinetic model that was tailored a posteriori to exhibit
Navier–Stokes–Fourier thermohydrodynamics at the macroscopic level. It lacked a
first-principle theory dictating the evolution of the discrete distribution in an external force
field. Furthermore, from the perspective of kinetic theory, the configuration-velocity phase
space was discretised together, making error analysis complicated.

An early idea was suggested by Shan & Chen (1993) to shift the equilibrium velocity in
the collision term to account for the change of momentum which is the leading-order effect
of body force. This approach only imposes a condition on the zeroth and first moments
of the discrete distribution function. Although reasonably successful in simple flows,
subtle issues arose in applications where detailed modelling of the body-force effect is
required. An example is the multiphase fluid where the velocity-shift scheme results in
unphysical dependence of the equilibrium densities on the relaxation time (Yu & Fan
2009). Sbragaglia et al. (2009) eliminated the inaccuracy in energy equation by also
shifting the temperature. Using the method of undetermined coefficients and matching
the macroscopic equation out of Chapman–Enskog calculation with the Navier–Stokes
equation, Guo, Zheng & Shi (2002) gave a scheme to eliminate the discrete lattice effect
caused by spatial–temporal discretisation, which also removed the unphysical dependency
on the relaxation time when applied to the multiphase model. This line of approach
(Buick & Greated 2000; Ladd & Verberg 2001) calls upon a posteriori matching with
the hydrodynamic equations and becomes unwieldy when applied to more complicated
collision models and higher-order hydrodynamic approximations.

Another strategy is to start from the body-force term of the Boltzmann equation, g · ∇ξ f .
He, Chen & Doolen (1998a) approximated f by the Maxwell–Boltzmann equilibrium,
f (0), and integrated using the trapezoidal rule to advance one time step. An auxiliary
variable was introduced to eliminate the implicity. Martys, Shan & Chen (1998) pointed
out, by examining the Hermite expansion of the body force, that this approximation is
exact up to the second moments. By realising that ∇ξ f (0) = −∇uf (0), Kupershtokh (2004)
introduced the exact difference method (EDM) to model the effect of the body force as
f (0)(ρ, u + gΔt) − f (0)(ρ, u) which correctly advances a local equilibrium to another one
with a shifted velocity. However, effect of the non-equilibrium part of the distribution
is ignored all together. In both schemes the spatial–temporal discretisation was carefully
handled to achieve second-order accuracy.

Despite that the differences, similarities and accuracies of the existing forcing schemes
have been theoretically analysed and numerically examined by a number of authors
(Kupershtokh, Medvedev & Karpov 2009; Mohamad & Kuzmin 2010; Huang, Krafczyk
& Lu 2011; Li, Luo & Li 2012; Silva & Semiao 2012), it remains inconclusive as to
which scheme is the most accurate because the results often depend on flow conditions
such as compressibility and steadiness. Possible origins of the discrepancies include
insufficient expansions of the distribution function, the collision term or the body-force
term, all resulting in different error terms in the recovered macroscopic equations. More
importantly, as the LBM being extended to thermal compressible flows, the existing works
mainly focus on the recovery of the mass and momentum equations, whereas, except for a
few works (Sbragaglia et al. 2009), the body-force effect on the energy equation is rarely
discussed.

The LBM can be reformulated using kinetic theory in continuum in two separate
steps (Shan & He 1998; Shan, Yuan & Chen 2006). First, the Bhatnagar–Gross–Krook
(BGK) model equation is projected into a finite-dimensional Hilbert space spanned by
the Hermite polynomials. By choosing a set of discrete velocity coordinates that forms a
Gauss–Hermite quadrature rule and evaluating the BGK equation at these velocities, one
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obtains the dynamic equations for a set of discrete distributions in the configuration space
which preserve the moments of the continuum distribution function and, therefore, the
hydrodynamics of the BGK equation. Second, the equations for the discrete distribution
are further discretised in space and time to yield the lattice Boltzmann equation. With
the velocity-space discretisation of the body-force term simply amounted to expanding it
in Hermite polynomials, Li, Duan & Shan (2022) showed that by using second-order time
integration on the second-order Hermite expansion of the body-force term, one can recover
a priori the force scheme of Guo et al. (2002). Moreover, the methodology is generic so
that it can be applied to higher-order moment expansions which give rise to the thermal
and non-equilibrium dynamics.

