
TLP 18 (5–6): 928–949, 2018. C© Cambridge University Press 2018

doi:10.1017/S1471068418000066 First published online 6 May 2018

928

Performing fully parallel constraint logic
programming on a quantum annealer�

SCOTT PAKIN

Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, MS B287,

Los Alamos, New Mexico, USA

(e-mail: pakin@lanl.gov)

submitted 19 April 2017; revised 3 April 2018; accepted 10 April 2018

Abstract

A quantum annealer exploits quantum effects to solve a particular type of optimization

problem. The advantage of this specialized hardware is that it effectively considers all

possible solutions in parallel, thereby potentially outperforming classical computing systems.

However, despite quantum annealers having recently become commercially available, there

are relatively few high-level programming models that target these devices. In this article,

we show how to compile a subset of Prolog enhanced with support for constraint logic

programming into a two-local Ising-model Hamiltonian suitable for execution on a quantum

annealer. In particular, we describe the series of transformations one can apply to convert

constraint logic programs expressed in Prolog into an executable form that bears virtually no

resemblance to a classical machine model yet that evaluates the specified constraints in a fully

parallel manner. We evaluate our efforts on a 1,095-qubit D-Wave 2X quantum annealer and

describe the approach’s associated capabilities and shortcomings.

KEYWORDS: quantum annealing, quantum computing, constraint logic programming, Pro-

log, D-Wave.

1 Introduction

Quantum annealing (Farhi and Gutmann 1998; Kadowaki and Nishimori 1998;

Finnila et al. 1994) is a presumably weaker (Bravyi and Hastings 2017)1 but more

easily scalable (Kaminsky et al. 2004) form of quantum computing than the more

traditional gate model (Feynman 1986). To quantify what we mean by “scalable,”

the recently introduced D-Wave 2000Q quantum annealer provides 2,000 qubits,

while the state-of-the-art gate-model quantum computers are just starting to reach

mid-double-digit qubit counts (Knight 2017).

� This work was supported by Laboratory Directed Research and Development (LDRD) funding at Los
Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National
Security LLC for the US Department of Energy under contract DE-AC52-06NA25396.

1 By “presumably weaker,” we mean that quantum annealing is associated with the StoqMA complexity
class (Bravyi et al. 2006); gate-model quantum computing is associated with the QMA complexity
class; and StoqMA ⊆ QMA—with a supposition that StoqMA ⊂ QMA.

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

http://orcid.org/0000-0002-5220-1985
https://doi.org/10.1017/S1471068418000066

Fully parallel constraint logic programming on a quantum annealer 929

Programming a quantum annealer is nearly identical to solving an optimization

problem using (classical) simulated annealing (Kirkpatrick et al. 1983). That is, one

constructs an energy landscape via a multivariate function such that the coordinates

of the landscape’s ground state (i.e., its lowest value) correspond to the solution being

sought. Quantum-annealing hardware then automatically relaxes to a solution—or

one of the multiple equally valid solutions—with some probability. The “quantum”

in “quantum annealer” refers to the use of quantum effects, most notably quantum

tunneling: The ability to “cut through” tall energy barriers to reach ground states

with a higher probability than could be expected from a classical solution (Kadowaki

and Nishimori 1998).

The advantage of quantum annealing over classical code execution is its abundant

inherent parallelism. A quantum annealer effectively examines all possible inputs in

parallel to find solutions to a problem. For NP-complete problems (Cormen et al.

2001), this implies a potential exponential speedup over a brute-force approach.

The catch is the “effectively.” Quantum annealers are fundamentally stochastic

devices. They provide no guarantee of finding an optimal (lowest energy) solution.

Consequently, they can be considered more as an automatic heuristic-finding

mechanism than as a formal solver.

The question we ask in this work is, Can one express constraint logic programming

(CLP) in the form accepted by quantum-annealing hardware? Although such hardware

is in its first few generations and not yet able to compete performance-wise with

traditional, massively parallel systems, our belief is that the potential exists to

one day be able to solve CLP problems faster on quantum annealers than on

conventional hardware. The primary challenge lies in how to express CLP—or, for

that matter, almost any programming model—as an energy landscape whose ground

state corresponds to a satisfaction of the given constraints. The primary contribution

of this work is therefore the demonstration that such problem expressions are indeed

possible and the presentation of a methodology (reified in software) to accomplish

that task.

The rest of this article is structured as follows. Section 2 details how problems

need to be formulated for execution on a quantum annealer. Although mapping CLP

onto a quantum annealer is a novel endeavor, Section 3 discusses other programming

models that target quantum annealers and gate-model quantum computers. Section 4

is the core part of the article. It describes our implementation of quantum-annealing

Prolog, a CLP-enhanced Prolog subset and associated compiler for exploiting the

massive effective parallelism of a quantum annealer when solving CLP problems.

Some examples and experiments are presented in Section 5. Finally, we draw some

conclusions from our work in Section 6.

2 Background

2.1 Quantum annealing

A quantum annealer is a special-purpose device that finds a vector, σ, of spins

(Booleans, represented as ±1) that minimize the energy of an Ising-model

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

930 S. Pakin

Hamiltonian (Johnson et al. 2011). Quantum annealers from D-Wave systems, Inc.

further restrict the Hamiltonian to being two-local, meaning that it can contain

quadratic terms but not cubic or beyond. The specific problem that a D-Wave

system solves can be expressed as

arg min
σ

H(σ), where H(σ) =

N∑

i=1

hiσi +

N−1∑

i=1

N∑

j=i+1

Ji,jσiσj (2.1)

In the above, σi ∈ {−1,+1}, hi ∈ � and Ji,j ∈ �. In other words, H is a pseudo-

Boolean function of degree 2. Physically, the hi represents the strength of the

external field applied to σi, and the Ji,j represents the strength of the interaction

between σi and σj . Given a set of hi and Ji,j , finding the σi that minimize H(σ) in

equation (2.1) is an NP-hard problem (Barahona 1982). Consequently, an efficient

(i.e., polynomial-time) classical algorithm for finding these σi in the general case

is expected not to exist. The best-known classical algorithms run in exponential

time, which is intractable for large N. (On a D-Wave 2000Q system, N ≈ 2, 000.)

