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1. Introduction

We here study permutational products of groups, a study which was
initiated by B. H. Neumann [8], [9].

In defining a permutational product a transversal of the amalgamated
subgroup must be chosen in each of the constituents of the amalgam and,
in general, different transversals give rise to non-isomorphic permutational
products [8]. One of the main results here is that an epimorphism from an
amalgam onto a factor amalgam determines an epimorphism between
selected permutational products on the amalgams (Theorem 3.1); these
permutational products are chosen by making natural choices of their
defining transversals.

It is also shown that some permutational products (again chosen by
picking transversals) are embeddable in certain permutational wreath
products, provided some restrictions are placed on the defining amalgams
(Theorems 4.1, 5.2, and 6.1). These embeddings immediately relate proper-
ties of the amalgam to the permutational products, thus yielding several
amalgam embedding theorems, where permutational products are chosen
as the embedding groups.

Finally some amalgam embedding results are included which are not
directly related to permutational products.

2. Preliminaries

Given two groups (A, + ) and (B, •), the set A u B is the amalgam of
these groups if and only if A n B = H is a subgroup of both A and B and,
for all h,\eH.,h-\-hx = h • h±. The common subgroup H is called the
amalgamated subgroup and the groups A and B are the constituents of the
amalgam. The notation A u B\H = 21 will be used to denote an amalgam
of A and B with H amalgamated. Amalgams may be constructed as follows.
Suppose A and B are given groups, disjoint as sets, containing isomorphic
subgroups H and K, respectively. Suppose a : H s K is a given isomorphism
from H onto K. If H and K are identified by setting h = (A)a, (h e H),
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then the union A u B becomes an amalgam of A and B. In general, different
isomorphisms x used in this construction yield different amalgams.

A group G embeds the amalgam A u B\H = 21, if G contains subgroups
A* and B* which are isomorphic to A and B, say A* = A[i and B* = Bv,
such that Hfj, = Hv = A* n B*. A group G is generated by the amalgam 21,
if G embeds 21 and the image of 21 in G generates G.

Given an arbitrary amalgam 21 of two groups there always exists a
group embedding 21. One such group, a permutational product on the amalgam,
may be constructed as follows. Let 21 = A u B\H be the given amalgam.
Choose a transversal TA of H in A and a transversal TB of H in B, where a
transversal of H in A is a complete set of left coset representatives of H in A.

Let the set D = TAxTBxH and for a e A, b e B define permutations
on D as follows:

Let d = (q, r, h), q e TA, r e TB, and h e H. Then put

(d)P(a) = («?', r', h'),
where

£'A' = ?Aa (q' e 7^, A' e H), and r' = r.
Similarly, put

where
r"A" = rhb {r" e TB, h" e H), and q" = q.

lih e H, the above permutations p (h) are easily seen to be the same by either
definition. The permutations p(a) and p(b) may be considered right multi-
plications by a and b, so that if we compose functions from left to right,
then p(A) s A and p(B) s B, where p(A) = {p(a)\a e A}. In the group
of all permutations of D, p(A) n p(B) = p{H) [8], so that the amalgam
2t = A KJ B\H can be embedded in the subgroup P(2l; 7^, TB) generated by
p(A) and p(B) in the group of permutations on D. The group P(2i; 7^, TB)
is the permutational product of S& = A \j B\H depending on TA and TB.

The notation <• • •) denotes the subgroup generated by • • •, where
• • • are elements or subsets of a given group. If x and y are elements of a
group, write yx = x~xyx.

Suppose the amalgamated subgroup of a given amalgam 21 = A u B\H
is central in both constituents of 91. Then 21 is clearly embeddable in the
group G = AxBj((h,h-~1)\heH') [7] such that the constituents of the
embedded copy of 21 commute elementwise and generate G. The group G
is called the generalized direct product on 91.