In this paper, we present a systematic discretisation scheme for the body-force term
which is second order in space and time, and valid for moments of arbitrary orders. In
particular, force terms pertinent to the energy equation are explicitly given, and errors
in heat flux caused by insufficient expansion of the force term is also obtained via
Chapman–Enskog analysis. Numerical verifications were carried out to show that the
third-moment contribution in the force term has a non-negligible effect in flows with
strong temperature variation. The remainder of the paper is organised as follows. In
§ 2, we present the methodology to systematically obtain the force term in LBM. The
third-order expansion of the form term is obtained and its necessity in the energy equation
is demonstrated in Chapman–Enskog analysis. In § 3, we present numerical verifications
and analyses. Some further discussions are given in § 4.

2. Moment expansion of the force term

We first briefly recap the kinetic theoretic formulation of the LBM. We start with the
Boltzmann equation with the BGK collision operator,

∂f
∂t

+ ξ · ∇f + g · ∇ξ f = Ω( f ) = −1
τ

[ f − f (0)], (2.1)

where x and ξ are the coordinates in physical and velocity spaces, respectively, t is the
time, f (x, ξ , t) is the single-particle distribution function, g is the acceleration of the body
force, ∇ξ is the gradient in velocity space, Ω is the collision term, τ is the relaxation time
and f (0) is the Maxwell–Boltzmann equilibrium distribution function:

f (0) = ρ

(2πRT)D/2 exp
[
− c2

2RT

]
, (2.2)

where D is the space dimensionality, R is the gas constant, T is the temperature, ρ is
the fluid density, c = ξ − u, c2 = c · c and u is the fluid velocity. Following Shan et al.
(2006), we use the so-called energy units where

√
RT0 is the characteristic velocity and T0

is the characteristic temperature. The length and time units, l0 and t0, respectively, satisfy
l0/t0 = √

RT0. After non-dimensionalisation, (2.1) remains the same and (2.2) takes the
following form:

f (0) = ρ

(2πθ)D/2 exp
[
− c2

2θ

]
, (2.3)

where θ ≡ T/T0 is the dimensionless temperature. Here ρ, u and θ , are velocity moments
of the distribution function

{ρ, ρu, Dρθ} =
∫

f {1, ξ , c2} dξ . (2.4)
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The LBM can be formulated as a velocity-space discretisation by first projecting (2.1) into
a finite-dimensional functional space spanned by Hermite polynomials and then evaluating
at discrete velocities that form a Gauss–Hermite quadrature rule in the velocity space
(Grad 1949; Shan & He 1998; Shan et al. 2006). The latter requirement ensures that
the leading velocity moments are exactly preserved by the discrete distribution function
values. A key step in this formulation is to expand all terms in (2.1) into finite Hermite
series, assuming f has the following expansion in the laboratory reference frame:

fN(x, ξ , t) = ω(ξ)

N∑
n=0

1
n!

a(n)(x, t) : H(n)(ξ), (2.5)

where N is the expansion order, ‘:’ denotes full contraction between two tensors, H(n)(ξ) is
the nth tensorial Hermite polynomial, ω(ξ) ≡ (2π)−D/2 exp −ξ2/2 is the weight function
and a(n)(x, t) are the expansion coefficients given by

a(n)(x, t) =
∫

fN(x, ξ , t)H(n)(ξ) dξ . (2.6)

The corresponding expansion of the body-force term was given by Martys et al. (1998) as

F(ξ) ≡ −g · ∇ξ fN = ω(ξ)

N+1∑
n=1

1
n!

nga(n−1) : H(n)(ξ), (2.7)

where ga(n−1) is a rank-n symmetric tensor denoting the symmetric product between g and
a(n−1). Noting that a(0) = ρ and a(1) = ρu, the first two terms in (2.7) can be evaluated as

F(ξ) ∼= ωρ[g · ξ + (g · ξ)(u · ξ) − g · u]. (2.8)

We note that most existing force schemes are based on the expression above (Li et al.
2022). To extend the body force to higher moments, the higher terms can be calculated
using (2.6), e.g.