Nevertheless, contemporary D-Wave systems can propose a solution in microseconds,

which is an impressive capability.

A program for a quantum annealer is merely a list of hi and Ji,j for equation

(2.1). Clearly, there is a huge semantic gap between such a list and CLP. Perhaps

surprisingly, we show in Section 4 that it is indeed possible to map CLP problems

into Ising-model Hamiltonians.

An important point regarding equation (2.1) is that it represents a classical

Hamiltonian. In contrast to gate-model quantum computers, in which the program-

mer directly controls the application of quantum-mechanical effects, these effects are

almost entirely hidden from the user of a quantum annealer. Hence, the approach this

paper presents is equally applicable to classical annealers such as Hitachi’s CMOS

annealer (Yamaoka et al. 2016), Fujitsu’s Digital Annealer (Fujitsu Ltd. 2017) or

even all-software implementations of simulated annealing (Kirkpatrick et al. 1983).

We focus our discussion on quantum annealers, however, because such devices offer

the potential of converging to an optimal solution with higher probability than can

classical annealing methods (Kadowaki and Nishimori 1998).

2.2 D-Wave hardware

D-Wave systems, Inc. is a producer of commercial quantum annealers. Although

their hardware performs the basic quantum-annealing task described in Section 2.1,

engineering reality imposes a number of constraints on the specific Hamiltonians

that can be expressed:

• As stated above, only two-local Hamiltonians are supported. Three-local Hamil-

tonians and beyond can be converted to two-local Hamiltonians at the cost of

additional spins.

• Even though, nominally, hi, Ji,j ∈ �, those coefficients in fact have finite precision

and are limited to relatively few distinct values.

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

Fully parallel constraint logic programming on a quantum annealer 931

Fig. 1. Physical topology of LANL’s D-Wave 2X.

• Although ideally, there should be a Ji,j for any 1 � i < j � N, in practice, the

system’s physical topology, called a Chimera graph (Bunyk et al. 2014), provides

limited connectivity: at most six Ji,j for any given i.

• On top of the preceding constraint, in any given installation, a fraction of the hi
and Ji,j will be inoperative. (See below.)

Figure 1 illustrates the physical topology of Ising, the D-Wave 2X system installed

at Los Alamos National Laboratory that was used for all of the experiments reported

in this article. Edges represent the Ji,j , and nodes represent the hi (and σi). Physically,

graph nodes are superconducting flux qubits, implemented as niobium rings that

are written and read electromagnetically (Johnson et al. 2011). At superconducting

temperatures—Ising operates at a mere 10.45 mK (0.01℃ above absolute zero)—

quantum-mechanical effects (entanglement, superposition and quantum tunneling)

come into play. In Ising, 1,095 (95.1%) of the qubits and 3,061 (91.1%) of the

couplers are operational.

Annealing times are also installation-dependent. Ising supports annealing times

of 5–2,000 μs (user-selectable). Longer annealing times are theoretically more likely

to find the input Hamiltonian’s global minimum, but shorter annealing times enable

more attempts per unit time.

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

932 S. Pakin

|0〉 H X • H X • X H

|0〉 H • H X H H X H

|0〉 X H

Fig. 2. Sample gate-model program (Grover’s method).

3 Related work

Very little exists in terms of programming models and programming languages for

gate-model quantum computers and quantum annealers.

Programming models for gate-model quantum computers: Although gate-model quan-

tum computers are more heavily studied than quantum annealers, virtually all

programming languages and compilers developed for these systems are based on the

same underlying programming model: Place a specified gate at a specified location

in a circuit, which is a directed acyclic graph. To illustrate this approach, Figure 2

presents an example of Grover’s search algorithm (Grover 1996) in standard gate-

model circuit notation.2 Each gate (e.g., X, H or CNOT [•—
⊕

]) represents a small

unitary matrix that transforms the current state—in this case, a complex vector with

8 (23) elements.

The question is how to express algorithms such as the one shown in Figure 2

as a computer code. OpenQASM (Cross et al. 2017) is a domain-specific language

in which the “statements” (x, h, cx, etc.) represent the application of a gate to

one or more qubits, and programs can define parameterized macros to simplify

repeated tasks. Scaffold (JavadiAbhari et al. 2015) is similar but also supports

C-style for loops to apply multiple gates in a fixed pattern. It further includes

support for expressing classical oracles as gates. Quipper (Green et al. 2013) and

LIQUi|〉 (Wecker and Svore 2014) are embedded domain-specific languages, with

the former embedded in Haskell and the latter embedded in F#, implying they have

access to those languages’ code features. Like OpenQASM and Scaffold, Quipper

and LIQUi|〉 are based primarily on specifying an ordered sequence of gates applied

to qubits, although in a functional-language context (e.g., a Quipper circuit runs

within a Haskell monad). Quil (Smith et al. 2017) and Q# (Microsoft Corp. 2017)

are recent domain-specific languages that, while sharing the same “ordered sequence

of gates” abstraction as all the other efforts, put particular emphasis on tightly

interleaving classical and quantum computation.

In short, the state-of-the-art in programming models for gate-model quantum

computers is at the level of an assembly language that offers various convenience

features but little in the way of higher level abstractions. The closest equivalent in the

context of quantum annealing is perhaps QMASM (Pakin 2016), which we introduce

in Section 4.2 but then build upon to present a more expressive programming model

2 The dashed box delineates the user-provided “oracle” function, which indicates if a set of inputs (2 bits,
in this case) represents the item being searched for by flipping an ancilla qubit.

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

Fully parallel constraint logic programming on a quantum annealer 933

based on classical circuits and, on top of that, one based on predicate logic. Unlike

all of the works discussed above, in this article, we establish a large semantic gap

between the programming model exposed by the underlying hardware and that

presented to the user.