LEMMA 2.1. (B. H. Neumann [8]). Let 21 = A u B\H be an amalgam.
If H is central in both A and B, then for any choices of transversals TA and TB,
P(2l; TA, TB) is isomorphic to the generalized direct product on 21.
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Let Aut(if) denote the group of automorphisms of the group H. Let
C and H be given groups and <f> a homomorphism from C into Aut(H).
Define multiplication of the ordered pairs [c, h] e C X H by

The resulting group of ordered pairs, G, is the semi-direct product of H by C
depending on <f>. It is also clear that G = C • H, where H < G and C nH = 1,
that is, G is a split-extension of i / by C.

If G is a group and X a set, let Gx denote the unrestricted direct power
of G taken |X| times, that is, Gx is the set of all functions from X into G
with co-ordinatewise multiplication, i.e., if f1,f2eGx, then / i - / 2 = /3,
where /x(a;)/2(a;) = /3(x) (a; e X).

Finally, let G and H be groups and X a set on which H acts as a per-
mutation group. The wreath product of G and i? relative to X, denoted
GWr(H; X), is the semi-direct product GXH, where the action of H on Gx

is given by
/*(*) = fixh-1) {feGx,heH,xeX).

3. The epimorphism

Suppose 21 = A u .B|if is an amalgam, J7 and F are normal subgroups
of A and B respectively, and U n H = V n H. Then a /actor amalgam

(1) g = 5(21; C/, F) = A/U u B\V\HU\U

can be formed by identifying HU\U and HVjV according to their natural
isomorphisms with HjH nU = H}H n F. Write N = H nU = H nV.

In many places here transversals of the constituents A and .B must be
chosen which map onto transversals of AjU and B\V. These required trans-
versals will always be assumed to be chosen as follows, unless stated other-
wise in a specific theorem or section. A transversal of H in A is chosen by
first choosing a transversal of H in HU consisting of elements of U, say
K = {kt e U\i e /} and then a transversal of HU in A, say 5 = {s,- e A \j e J).
Then

(2) SK={Sikt\ieI,jeJ}

and

(3) S' = {s,U\jeJ}

are the required transversals of H in A and of HU/U in AjU, respectively.
Similarly choose a transversal of H in B; let L = {/, e V\i el'} be a

transversal of H in fl^F, T = {t, e 5 | ; e / ' } a transversal of # F in B, and
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(4) TL = {tili\ieI',ieJ'}

and

(5) T' = {ttV\ieJ'}

be transversals of H in B and HV/V in B/V, respectively.
Finally, let P = P(9I; SK, TL), P' = P(%; S', T), W = SKxTLxH

and W' = S' X T'xH/N, where 91 and ft = g(9I; [7, F) are given as above.

THEOREM 3.1. Let 91 = A u B | # fo aw amalgam and % = g(2t; £7, F)
a factor amalgam. If transversals are chosen as in (2) to (5), then there exists an
epimorphism / from P = P(9I; SK, TL) onto P' = P(%; S', T).

The kernel of f is the set of those x e P such that

(6) x : (sk, tl, h) -> (skr, tl', hn)

where s e S, t e T, k, k' eK, I, I' e L, and n eU n H = N.
PROOF. The function g : W -> W defined by (sk, tl, h) -> (sll, tV, hN)

is onto. It follows from the definitions of P and g that for each a e A and
b e B, p(a)g = gp(aU) and p(b)g = gp(bV). Thus, since P is generated by
p(A) and p(B), to each x e P there corresponds a unique f(x) s P' such that

f(x) is unique because g is onto. The required epimorphism having the
stated kernel is / : P ->• P', given by x -> f(x).

The epimorphism / : P -> P' will be referred to as the natural epi-
morphism from P to P' and if x e P, then the image of x, f(x), will be
denoted by x'.

REMARK. If TA and TB are any transversals of H in A and S, respec-
tively, which map onto transversals T'A and T'B of .ff/Af in AjU and B/F,
respectively, then the above proof also shows that there is an epimorphism
/ from P(9l; TA, TB) onto P(%; T'A, T'B). (We do not use this here.)

4. U= V^H

Throughout this section let 91 = A u B\H be an amalgam and
g = g(9t; C7, F) a factor amalgam, where U = V = NQH. Thus,

$ = A IN u BIN\H/N.