a(2) =
∫

fN(ξ2 − δ) dξ = ρ(u2 − δ) +
∫

fNcc dξ . (2.9)

The last term is the momentum flux density tensor which can be decomposed into the
normal pressure, ρδ, and the traceless deviatoric stress tensor, σ , as∫

fNcc dξ = pδ − σ . (2.10)

Comparing with the Hermite expansion of f (0), we recognise that

a(2) = a(2)
0 − σ , (2.11)

where a(n)
0 denotes the Hermite coefficients of f (0). Using H(3) = ξ3 − 3ξδ, the

third-order term can be obtained as

ga(2) : H(3) = ρ{(g · ξ)[(u · ξ)2 − u2 + (θ − 1)(ξ2 − D − 2)] − 2(g · u)(u · ξ)}
− (g · ξ)σ : ξξ + 2σ : gξ . (2.12)

Two remarks can be made here. First, on the right-hand side, the terms on the first
line are the contribution of a(2)

0 and this contribution is proportional to u2 or θ − 1.
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The remaining terms proportional to σ are the contributions of the non-equilibrium part
of the distribution. Second, the heat production rate can be obtained as∫

(g · ∇ξ f )c2 dξ = g ·
∫

c2∇ξ f dξ . (2.13)

Integrating by parts and noting that as ξ → ∞, f vanishes faster than any power of ξ , we
have ∫

c2∇ξ f dξ = −
∫

f ∇ξ c2 dξ = −2
∫

f (ξ − u) dξ = 0. (2.14)

Namely the body force does not generate any heat as expected. However, for the truncated
fN , this is guaranteed only if N ≥ 2 as the second moment is involved. Insufficient
truncation could result in unphysical heat production.

Once restricted in the finite-dimensional Hermite space, (2.1) can be further discretised
to yield the lattice Boltzmann equations (Shan et al. 2006). Let wi and ξ i, i ∈ {1, . . . , d},
be the weights and abscissae of a degree-Q Gauss–Hermite quadrature rule, i.e. for any
polynomial, p(ξ), of a degree not exceeding Q, we have∫

ω(ξ)p(ξ) dξ =
d∑

i=1

wip(ξ i). (2.15)

For the fN in (2.5), fN/ω is a degree-N polynomial. Provided that Q ≥ 2N, (2.6) reduces
to a summation:

a(n) =
∫

ω

[
fN
ω
H(n)

]
dξ =

d∑
i=1

fiH(n)(ξ i), ∀ n ≤ N, (2.16)

where fi is the discrete distribution defined as

fi(x, t) ≡ wifN(x, ξ i, t)
ω(ξ i)

, i ∈ {1, . . . , d}. (2.17)

In particular, as special cases of (2.16), (2.4) become

ρ =
∑

i

fi, ρu =
∑

i

fiξ i, ρ(u2 + Dθ) =
∑

i

fiξ2
i . (2.18a,b)

The governing equation of fi can be obtained by evaluating (2.1) at ξ i:

∂fi
∂t

+ ξ i · ∇fi = Ωi( f ) + Fi, i ∈ {1, . . . , d}, (2.19)

where Fi ≡ wiF(ξ i)/ω(ξ i). Combining (2.9) and (2.12), the discrete body force up to the
third moment is

Fi = wiρ(g · ξ i)

{
1 + u · ξ i + 1

2
[(u · ξ i)

2 − u2 + (θ − 1)(ξ2
i − D − 2)]

}
− wiρ(g · u)(1 + u · ξ i)

− wi

2

[
(g · ξ i)σ : ξ iξ i − 2σ : gξ i

]
. (2.20)

Further discretising space and time by integrating equation (2.19) using second-order
schemes (He et al. 1998a; Li et al. 2022), we arrive at the lattice Boltzmann equation
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with body force

fi(x + ξ , t + 1) − fi(x, t) = −1
τ̂

[ fi − f (0)
i ] +

[
1 − 1

2τ̂

]
Fi, (2.21)

where τ̂ = τ + 1/2, f (0)
i ≡ wif

(0)
N (x, ξ i, t)/ω(ξ i) with f (0)

N being the finite Hermite
expansion of f (0). The overline stands for evaluation using values of density, velocity
and temperature at the midpoint of a time step. Noting the conservation of mass and
heat by both the normal collision operator and the body-force term, these are ρ, u + g/2
and θ , respectively. Equations (2.20) and (2.21) constitute the numerical algorithm for
body force in thermal compressible flows, which is to be compared with (2.8) on which
the conventional scheme is based. In addition, the last term in (2.20) is negligible in
continuum.