Quantum Prolog: James et al. (2011) demonstrate that one can express the equivalent

of a pure version of Prolog over finite relations in terms of a model of discrete

quantum computing. (Conventionally, quantum computing is defined over Hilbert

spaces, which are complex-valued.) This is one of the very few attempts to develop

a high-level programming model for gate-model quantum computers, although for

a form that has never been implemented. Besides targeting gate-model quantum

computers rather than quantum annealers, this work differs from ours in that it

focuses on the mathematical equivalency of relational programming and discrete

quantum computing over the field of Booleans, while our work showcases the

implementation of a Prolog compiler that generates code suitable for running on a

physical quantum annealer.

Programming models for quantum annealers: Most of the literature that relates to

programming quantum annealers focuses on expressing a single algorithm or single

class of algorithms in terms of an Ising-model Hamiltonian (equation (2.1)). Lucas

(2014) surveys a number of such algorithms. More recent efforts include traveling-

salesman problems (Heim et al. 2017) and satisfiability problems (Hen and Young

2011). In contrast, our work is to make it possible to express problems without

explicitly specifying individual hi and Ji,j coefficients.

D-Wave systems, Inc. provides a few tools that let one express problems in a higher

level form than a list of hi and Ji,j coefficients. ToQ (D-Wave Systems, Inc. 2017b),

formerly Deqo (Dahl 2014), is the most related tool to our quantum-annealing Prolog

in that it is centered on constraint satisfaction and targets a quantum annealer. ToQ

accepts a set of constraints and returns a set of values that satisfy those constraints.

However, each individual constraint is evaluated classically and exhaustively; the

D-Wave system is used only for combining individually satisfied constraints into a

global problem and solving that. In contrast, our Prolog implementation performs

all of its constraint satisfaction on the quantum annealer, not classically.

4 Implementation

4.1 Primitives

Tables 1 and 2 present the primitive mechanisms that one can use to represent

a problem as an Ising-model Hamiltonian of the form stated in equation (2.1).

Interpreting σi = −1 as false and σi = +1 as true, a negative hi expresses a

preference for the corresponding σi being true (Table 1), while a positive hi expresses

a preference for the corresponding σi being false (Table 1). The magnitude of the hi
corresponds to the strength of the preference. A negative Ji,j expresses a preference

for the corresponding σi and σj having the same value (Table 2), while a positive

Ji,j expresses a preference for the corresponding σi and σj having opposite values

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

934 S. Pakin

Table 1. Effect of negative and positive hi

(a) hi < 0: Favor true

σi −1 σi arg minσ

−1 +1

+1 −1 �

(b) hi > 0: Favor false

σi +1 σi arg minσ

−1 −1 �
+1 +1

Table 2. Effect of negative and positive Ji,j

(a) Ji,j < 0: Favor equality

σi σj −1 σiσj arg minσ

−1 −1 −1 �
−1 +1 +1

+1 −1 +1

+1 +1 −1 �

(b) Ji,j > 0: Favor inequality

σi σj +1 σiσj arg minσ

−1 −1 +1

−1 +1 −1 �
+1 −1 −1 �
+1 +1 +1

(Table 2). In other words, Ji,j < 0 can be interpreted as a wire in a digital circuit,

and Ji,j > 0 can be interpreted as an inverter. As with the hi, the magnitude of the

Ji,j corresponds to the strength of the preference.

One can set up a system of inequalities to find hi and Ji,j values with a desired

set (or sets) of σi in the ground state. This system of inequalities can be solved by

hand in simple cases or with a constraint solver for more complicated cases. We

use MiniZinc (Nethercote et al. 2007) as our constraint-modeling language, but any

similar system would suffice. Table 3 presents an Ising-model Hamiltonian, H∧(σ),

whose four-way degenerate ground state (meaning, the four-way tie for the minimum

value) is exactly the set of spins for which σk = σi ∧ σj (i.e., logical conjunction).

The Hamiltonian was found by constraining the ground-state H∧(σ) all to have

the same value and all other H∧(σ) to have a strictly greater value. Similarly,

Table 3 presents an Ising-model Hamiltonian, H∨(σ), whose four-way degenerate

ground state is exactly the set of spins for which σk = σi ∨σj (i.e., logical disjunction).

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

Fully parallel constraint logic programming on a quantum annealer 935

Table 3. Representing simple Boolean functions as Ising-model Hamiltonians

(a) Logical conjunction (and)

σi σj σk H∧(σ) arg minσ

−1 −1 −1 −1.5 �
−1 −1 +1 4.5

−1 +1 −1 −1.5 �
−1 +1 +1 0.5

+1 −1 −1 −1.5 �
+1 −1 +1 0.5

+1 +1 −1 0.5

+1 +1 +1 −1.5 �

H∧(σ) = −0.5σi + −0.5σj + 1.0σk + 0.5σiσj + −1.0σiσk + −1.0σjσk

(b) Logical disjunction (or)

σi σj σk H∨(σ) arg minσ

−1 −1 −1 −1.5 �
−1 −1 +1 0.5

−1 +1 −1 0.5

−1 +1 +1 −1.5 �
+1 −1 −1 0.5

+1 −1 +1 −1.5 �
+1 +1 −1 4.5

+1 +1 +1 −1.5 �

H∨(σ) = 0.5σi + 0.5σj + −1.0σk + 0.5σiσj + −1.0σiσk + −1.0σjσk

It is worth noting that Hamiltonians are additive. Specifically, the ground state

of HA + HB is the intersection of the ground state of HA and the ground state of

HB . The implication is that primitive operations like those shown in Table 3 can

be trivially combined into more complicated expressions without having to solve a

(computationally expensive) constraint problem for the overall expression. Because

Ising-model Hamiltonians always have a non-empty ground state—they must have

at least one minimum value—summing Hamiltonians whose ground states have

an empty intersection can lead to an unintuitive ground state of the combined

Hamiltonian. As a trivial example, HA = σa − σb has the unique ground state

{σa = −1, σb = +1}; HB = −σaσb has the two-fold degenerate ground state {σa =

−1, σb = −1} and {σa = +1, σb = +1}; but HA + HB has the three-fold degenerate

ground state {σa = −1, σb = −1}, {σa = −1, σb = +1} and {σa = +1, σb = +1}.
In this work, however, we ensure by construction that we do not sum Hamiltonians

whose intersection is empty. Specifically, because we sum Hamiltonians only for

Boolean expressions and only by equating (cf. Table 2) outputs to inputs and

never outputs to outputs or inputs to inputs (i.e., we rely on a directed acyclic

graph organization), we will not normally wind up with an empty intersection.