Since the transversals 5 and T are now arbitrary transversals of H,
take K = L = {1}, P = P(9I; 5, T) and P ' = P(%; S', T).

Each a e A induces an automorphism a" of N given by na" = na (n eN),
because 2V is normal in A. Suppose G is a group generated by 91, and let
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A* u B* be the image of 91 in G. Since N* is again normal in G, there is an
epimorphism of G onto the subgroup P" of Aut(2V) generated by the auto-
morphisms induced on N by A and B. If x = a* b* • • • e G, then the induced
automorphism, x", is defined by nx" = nah'" (neN), and the homomorphism
from G onto P" is given by x -> x".

THEOREM 4.1. Let % g and P" be as above, where N = U = V. Let E
denote the semi-direct product P"N. Then the permutational product
P = P(2l; S, T) can be embedded in

EWr(P'; W),

where P' = P(g; S', T) and W = S'xT'xH/N.

PROOF. Let H' be a transversal oiNinH and write Y = S xT xH' QW.
If

d' = (sN, tN, h'N) e W,
write

[d'} = (s, t, h') e Y.
Thus, if

d={s,t,h)eW = SxTxH,

then there exist unique elements [d'] = (s, t, h') e Y and neN, given by
h = h'n, such that

(8) d = [d']P(n).

It follows from (7) that if x e P, then

[d']xg = [d']gx' = d'x'.

Thus, by (8), for each x e P and d' e W, there exists a unique nx(d') eN
such that

(9) [d']x=[d'x']P(nx(d')).

Let nx e Nw' be defined by (9). Define gx in Ew and hx in EWr(P'; W)
by

(10) gx{d') = ^ " ^ ( i ' ) " 1 , (d' e W), and hx = gxx'.

Then

(11) x->hx

defines the required embedding. To prove (11) defines a homomorphism,
we proceed as follows. Let x,y e P. Then

Kv = gxvx'y' a n d KK = gxglx)1 x'y'•
Thus
(12) g^d') = g^d'jgW'^d') (d' e W)
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must be verified. Note that if, say, aeA, then p(n)p{a) = p(na); hence,
if y e P and n eN, then p(n)y = p(nv"). Using this remark and applying
(9) repeatedly, it follows that

[d'x'y'}p{nxy{d')) = [d']xy
= \d'x']p(nx(d'))y

= [d>x'y>]p(nv(d'x'))p(nx(dy")
= [d'x'y']P{ny{d'x')nx{d'Y").

Thus, far all d' e W",
»«(<*') = ny{d'x'\nx{d'Y",

so
ix"nx(d-y^{y"nv(d'x')-^ = (s'V)*-,^)-1-

Equation (12) follows immediately, proving that (11) defines a homomor-
phism. To show that (11) defines a monomorphism suppose hx = gxx' = 1,
so x' = 1 and gx = 1. Since ga = 1, it follows that nx(d') = 1, (d' e W),
and a;" = 1, that is, x centralizes N. By (8) every element of W is of the form

\d']P{n) (d'eW'.neN),
and

[d']P(n)x = [d']xp(n)

= [iVMn) (by (9), since ».(d') = 1)
= [d']p(n).

Thus x is the identity permutation, completing the proof of the theorem.
If X and ty are classes of groups let X1?) be the class of all groups which

are an extension of a group in 3£ by a group in ?).
If N, P", and P' generate the varieties SSa> SS2 and 3S3, respectively,

then Theorem 4.1 immediately shows that Pe (SS13S2)̂ 3- More, in fact,
can be shown.

COROLLARY 4.2. Suppose N generates the variety SSX and that P' and P"
in Theorem 4.1 together generate the variety 33. Then P e Ŝ SB.