The deviatoric stress tensor at the midpoint of a time step, σ̄ , can be calculated by

σ̄ = −
(

1 − 1
2τ̂

){∑
i

[ fi − f (0)
i ](ξ i − u)2 − ρg2

2

}
. (2.22)

Nevertheless, in the quasi-equilibrium regime where f − f (0) � f (0), the above
contribution can be neglected all together as demonstrated by numerical verifications and
Chapman–Enskog analysis in the later sections. We note that expressions similar to (2.20)
can be obtained for any order of expansion to taking into account higher moments of the
distribution function. In particular, if only the second-moment contribution is retained,
(2.21) is identical to the forcing scheme of Guo et al. (2002).

We now analyse the macroscopic effects of the force term by Chapman–Enskog analysis.
As shown previously by Shan et al. (2006), with the Hermite-expanded distribution
function and BGK collision operator, the Chapman–Enskog asymptotic analysis results
in recurrent relations among the Hermite coefficients of various orders. Particularly for
the first approximations (Navier–Stokes), we have

a(n)
1 = −τ

[
∂a(n)

0
∂t

+ ∇ · a(n+1)
0 + n∇a(n−1)

0 − nga(n−1)
0

]
. (2.23)

As the equation above yields the correct Navier–Stokes–Fourier equations (Huang 1987;
Shan et al. 2006), any omission on the right-hand side due to insufficient truncation of
a(n)

0 would result in errors in a(n)
1 . The error caused by insufficient expansion of the force

term can be attributed to the omitted last term on the right-hand side which is commonly
retained only up to a(1)

0 , accurate for the continuity and momentum equations. Letting
n = 3 in (2.23), the contribution to a(3)

1 by the omitted a(2)
0 is −3τga(2)

0 . By the equilibrium
part of (2.12), the error in the heat flux is

qerr = 1
2

∫
ferrc2c dξ = −1

4τga(2)
0 :

∫
ω(ξ)H(3)(ξ)c2c dξ

= −1
2ρτ {[u2 + (θ − 1)(D + 2)]g + 2(g · u)u}, (2.24)

which is second order in u, first order in (θ − 1) and cannot be ignored in flows with strong
thermal effects. Nevertheless, the non-equilibrium part in (2.12), −3gσ , contributes to the
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heat flux as

qerr = 1
2
τg · σ ≈ 1

2
τ 2pg ·

[
∇u + (∇u)T − 2

D
(∇ · u)δ

]
, (2.25)

which is O(τ 2) and can be omitted in continuum flows but may have a significant effect in
non-equilibrium flows.

It should be noted that for simplicity, in this paper we used the BGK collision model
which leads to a number of limitations. The Prandtl number is unphysically fixed at unity
due to the single relaxation time. Although the artificial bulk viscosity in non-thermal
LBM is eliminated in the present work by employing sufficiently accurate expansions and
lattices, physically correct bulk viscosity and ratio of specific heats, both due to the energy
transfer between translational and other forms of motion of the molecules, are left out.
However, it is straightforward to apply the present forcing scheme to more complicated
collision models (Li & Shan 2021; Shan, Li & Shi 2021; Suzuki et al. 2021) in which
these limitations might be lifted.

3. Numerical validation

To verify the above analysis, we conducted two numerical tests, i.e. compressible
Poiseuille flow under cross gravity and heat transfer between two concentric cylinders
under centrifugal force. These flows are chosen as the deviatoric stress does not
automatically vanish by configuration. In all LBM simulations the equilibrium distribution
is expanded to fourth order and the two-dimensional, ninth-order accurate D2Q37
quadrature rule is employed (Shan 2016). Since this model involves discrete velocities
of multiple layers, we have developed a multispeed mass-conserving boundary condition
(BC) by extending the volumetric BC of Chen, Teixeira & Molvig (1998) to multispeed
models. The detail will be published elsewhere. For the present purposes the results are
insensitive to the implementation of the BC.