The exception is in the case in which spins are “pinned” to values that introduce

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

936 S. Pakin

Fig. 3. QMASM macro definitions for and and or. (a) QMASM version of Table 3,

(b) QMASM version of Table 3.

unsatisfiable output–output or input–input couplings, as discussed on Section 4.2 in

the following section.

Armed with Hamiltonians for and (Table 3), or (Table 3) and not (Table 2)

and the knowledge that Hamiltonians can be added together to produce new, more

constrained Hamiltonians, we can implement a complete zeroth-order logic.

4.2 QA prolog

We have implemented a Prolog compiler that compiles Prolog programs to a list

of hi and Ji,j coefficients for use with equation (2.1). We call our implementation

quantum-annealing Prolog or QA Prolog for short. Although the underlying concept

is no more sophisticated than what was described in Section 4.1, a large software-

engineering effort was needed to bridge the gap between what was presented there

and a usable Prolog compiler.

Internally, QA Prolog comprises a number of software layers. The lowest layer is a

“quantum macro assembler” we developed called QMASM (Pakin 2016).3 QMASM

provides a thin but convenient layer of abstraction atop equation (2.1). It lets

programs refer to spins symbolically rather than numerically, shields the program

from having to consider the specific underlying physical topology and provides

modularization through the use of macros that can be defined once and instantiated

repeatedly.

As an example, Figure 3 shows how one can define and and or macros cor-

responding to the Hamiltonians portrayed by Table 3. Lines containing a single

symbol and a value correspond to an hi, and lines containing two symbols and a

value correspond to a Ji,j . Macros can be instantiated using the !use macro directive.

The QMASM code in Figures 3(a) and (b) is compiled to a physical Hamilto-

nian, i.e., one that uses only the hi and Ji,j that exist on the specific underlying

hardware, with all coefficients scaled to the supported range. The D-Wave’s physical,

3 QMASM is freely available from https://github.com/lanl/qmasm.

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

Fully parallel constraint logic programming on a quantum annealer 937

Fig. 4. Sample Verilog program.

Chimera-graph topology is not only fairly sparse but also contains no odd-length

cycles—needed for the two A–B–Y cycles in Figure 3, for example—implying that a

typical Hamiltonian must be embedded (Choi 2008) into the physical topology. Doing

so requires that additional spins and additional terms be added to the Hamiltonian

and slightly alters the coefficients. For example, Figure 4.2 may compile to H∧(σ) =

−0.125σ8 − 0.25σ9 + 0.5σ14 − 0.125σ15 − 0.5σ8σ14 − 0.5σ9σ14 − 1.0σ8σ15 + 0.25σ9σ15.

A benefit of QMASM is that it lets programs work with arbitrary two-local Ising

Hamiltonians—support for higher order interaction terms may be added in the

future—while it automatically maps those Hamiltonians onto the available hardware.

Given that we can implement Boolean functions as Hamiltonians, we can take a

large leap in abstraction and programmability and map Verilog programs (Thomas

and Moorby 2002) into the form of equation (2.1). Verilog is a popular hardware-

description language. Unlike QMASM, which looks foreign to a conventional-

language programmer, the Verilog language supports variables, arithmetic operators,

conditionals, loops and other common programming-language constructs.

Verilog is a good match for current quantum annealers because, unlike most

programming languages, it provides precise control over the number of bits used

by each variable. With a total of only a few thousand bits (a few hundred bytes)

available for both code and data combined on contemporary quantum annealers,

there is no room for waste. Figure 4 presents an example of a Verilog module that

inputs two 4-bit variables, this and that, and outputs a 5-bit variable, the other,

which is a function of the two inputs. Although this program does not perform a

useful function, it works well for pedagogical purposes because it employs a variety

of language features including internal variables (defined with wire), a relational

operator (==), a C-style ternary conditional (?:), multiplication, addition and

assignment.

We use Yosys (Wolf and Glaser 2013), an open-source hardware-synthesis tool,

to compile Verilog code to an Electronic Design Interchange Format netlist (Kahn

et al. 2000), a precise, machine-parseable description of a digital circuit. In addition

to compiling, Yosys performs a number of optimizations on the design and, with

the help of ABC (Brayton and Mishchenko 2010; Berkeley Logic Synthesis and

Verification Group 2016), transforms the design to use only a relatively small set of

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

938 S. Pakin

basic gates. A program we developed, edif2qmasm,4 translates the Electronic Design

Interchange Format netlist to a QMASM Hamiltonian. The generated code employs

a standard-cell library of precomputed Hamiltonians for and, or, not, xor and

other such primitives.

In the case of Figure 4, the generated Hamiltonian comprises 263 σi and hi and

375 Ji,j . We can “pin” values to the this and that inputs by specifying the hi as in

Table 1, run the Hamiltonian on a quantum annealer, and read out the the other

output. (QMASM even supports pinning directly on the command line (Pakin 2016).)

We can alternatively pin the the other output, run the Hamiltonian and read out

the two inputs; pin the output and one of the inputs and read out the other input

or pin nothing and read out valid mappings of inputs to outputs. (As could be

expected, though, if the function were non-surjective, specifying an output that is

not the image of any element in the function’s domain will not result in valid inputs.)

In essence, we support a relational semantics in a language that does not normally

offer such a capability.

The final piece of QA Prolog is the Prolog compiler itself. QA Prolog supports

only a subset of Prolog but enough to handle basic CLP. For instance, QA Prolog

supports atoms and positive integers but not floating-point numbers, strings, lists,

first-class compound terms or any other data type. It supports arithmetic and

relational operations but not ! (cut), fail or any impure predicates. Clauses can

reference other clauses but not recursively. Polymorphic clauses are not supported,

but integer/1 and atom/1 can be used to disambiguate otherwise polymorphic

clauses. QA Prolog does support unification (Robinson 1965), backtracking and

predicates comprising multiple clauses.