PROOF. Let 23 (P) be the verbal subgroup of P corresponding to S3.
Let v be a generator of $8(P), say v = v(x1, x2, • • •, xn), (xt e P), where
v(X1,X2>- • •, Xn) = 1 is a law of S3. Since P' e 33, 33(P) is in the kernel of
the natural homomorphism / : P ->• P'. Thus, by (11), v -> hv = gv. But

gv(d') = v"nv(d')-\ (d' e W),

and P " 6 33, so u" = 1. Therefore hveNw' e^; that is, 33(P) e33j. It is
clear that P/33 (P) e 33 proving the corollary.
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If H = N, it follows by Lemma 2.1 that P' = AjHxBIH. Thus, if
H = N, and A, B and P" are all solvable, or finite ^-groups, respectively,
then 91 can be embedded in a solvable group (Wiegcld [13]) or a finite
/>-group (Higman [5]), respectively. We note that when H = N, the
corollary shows the solvable length l(P) of the embedding group P tc be
at most l(H)+max (l(P"), l^AjHxBjH)), improving the bound given by
Wiegold [13].

COROLLARY 4.3. Let 91 = A u B\H be an amalgam such that A and B
are split-extensions of N, say A = CN, B = DN, and H = (C n D)N. If
S QC and T QD, then P = P(2I; S, T) is a split-extension of p(N) by the
subgroup of P generated by p(C) and p(D).

PROOF. In the proof of Theorem 4.1, let H' = (C n D). The transversals
S and T are here chosen from the subgroups C and D, so by (9), if c e C,
eeD and d' e Y, then [d']p(c) = [d'c'] and [d']p(e) = [d'e']. Therefore,
if xe(P(C), p(D)}, then nx=\. If x = p(n) ep(N), then nx(d') = n,
{d'eW); hence, p(N) n </>(C), />(£>)> = 1. The corollary immediately
follows.

COROLLARY 4.4. Using the notation of Corollary 4.3., suppose C and D
are direct complements of N in A and B, respectively. Then

P0H; S, T) ~ P(%; S', T) XP(N).

PROOF. It is clear that P(9l; S, T) = (P(C), P{D)yxP(N), since p(C)
and p(Z)) permute elementwise with p(N). If x e (p(C), p(D)} such that
a;' = 1, then from the proof of Corollary 4.3, it follows that [d']x = [d'],
(d' eW). But, iideW, then from (8),

dx = [d']p(n)x
= [d']xp(n)
= [d']P(n)
= d.

Thus x -> x' is an isomorphism from <p(C), p(D)} onto P(^;S', T'), as
required.

Any amalgam 21 of two finite groups can be embedded in a finite group,
because any permutational product on 91 is finite. A related question is:
if H has finite index in both A and B, can A u B\H be embedded in a group
G such that H has finite index in G? B. H. Neumann showed by example
that such an embedding group G may not exist [9]. In this example H = N
is normal in both constituents, the constituents are both split-extensions
of H, and H is abelian (cf. Example 4.12). In this example P" is not finite
and this is a requirement for the proper kind of embedding group G to exist,
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for here H Q CG(H) and P" Q AntG{H) s GICG{H), which would have
to be finite. We partially answer this question with

COROLLARY 4.5. Let 31 = A u B\H be an amalgam such that A and B
are split-extensions of N, say A = CN, B = DN, and H = (C n D)N.
Suppose P" is finite and N has finite index in both A and B. If S QC and
TQD, then N has finite index in P(2l; 5, T).

PROOF. Here the hypotheses of Corollary 4.3 are satisfied, so P(2l; S, T)
is a split-extension of p(N). Furthermore, P' = P(%', S', T') is finite since
A jN and BjN are finite. It must therefore be shown that the index of p(N)
in the kernel of the natural homomorphism, / : P -> P', is finite. Note that
ker/Dp(iV), so

ker/=(ker/n<p(C),p(2))»p(iV).

Now nx = 1 when x e <p(C), p(D)y, so if x e <p(C), p{D)} n ker / = F,
then hx = gx • 1 and gx(d') = x" • 1. Therefore,

[F : 1] = [ker f : P(N)] ^ [P" : 1]

which is finite, completing the proof.
The assumptions of Corollary 4.5 are not necessary to embed A u B\H

in a group G such that H has finite index in G; it is, however, necessary that
H contain a subgroup N which is normal and of finite index in both A and
B. For a result on this embedding problem with different assumptions see
Corollary 4.10.