3.1. Compressible Poiseuille flow under cross acceleration
Consider a two-dimensional steady laminar flow between two infinite horizontal plates
under a homogeneous constant gravity force g = (gx, gy), where x and y are the horizontal
and vertical directions, respectively. The flow is assumed to be steady and one-dimensional
with velocity in the x direction only and all quantities are functions of y. We have therefore
uy = 0 and ∂/∂x = ∂/∂t = 0. The Navier–Stokes–Fourier equations reduce to

− μ
∂2ux

∂y2 = ρgx,
∂ρθ

∂y
= ρgy and μ

(
∂ux

∂y

)2

+ λ∂
2θ

∂y2 = 0, (3.1a–c)

where ρ, ux and θ are density, velocity and temperature, respectively, μ and λ are the
dynamic viscosity and heat conductivity, respectively, both assumed constant. Dirichlet
BCs are imposed for ux and θ on the bottom and top boundaries at y = 0 and H,
respectively:

ux|y=0 = Ub, ux|y=H = Ut, θ |y=0 = θb, θ |y=H = θt, (3.2a–d)

where Ub, Ut and θb, θt are the tangential velocity and temperature at the bottom and top
boundaries, respectively. As (3.1a–c) are non-trivial to solve analytically, for the reference
solution, we utilised an implicit iterative finite-difference scheme with a very fine mesh.
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All LBM simulations of compressible Poiseuille flow were performed on a Lx × Ly
lattice where Lx = 3 and Ly = 150. The channel hight is thus H = Lyc where c ≈ 1.19698
is the lattice constant of D2Q37 (Shan 2016). The velocity at both walls were set at Ut =
Ub = 0. To investigate the effect of temperature gradient, two simulations were performed
for θb = 1.0, θt = 1.1 and θb = 0.7, θt = 1.4, corresponding to a total cross-channel
temperature variation of 10 % and 100 %, respectively. Define Uc = ρ0gxH2/8μ which
is the velocity (and also the Mach number with respect to the isothermal speed of sound)
at the centre of channel when both ρ and θ are homogeneous. The corresponding Reynolds
number is Re = ρ0UcH/μ where ρ0 is the averaged density. Setting Uc = 1.5, Re = 1800
and ρ0 = 1, the other parameters are determined as gx = 8U2

c /ReH, μ = ρ0UcH/Re and
λ = cpμ/Pr, where the Prandtl number Pr = 1 for BGK collision term, and the isobaric
heat capacity cp = (D + 2)/2. To maintain both μ and λ as homogeneous constants, the
relaxation time was set to τ = μ/ρθ . The cross-flow gravity, gy, points downward and was
set so that gy/gx = −50.

Shown in figure 1 are the profiles of density, velocity, temperature and errors in
temperature for the two sets of simulations with different temperature variations. To
demonstrate the effects of the various moments in the force term, simulations were
performed with the force term expanded to orders corresponding to N = 0, 1, and 2 in
(2.7). In addition, the cases of N = 2 were run with and without the contributions of σ in
(2.20). As the reference solution, a high-resolution (N = 450) finite-difference results are
also shown. We first note that due to the presence of cross-flow gravity and temperature
gradient, the density and temperature are asymmetric. The velocity peak is also less than
Uc and does not occur at the centre. These effects are stronger in the cases with larger
temperature variation.

Consistent with the theoretical analysis that the second-order (N = 1) force term is
necessary in recovering the momentum equation and conservation of internal energy, it is
evident from simulation results that retaining only the first-order force term (N = 0) causes
significant overall discrepancies. The common second-order (N = 1) approximation yields
satisfactory results for density and velocity, in accordance with the theoretical prediction
of (2.23). However, noticeable differences with the reference solutions appear in the
temperature profile and are more pronounced in the large temperature-variation cases. This
discrepancy is eliminated in the third-order (N = 2) solutions, confirming the correctness
and necessity of the third-order contribution by (2.20). Moreover, the contribution of the
deviatoric tensor to the force term appears to be negligible in all cases tested, confirming
the Chapman–Enskog analysis in the previous section.