Importantly, QA Prolog allows the goals in a rule’s body to be specified in any

order without impacting their ability to be proven. In particular, operations can

be performed on variables even before they are ground. This is in contrast to

basic Prolog—as opposed to Prolog with the library(clpfd) predicates (Triska

2012)—which is limited in its ability to manipulate free variables.

After the usual lexing and parsing steps, the compiler performs type inference

on the abstract syntax tree. Because so few spins are available in current hardware,

distinguishing between the two supported data types lets the compiler represent

each of them using a different numbers of bits:
log2(a)� bits for atoms, assuming

a distinct atoms are named in the program, and
log2(n)� bits for integers, assuming

the largest integer appearing literally in the program is n. A QA Prolog command-

line argument lets the user increase the number of bits per integer in case larger

values are needed for intermediate results.

Once all types are inferred, QA Prolog’s code generator generates Verilog code.

Although compiling Prolog to Verilog appears, on the surface, to be a peculiar

strategy, recall that

(1) our quantum-annealing implementation of Verilog already has a relational

semantics,

4 edif2qmasm is freely available from https://github.com/lanl/edif2qmasm.

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

Fully parallel constraint logic programming on a quantum annealer 939

Fig. 5. Overall QA Prolog processing flow.

(2) Verilog provides arithmetic and relational operations, saving QA Prolog from

having to implement those itself,

(3) hardware-synthesis tools such as Yosys perform a number of logic optimizations

and simplifications on QA Prolog’s behalf, and

(4) QA Prolog gets unification support “for free” because the same spins are used

to represent every instance of the same variable appearing in the Verilog code.

In the compilation from Prolog to Verilog, each predicate (including all clauses)

is converted to a single Verilog module. Because the names of Verilog arguments

must be unique, arguments are renamed. In Prolog terms, this is like replacing the

fact “same(X, X).” with the rule “same(A, B) :- A = B..” In addition, an extra,

single-bit argument called Valid is included in the argument list. This is an output

value that is set to 1 if and only if all goals are proved. Queries that include variables

are implemented by pinning Valid to 1 and letting the annealing process solve for

all the variables so as not to violate that condition. Queries that do not include

variables leave Valid unpinned and let the annealing process find a value for it that

does not violate any other conditions.

Once QA Prolog has compiled the Prolog source code—including the query,

which can be specified on the command line—to Verilog, QA Prolog invokes Yosys,

edif2qmasm and QMASM, as illustrated in Figure 5. With the help of D-Wave’s

SAPI library (D-Wave Systems, Inc. 2017a), QMASM remotely executes the user’s

program on a D-Wave system and reports the (Boolean) value of each symbol

appearing in the QMASM source file. QA Prolog maps these lists of Booleans back

to integers and named atoms, associates those values with variables named in the

user’s query, and reports all variables and their values to the user just like a typical

Prolog environment would.

A quantum annealer always returns a vector of spins (σ), there is no notion of “no

result found.” Although QMASM can detect certain obviously incorrect results and

discard them, in the general case, QA Prolog can return incorrect results. Consider

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

940 S. Pakin

Fig. 6. Three-input and.

the CLP, “impossible(X) :- X < 4, X > 4..” Although impossible(X) should

never succeed, QA Prolog proposes all eight 3-bit integers as possible solutions,

as all eight are equally bad choices. We do not consider this odd behavior a

showstopper because many important problems in P and NP have solutions that

can be (classically) verified quickly. A user can run QA Prolog to quickly produce

a set of candidate solutions then filter out invalid ones as part of a post-processing

step.

5 Evaluation

In this section, we examine what QA Prolog is and is not capable of expressing.

Section A expands upon this section by presenting all of the transformations

a particular program undergoes from Prolog source code to a two-local Ising

Hamiltonian. Our main metric in this section is the cost in spins for various

programs. Figure 6 presents a Prolog program that defines an and/3 predicate in

terms of an and/2 predicate, which itself is defined by four facts. Note that this

example does not involve any CLP.

Compiling Figure 6 with QA Prolog results in a logical Hamiltonian with 26 spins,

and QMASM assembles that into a physical Hamiltonian with 42 spins. For

comparison, a hand-constructed logical Hamiltonian for a three-input and requires

only five spins,5 and QMASM assembles that into a physical Hamiltonian containing

10 spins.

Next, consider a Prolog program that finds two positive integers whose sum and

product are each 4 (Figure 7). When run with the query “fours(A, B),” the program

correctly produces “A = 2, B = 2.” The program in fact additionally produces

“A = 6, B = 6.” Because 3 is the minimum number of bits needed to represent all

integers appearing literally in Figure 7, QA Prolog represents all numbers with that

many bits. Because 6 + 6 ≡ 4 (mod 23) and 6 · 6 ≡ 4 (mod 23), the second solution

is valid, albeit a bit surprising.

5 Hand/3(σ) = − 1
2σA − 1

2σB − 1
2σC + σY + 1

2σx + 1
2σAσB − σAσx − σBσx − σCσY + 1

2σCσx − σY σx, where
σx is an ancilla spin needed to produce the correct ground state.

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

Fully parallel constraint logic programming on a quantum annealer 941

Fig. 7. Find two numbers that both add and multiply to 4.

Even a program this small consumes a large number of spins, primarily because

of the 3-bit multiplication. Specifically, it maps to 24 logical spins at the QMASM

level, which in turn get mapped to 39 physical spins or 3.6% of the total available

on Los Alamos National Laboratory’s D-Wave 2X system. The number of logical

spins is a function of both the compilation tools (Yosys and ABC, in this case) and

the set of precomputed Hamiltonians included in edif2qmasm’s standard-cell library.

The number of physical spins is a function of the both the physical topology and

the minor-embedding algorithm—and the random-number generator’s state in the

case of a stochastic embedder such as the one we use (Cai et al. 2014).