I wish to thank Professor B. H. Neumann for refering me to his paper
[9], thus suggesting the following results on periodic groups.

Refering to the notation of the proof of Theorem 4.1, any elements
a e A and b e B can be written uniquely in the form

a = shn, b = thtnt (s e S, t eT, h, hx e H', n, «x e N).

Write ay = n, by = nx,

Q(a) = {{sha)y\seS, h e H'}
and

R(b) = {(Mb)r\teT,heH'}.

HYPOTHESIS 4.6. For each a e A and b e B the sets Q(a) and R(b) are
finite.

COROLLARY 4.7. Let 21 = A u B\H be an amalgam of periodic groups.
Then P = P(9t; S, T) is periodic, if any one of the following is true.

(i) Hypothesis 4.6 holds and both P' = P ($ ; S', T) and P" are
periodic.

https://doi.org/10.1017/S1446788700006947 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006947


[9] On permutational products of groups 119

(ii) The group N has finite exponent and both P' and P" are periodic.
(iii) The group N is finite and P' is periodic.
(iv) The index of N is finite in both A and B and P" is periodic.

PROOF. Hypothesis 4.6 merely states that if x e P, then the function
nx (see (8) and (9)) has only a finite number of distinct values,
»i» w2, • • •, nk eN. If m is the least common multiple of the orders of the
nit i = 1, • • •, k, then «™ = 1. Thus, if (i) holds, hx (and hence x) has finite
order for all x e P.

If (ii) holds, there is an integer m, m = exponent of N, such that
w™ = 1. Thus hx has finite order.

If (iii) holds, then both N and P" are finite, so the result follows
from (ii).

If (iv) holds, then E = P"N is periodic and P' and W are finite.
Thus EWr{P'; W) is periodic.

We also note that if 31 is an amalgam of groups of finite exponent and
P' and P" have finite exponent, then EWr(P'; W) has finite exponent.

COROLLARY 4.8. Let 21 = A u B\H be an amalgam of locally finite
groups A and B and suppose P" is periodic. If N has countable index in both
A and B, and finite index in H, then P = P(9t; S, T) is periodic. If, in
addition, P" is locally finite, then P will be locally finite.

If the index of N in H is not finite, but [A : N] and [B : N] are countable,
P' is periodic (locally finite) and P" is periodic (locally finite), then P will
be periodic (locally finite).

PROOF. It is implicit in Lemma 8.3 [9] that Hypothesis 4.6 holds. The
first statement will follow from Corollary 4.7 if P' is periodic. If H\N is
finite, then P' will be locally finite (Theorem 5.2 [9]), proving the first
statement.

To prove the second statement it suffices to prove that the kernel of
the natural homomorphism / : P -> P' is locally finite (p. 153 [6]). Let
xt, x2, • • -,xke ker /. Then hX( = gX(, i = 1, • • •, k. Since Hypothesis 4.6
holds all Q(a) and R(b) are finite, so each nx can assume only a finite
number of distinct values nXi(d'), (d' e W). (The values nx(d') axe given,
as in (8), by (sh'x{y.) Thus the hx can assume only a finite number of
distinct values in E = P"N which is locally finite, so these values generate
a finite subgroup E* of E. Thus each hXi e (E*)w, which is locally finite
(Lemma 5.4 [9]); hence the hx. generate a finite group, which was to be
shown.

The last statement follows immediately from the fact that Hypothesis
4.6 holds.

COROLLARY 4.9. Let A u B\H = % be an amalgam of periodic groups
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[locally finite groups, groups of finite exponent) such that A and B are split-
extensions, say A =CN, B = DN, and H = (C n D)N. If SQC, T Q D,
and P" and P(^; S', T') are both periodic (locally finite, of finite exponent),
then P(2t; S, T) is periodic (locally finite, of finite exponent).