3.2. Heat transfer between concentric cylinders under centrifugal force
The second test is the two-dimensional heat transfer between two concentric cylinders
maintained at different temperatures and rotating with the same angular speed, α. In
the rotating reference frame, the fluid is assumed static and subject to the centripetal
acceleration of α2R where R is the radial coordinate. The Navier–Stokes–Fourier equations
have the following one-dimensional solution:

θ = θi + (θo − θi)
ln R/Ri

ln Ro/Ri
and ρ = ρiθi

θ
exp

[∫ R

Ri

α2r
θ(r)

dr
]

, (3.3a,b)

where ρ and θ are density and temperature, respectively, the subscripts i and o denote
values at the inner and outer cylinders. The reference solution of density is solved by a
high-precision numerical integration. Required the average of density ρ̄ = ρ0, the ρi is
obtained by integrating the density in the whole domain.
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Figure 1. Compressible Poiseuille flow with cross-flow gravity and heat gradient. Shown are profiles of density
(a,b), velocity (c,d), temperature (e, f ) and errors in temperature (g,h) as computed by the force term expanded
to orders corresponding to N = 0, 1 and 2 in (2.7). The reference is a high-precision finite-difference solution
which is also shown. In the left column shows the results for θb = 1.0, θt = 1.1, corresponding to a 10 % total
temperature variation, and in the right column are those for θb = 0.7, θt = 1.4, corresponding to a 100 % total
temperature variation.
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Figure 2. Heat conduction between two rotating concentric cylinders. Shown are the radial profiles of density
and temperature and the associated errors computed with the force terms expanded to various orders. The
superscript a denotes the analytical solutions. The left column shows the result for θi = 1, θo = 1.1, and the
right column shows the result for θi = 1.4, θo = 0.7.
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The LBM simulations were performed on a L × L lattice where L = 250. The radial
centripetal acceleration is −α2R. The radius ratio Ro/Ri is set to 5 with Ro = Lc/2.
Using the width of the annular, Ro − Ri, as the characteristic length and the centreline
velocity, Uc ≡ α(Ro + Ri)/2, as the characteristic speed, the Reynolds number is defined
as Re = ρ0α(R2

o − R2
i )/2μ where μ is the dynamic viscosity. As in the previous case, the

relaxation time is set to τ = μ/ρθ so that μ is a constant. Note that the fluid is static, and
the centreline velocity, Uc, measures the compressibility as the isothermal Mach number,
and the Reynolds number only plays the role of a dimensionless viscosity. As there is no
flow in the rotating frame, all quantities are insensitive to the Reynolds number.

Shown in figure 2 are the radial profiles of density, temperature and the associated
errors as computed with the force term expanded to various orders. The parameters are
Re = 100, Uc = 0.3 and ρ0 = 1. Two simulations were performed for θi = 1, θo = 1.1
and for θi = 1.4, θo = 0.7. Note that the first and second expansions are identical as u = 0
in this case. To be seen is that if the third-moment contribution is omitted, the errors in
temperature profile is significant especially in the larger-temperature-variation case. It is
also evident from the results that the third-order contribution is necessary to correctly
recover the energy equation. The contribution of the stress tensor, σ , vanishes as σ itself
vanishes in the absence of fluid flow. In addition, as shown by (2.8), the N = 1 terms
vanish for continuity and momentum equations in absence of flow, which explains the
observation that results for N = 0 and N = 1 are identical.

4. Conclusion

In summary, we have given a generic approach of incorporating body force in the LBM
based on the Hermite expansion of the force term in the Boltzmann equation. In particular,
a novel LBM forcing scheme for thermal compressible flows with second-order time
accuracy has been obtained which includes the third-order contribution of the force term.
The errors caused by the omission of this correction in common practices has been
identified with an error in heat flux via Chapman–Enskog analysis. All theoretical findings,
including the correctness and necessity of the new forcing term, have been confirmed
numerically.

We note that the present approach is independent of the form of the equilibrium
distribution nor the underlying lattice, and can be straightforwardly extended to include
higher moments which are significant in non-equilibrium flows. Although for simplicity,
we used the BGK collision model in present work. It is also straightforward to adapt it to
more complicated collision models such as the spectral multiple relaxation time model.
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