The total end-to-end execution time, including all of the compilation steps and

the network connection to the D-Wave 2X, averages 3.0 ± 1.0 s over 100 trials. For

each trial, we specified an annealing time of 20μs and had the hardware perform

1,000 anneals, enabling a maximum of 1,000 unique solutions to be returned. Hence,

a fixed 20 ms of the end-to-end time is the computation proper—the actual annealing

time. Although the end-to-end time is high, our belief is that this time will grow

slower with program complexity than would a classical implementation. Remember,

all goals in the entire program are effectively evaluated in parallel. Not only are CLP

semantics honored, but there is no additional performance cost for going beyond

plain Prolog’s unification capabilities.

What are the limits on the Prolog programs that can be run on a D-Wave 2X

using QA Prolog? We found that the “light meal” example from Dutra’s CLP

tutorial (Dutra 2010) is too large to fit, but if we skip dessert, as in Figure 8,

the code runs, with 170 logical spins dilating to 602 physical spins. As a more

controlled experiment, consider a mult/3 predicate defined as “mult(A, B, C) :-

C = A*B..” Because of QA Prolog’s support for CLP, we can provide a value only

for C in a query to factor C into A and B. The reader should note that this one-line

integer-factoring program for a quantum annealer is conceptually far simpler than

Shor’s famous integer-factoring algorithm for gate-model quantum computers (Shor

1999), which requires knowledge of both quantum mechanics and number theory to

understand. By factoring a relatively small number, say 6, we can steadily increase

the bit width and measure the number of logical and physical spins required to

represent the program.

Figure 9 presents the results of this study. The number of logical spins for a given

bit width does not change from compilation to compilation, but the number of

physical spins does because it relies on a stochastic minor-embedding algorithm (Cai

et al. 2014). Consequently, the figure includes error bars for physical spin counts.

Points represent measurements, lines represent regressions. The regression curves

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

942 S. Pakin

Fig. 8. Planning a meal of no more than 8 kcal.

 0

 200

 400

 600

 800

 1000

 0 1 2 3 4 5 6 7 8
 0%

 20%

 40%

 60%

 80%

 100%

Sp
in

s
re

qu
ir

ed

P
er

ce
nt

ag
e

of
 a

va
ila

bl
e

sp
in

s
on

L
A

N
L

’s
 D

-W
av

e
2X

 s
ys

te
m

Bits per integer

Logical
Physical

Fig. 9. Cost in spins for “mult(P, Q, 6)” with different integer bit widths.

used are fLog(x) = 46x − 80.6 and fPhys(x) = 15.2x2 + 65.72x − 215.44. Both have a

coefficient of determination R2 > 0.996. As Figure 9 indicates, the number of physical

spins grows faster than the number of logical spins. For integer factorization, we

run out of physical spins at 7 bits per integer.

6 Conclusions

Quantum annealers represent a radical departure from conventional computer

architectures. Rather than perform a sequence of operations that modify state

(registers and memory), a quantum annealer performs in hardware a particular type

of NP-hard optimization problem. Specifically, it finds a set of Boolean values (spins)

that minimize a real-valued, fixed-form function of a potentially large number of

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

Fully parallel constraint logic programming on a quantum annealer 943

variables. In effect, a quantum annealer evaluates the function in parallel for all 2N

possible inputs and reports in a fixed length of time (microseconds) the best instance

found. The catch is that the solution is not guaranteed to be optimal.

Although quantum annealers offer the potential for huge performance gains

through massive effective parallelism, programming them can be a challenge. At the

lowest level, a program for a quantum annealer is merely a list of coefficients for

the aforementioned fixed-form pseudo-Boolean function. The question we sought

to answer in this work is, Can one express CLP in the form accepted by quantum-

annealing hardware? The key insight we make in answering that question is identi-

fying an analogy between expression minimization in an Ising-model Hamiltonian

and unification in CLP.

Based on that insight we implemented QA Prolog, a compiler that, through a

sequence of transformations, converts Prolog programs into two-local Ising-model

Hamiltonians, runs these on a D-Wave quantum annealer, and reports the results in

terms of program variables. We draw the following conclusions from our study:

(1) Despite the enormous semantic gap, it is indeed possible to automatically convert

CLP, expressed in a subset of Prolog, to the solution to an optimization problem,

expressed as coefficients to a two-local Ising-model Hamiltonian.

(2) An important limiting factor is the number of spins needed to express even trivial

constraint logic problems. Our experimental platform, a D-Wave 2X quantum

annealer installed at Los Alamos National Laboratory, has 1,095 spins. One can

think of those 1,095 spins as corresponding to roughly 136 bytes of memory,

which need to hold all program inputs, outputs and logic.

(3) End-to-end performance (i.e., including compilation time) is poor: A few seconds

for even trivial CLP problems. Although we expect these times to rise slowly with

problem size and complexity, we cannot confirm that hypothesis or compare it

to classical implementations until we can execute programs sufficiently large so

as to challenge classical CLP systems.

Even considering the preceding shortcomings, we remain optimistic about the

potential of exploiting the massive effective parallelism provided by quantum

annealers to accelerate the execution of CLP. Although the hardware is in its

early generations, when increased scale and other engineering improvements are put

into place, QA Prolog will be ready to take advantage of these advances.

References

Barahona, F. 1982. On the computational complexity of Ising spin glass models. Journal of

Physics A: Mathematical and General 15, 10, 3241.

Berkeley Logic Synthesis and Verification Group. 2016. ABC: A system for sequential

synthesis and verification. URL: http://www.eecs.berkeley.edu/∼alanmi/abc/.

[Accessed on April 24, 2018].

Bravyi, S., Bessen, A. J. and Terhal, B. M. 2006. Merlin-Arthur games and stoquastic

complexity. arXiv:quant-ph/0611021v2 .

Bravyi, S. and Hastings, M. 2017. On complexity of the quantum Ising model.

Communications in Mathematical Physics 349, 1, 1–45.