PROOF. Here P(2l; S, T)/ker / and ker flp(N) are both periodic (locally
finite, of finite exponent) by Corollary 4.3 proving this corollary.

COROLLARY 4.10. Let A u B\H = 21 be an amalgam of locally finite
groups A and B containing a normal subgroup N of both A and B. If N has
finite index in both A and B, and P" is locally finite, then there exists a group
P embedding 21 such that N has finite index in P.

PROOF. By Corollary 4.8, there exists a locally finite permutational
product P on 21. Choose a transversal of p (N) in P from the subgroup of P
generated by p(S), p(T) and p(H'). These are finite sets, hence the trans-
versal of p(N) is finite, as required.

EXAMPLE 4.11. We now show that the hypothesis, 'P" is locally finite',
cannot be weakened to, 'P" is periodic', in Corollary 4.10.

Let G be an infinite periodic ̂ >-group which is generated by two elements
a and b. Such groups were shown to exist by Golod and Safarevic [14]. Let
<f> : G -> Aut (N) be a faithful representation of G where N is an abelian
group; for example, let N be the direct sum of |G| copies of the group of
order 2, Z2, and consider the right regular representation of G over the
vector space N (over Z2). Form the semi-direct products A = (a<f>}N and
B = (b<f>}N.

Since a and b have finite order in G, N has finite prime power index in
both A and B. If R is a group generated by A u B\N = 21, then, since
N Q CR(N), there is a homomorphism from R/N onto R/CR(N) •?&/> = P"
which is infinite and periodic. Thus no group R embeds the amalgam 21
such that N has finite index in R.

EXAMPLE 4.12. A similar argument shows that certain amalgams are
embeddable only in their associated generalized free product.

LEMMA 4.13. Let A = CN and B = DN be split-extensions of the group
N by C and D, respectively. Suppose 21 = A u B\H is an amalgam such that
H = (C n D)N. Then G is the generalized free product on 21 if and only if G
is a split-extension of N by the generalized free product on C and D with
E = C n D amalgamated.

PROOF. This follows immediately from the normal form for elements of
a generalized free product (see [7]).

Let G be a generalized free product on C u D\E and let <f> : G -> Aut(iV)
be a faithful representation of G with .ZV abelian. Form the amalgam
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21 = C(j>N u D(f>N\E(f)N. Then as before, any group R generated by 3t maps
homomorphically onto Gj>, say y> : R -> R/CR(N) 2 G<j>, such that C<f> and
Z)<£ in R map to C<£ and D<f> in G<£, respectively. By the universal mapping
property of generalized free products G<f> maps onto the subgroup F of R
generated by C<f> and D<f>, say 0 : G<f> -> R. Since dy\F is the identity on
Ccj) and D<f>, it must be the identity on G<j>. Similarly y>\F 6 is the identity on
F, so 9 and y|j. are isomorphisms, R = FN and F n N = 1. By Lemma
4.13, R is a generalized free product. Finally, note that R must be unique
(within isomorphism) since the automorphisms induced by F on N are
always G<f>. (This example was suggested by a special case given in [16].)

5. N central in A

Recall (see Section 3) that in the general case, if g = ^(21; U, V) is
a factor amalgam, then N = U n H = V nH and W = SKxTLxH.
Let H' be a set of coset representatives of N in H and

d = {sk, tl, h'n) e W,

where h' e H' and n eN. Since SK and TL are sets of coset representatives
of H, if we set a = skh'n and b = tlh'n, then d is uniquely determined by
a and bH, and also by ai? and b. Write d = [a, bH) — (aH, b]. If a±e A
and bl e B, then

[a, bH)P{aj) = [aalf &#) and (off, &]p(61) = (aH, bbj.

Define permutations on W, ^(a^), (a^eA), and ^i^i)' (^ie^)> by

[a, bH^iaj) = [«!«, iff) and (a#, &]A2(6j) = {aH, bxb}.

Evidently

(13) f(«i)^iW = ^iK)p(«i). K , a2 e ^ )

and

(14) p(W(&a) =

LEMMA 5.1. Let % = A \j B\H. Using the preceeding notation, if N is
contained in the centre Z(A) of A, and v e V, then A2(i>) commutes with every
element of P = P(9l; SK, TL).