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

944 S. Pakin

Brayton, R. and Mishchenko, A. 2010. ABC: An academic industrial-strength verification

tool. In Proc. 22nd International Conference on Computer Aided Verification, T. Touili,

B. Cook, and P. Jackson, Eds. Springer, Berlin, Heidelberg, Edinburgh, UK, 24–40.

Bunyk, P. I., Hoskinson, E. M., Johnson, M. W., Tolkacheva, E., Altomare, F., Berkley,

A. J., Harris, R., Hilton, J. P., Lanting, T., Przybysz, A. J. and Whittaker, J.

2014. Architectural considerations in the design of a superconducting quantum annealing

processor. IEEE Transactions on Applied Superconductivity 24, 4, 1–10.

Cai, J., Macready, B. and Roy, A. 2014. A practical heuristic for finding graph minors.

arXiv:1406.2741 [quant-ph] .

Choi, V. 2008. Minor-embedding in adiabatic quantum computation: I. The parameter setting

problem. Quantum Information Processing 7, 5, 193–209.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. 2001. Introduction to Algorithms ,

2nd ed. MIT Press.

Cross, A. W., Bishop, L. S., Smolin, J. A. and Gambetta, J. M. 2017. Open quantum assembly

language. arXiv:1707.03429 [quant-ph] .

D-Wave Systems, Inc. 2017a. Developer Guide for Python. D-Wave Systems, Inc., Burnaby,

British Columbia, Canada.

D-Wave Systems, Inc. 2017b. ToQ Overview. D-Wave Systems, Inc., Burnaby, British Columbia,

Canada. ToQ documentation, qOp version 2.3.1.

Dahl, E. D. 2014. Deqo: A Direct Embedding Quantum Optimizer. D-Wave Systems, Inc.

Dutra, I. 2010. Constraint logic programming: A short tutorial. URL:

https://www.dcc.fc.up.pt/∼ines/talks/clp-v1.pdf. [Accessed on April 24, 2018].

Farhi, E. and Gutmann, S. 1998. Analog analogue of a digital quantum computation.

Physical Review A 57, 2403–2406.

Feynman, R. P. 1986. Quantum mechanical computers. Foundations of Physics 16, 6, 507–531.

Finnila, A. B., Gomez, M. A., Sebenik, C., Stenson, C. and Doll, J. D. 1994. Quantum

annealing: A new method for minimizing multidimensional functions. Chemical Physics

Letters 219, 5, 343–348.

Fujitsu Laboratories Ltd. 2017. Fujitsu Laboratories Develops New Architecture that

Rivals Quantum Computers in Utility. Press release, 20 October 2016, Kawasaki, Japan.

URL: http://www.fujitsu.com/global/about/resources/news/press-releases/

2016/1020-02.html. [Accessed on April 24, 2018].

Gansner, E. R. and North, S. C. 2000. An open graph visualization system and its

applications to software engineering. Software—Practice and Experience 30, 11, 1203–

1233.

Green, A. S., Lumsdaine, P. L., Ross, N. J., Selinger, P. and Valiron, B. 2013.

Quipper: A scalable quantum programming language. In Proc. of the 34th ACM SIGPLAN

Conference on Programming Language Design and Implementation. ACM, New York, USA,

333–342.

Grover, L. K. 1996. A fast quantum mechanical algorithm for database search. In Proc. of

the 28th Annual ACM Symposium on Theory of Computing. ACM, New York, NY, USA,

212–219.

Heim, B., Brown, E. W., Wecker, D. and Troyer, M. 2017. Designing adiabatic quantum

optimization: A case study for the traveling salesman problem. arXiv:1702.06248v1 [quant-

ph] .

Hen, I. and Young, A. P. 2011. Exponential complexity of the quantum adiabatic algorithm

for certain satisfiability problems. Physical Review E 84, 061152.

James, R. P., Ortiz, G. and Sabry, A. 2011. Quantum computing over finite fields.

arXiv:1101.3764 [quant-ph] .

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

Fully parallel constraint logic programming on a quantum annealer 945

JavadiAbhari, A., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F. T. and Martonosi,

M. 2015. ScaffCC: Scalable compilation and analysis of quantum programs. Parallel

Computing 45, 2–17.

Johnson, M. W., Amin, M. H. S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris,

R., Berkley, A. J., Johansson, J., Bunyk, P., Chapple, E. M., Enderud, C., Hilton, J. P.,

Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M. C.,

Tolkacheva, E., Truncik, C. J. S., Uchaikin, S., Wang, J., Wilson, B. and Rose, G. 2011.

Quantum annealing with manufactured spins. Nature 473, 7346, 194–198.

Kadowaki, T. and Nishimori, H. 1998. Quantum annealing in the transverse Ising model.

Physical Review E 58, 5355–5363.

Kahn, H., La Fontaine, R. and Lau, R. 2000. Electronic design interchange format

(EDIF): Part 2: Version 4 0 0. Standard IEC 61690-2:2000, International Electrotechnical

Commission, Manchester, UK.

Kaminsky, W. M., Lloyd, S. and Orlando, T. P. 2004. Scalable superconducting architecture

for adiabatic quantum computation. arXiv:quant-ph/0403090v2 .

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. 1983. Optimization by simulated annealing.

Science 220, 4598, 671–680.

Knight, W. 2017. IBM Raises the Bar with a 50-Qubit Quantum Computer.

MIT Technology Review . 10 November 2017. ISSN: 0040-1692. URL:

https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-

qubit-quantum-computer [Accessed on April 24, 2018].

Lucas, A. 2014. Ising formulations of many NP problems. Frontiers in Physics 2, 5, 1–15.

Microsoft Corp. 2017. The Q# progamming language. URL: https://docs.microsoft.

com/en-us/quantum/quantum-qr-intro [Accessed on April 24, 2018].

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J. and Tack, G. 2007.

MiniZinc: Towards a standard CP modelling language. In Proc. of the 13th International

Conference on Principles and Practice of Constraint Programming, C. Bessière, Ed. Springer,

Berlin, Heidelberg, 529–543.

Pakin, S. 2016. A quantum macro assembler. In Proc. of the 2016 IEEE High Performance

Extreme Computing Conference (HPEC).

Robinson, J. A. 1965. A machine-oriented logic based on the resolution principle. Journal of

the ACM 12, 1, 23–41.

Shor, P. W. 1999. Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer. SIAM Review 41, 2, 303–332.

Smith, R. S., Curtis, M. J. and Zeng, W. J. 2017. A practical quantum instruction set

architecture. arXiv:1608.03355 [quant-ph] .

Thomas, D. and Moorby, P. 2002. The Verilog Hardware Description Language, 5th ed.

Springer.

Triska, M. 2012. The finite domain constraint solver of SWI-Prolog. In Proc. of the 11th

International Symposium on Functional and Logic Programming (FLOPS 2012). Lecture

Notes in Computer Science, vol. 7294. Kobe, Japan, 307–316.

Wecker, D. and Svore, K. M. 2014. LIQUi|〉: A software design architecture and domain-

specific language for quantum computing. arXiv:1402.4467 [quant-ph] .

Wielemaker, J., Schrijvers, T., Triska, M. and Lager, T. 2012. SWI-Prolog. Theory and

Practice of Logic Programming 12, 1–2, 67–96.

Wolf, C. and Glaser, J. 2013. Yosys—A free Verilog synthesis suite. In Proc. of the 21st

Austrian Workshop on Microelectronics (Austrochip 2013). Linz, Austria.

Yamaoka, M., Yoshimura, C., Hayashi, M., Okuyama, T., Aoki, H. and Mizuno, H. 2016.

A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing.

IEEE Journal of Solid-State Circuits 51, 1, 303–309.

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

946 S. Pakin

Fig. 10. Sample Prolog source file.

Fig. 11. Verilog code generated from Figure 10 by QA Prolog.

Appendix A. An end-to-end example

In this section, we detail the complete QA Prolog compilation and execution process

illustrated in Figure 5. Figure 10 presents a Prolog source file that defines a

bigger/2 predicate, which we query with “bigger(Big, Little).” Because the

constraint logic works on free variables, this example does not work with ordinary

Prolog environments. For instance, SWI-Prolog (Wielemaker et al. 2012) returns an

“Arguments are not sufficiently instantiated” error.

QA Prolog compiles bigger/2 and the associated query into the Verilog code

shown in Figure 11. Because the largest integer literal appearing in the Prolog source

code is 15, the Verilog code uses 4-bit integers throughout.

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

Fully parallel constraint logic programming on a quantum annealer 947

A

0:0 - 0:0

2:2 - 0:0

1:1 - 0:0

3:3 - 0:0

B

0:0 - 0:0

2:2 - 0:0

1:1 - 0:0

3:3 - 0:0

2:2 - 0:0

3:3 - 0:0

1:1 - 0:0

0:0 - 0:0

Valid

A $285
$_NOT_ Y

A

B
$286

$_OR_ Y

A

B

C

$288
$_OAI3_ Y

A

B
$287

$_OR_ Y

A

B
$296

$_AND_ Y

A $289
$_NOT_ Y

A

B

C

$292
$_OAI3_ Y

A $290
$_NOT_ Y

A

B
$291

$_NAND_ Y

A

B
$295

$_AND_ Y

A

B
$293

$_NOR_ Y

A

B
$294

$_AND_ Y

Fig. 12. Visualization of the optimized netlist Yosys produced from Figure 11.

The EDIF netlist that Yosys produces from Figure 11 is a rather verbose

s-expression. Rather than present it here, Figure 12 shows a visualization of

the circuit that that Yosys renders using Graphviz (Gansner and North 2000).

The notation that Yosys uses indicates how bits are renumbered as they flow

from one component to the next. “OAI3” represents a 3-input or-and-invert gate:

Y = ¬((A ∨ B) ∧ C).

edif2qmasm translates the circuit illustrated in Figure 12 to the QMASM code

listed in Figure 13. In QMASM syntax, “=” specifies a chain (a strongly negative

Ji,j) and “<->” specifies an alias (multiple names for the same spin). The translation

from EDIF constructs to QMASM constructs is nearly one-to-one, which makes the

process fairly straightforward.

Finally, QMASM assigns each variable to one or more physical spins that are

available on the target hardware. Because the process contains some stochastic

elements, Figure 14 presents only one instance of a mapping to the hardware. In

the case shown, the Hamiltonian uses 76 hi and 101 Ji,j . The Big variable in the

Prolog query is mapped to the bit string σ198 σ13 σ193 σ212, and the Little variable

in the query is mapped to the bit string σ9 σ197 σ8 σ215 (both big-endian). The Valid

bit (Figure 11) is mapped to σ109.

We ran the Figure 14 Hamiltonian on Los Alamos National Laboratory’s

D-Wave 2X system, specifying that we wanted 1,000 samples of the σ vector and

an annealing time of 20 μs. The D-Wave 2X found exactly the three valid solutions:

“Big = 8, Little = 7” (139 instances), “Big = 9, Little = 7” (137 instances)

and “Big = 9, Little = 8” (226 instances). QMASM automatically rejected the

remaining instances. (It is not uncommon for a quantum annealer to return an

invalid solution, which is analogous to a classical optimization algorithm getting

stuck in a local minimum.) Although only 20 ms were spent performing quantum

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

948 S. Pakin

Fig. 13. QMASM code generated from the EDIF version of Figure 12 by edif2qmasm.

Fig. 14. Final Hamiltonian executed on LANL’s D-Wave 2X.

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

Fully parallel constraint logic programming on a quantum annealer 949

annealing, a total of 200 ms of real time was spent on the D-Wave 2X. This includes

various requisite pre- and post-processing tasks.

The total end-to-end time, including not only the time spent on the D-Wave 2X

but also the time spent in QA Prolog, Yosys, edif2qmasm, QMASM, the local

filesystem and various networks between the development workstation and the

D-Wave 2X, averages 3.2 ± 1.1 s over 100 trials. Clearly, a problem like the one used

in this exercise is insufficiently complex to overcome the numerous overheads and

observe an increase in the performance over what can readily be achieved classically.

https://doi.org/10.1017/S1471068418000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000066