PROOF. By (14) we need only verify

We first introduce some notation; suppose H is a subgroup of A and S
is a transversal of H in A. If g = sh e A, s eS, h e H, write g" = s and
g-'+i = h. Now let
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d == (sk, tl, h'n) e W,
so

d = [a, bH) = (aH, 6],
where

a = skh'n and b = tlh'n.
Then

[a, bH)P(a1)X2(v) = [aalt bH)X^v)
= (aaxH, vb'],

where

Thus,

(15) ( a a ^ , w6'] = ({aa^, {vb')", (vb1)-^1).

Similarly,

(aH, b]k2(v)P(ai) = r«'«1; »6ff)
( ={{a'a)*,(vb)*,{a'a1)-'+i),
where

a' = sk(vb)-"+l.

To complete the proof of this lemma, the expressions in (15) and (16)
must be shown to be equal. First note that (vb'Y = fob)*, for

(vb'Y = {vtl(aa1)-*+iy
= (vtl)"
= (vtl(h'n)Y

Note also that
(vtl)-^1 = (tlv")-^1 = (Iv11)-^1 e V,

so [vtiy"*1 eV nH = N, that is, (vtl)-^1 is in the centre of A. Further-
more

(aaj)' = {skh'noj)' = (skh'aj" (n e Z(A))
and

(a'aj)' = {sk(vb)-cr-ilaiy.

Thus (««!)"• will equal (a'a^, if

But (vb)-<r+1a1H = {vtlh'n)-'T+1alH
= (vtl)-ff+1 (h1n)axH.

= h'axH ((w«)-*+1, n e

so (««!)"• = («'«1)(r-
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Finally,
(»&')-'+i = (va{aa1)-^+1)-'+1

= (vtl)-™ {aa1)-<
T+1

= (vtl)-<r+1{skh'na1)-"+1

= (skivtl)-^1 (h' n)a1)-"
+1

= (sk(vb)-<T+1a1)-
(r+1

= (a'a^+K

This completes the proof of the lemma.

THEOREM 5.2. Let 2t = A u B\H be an amalgam and % = g(2t; U, V)
a factor amalgam, where V is a normal subgroup of B such that V n H = N
is in the centre of A and U = N. Then the permutational product
P = P(9t; S, TL) can be embedded in VWr{P'; W), where P' = P{%; S', T)
andW = S'xT'xHIN.

PROOF. Let H', Y and [d'], (d' e W), be as in Theorem 4.1. If

d = (s, tl, h'n) e W,

define v e V by In = vt. Then

(17) d = [d']^(v),

because
tlh'n = vth' (neZ(A))

and
d = [sH, vth'] = {sH, th']X2(v)

as required.
Thus, for each x e P and d' e W, there exists a unique vx(d') e F

such that

(18) [d']x=[d'x']Xi(vx(d'))-

Define vx e Vw' by (18) and let rx = wsa;'.

LEMMA 5.3. The function given by

(19) x -* r., (* e P),

is a monomorphism from P into VWr[P'\ W).

PROOF. Note that by the definition of A2,

Kihh) = WMh), {h.b^B).

Let x, y e P. By (18) and Lemma 5.1, if d' e W, then
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[d'x'y']l2(vxy(d')) = [d']xy
= [d'x']X2{vx{d'))y
= [d'x'y']X2(vy{d'x'))l2(vx{d')).

Hence,
vxv(d')x'y' = vx{d')vv(d'x')x'y'

= vx(d-)x'vv(d')y',

proving (19) defines a homomorphism.
If rx = vxx' = 1, then vx{d') = 1, (d' e W), and x' = 1. Let

d = [d']X2(v) e W and suppose x -> 1. Then

dx = [d']x!2(v)

= \.d']X2{vx{d'))X2{v)

= d,

because A2(l) = 1. Thus (19) defines a monomorphism, which was to be
shown.

Several simple results follow immediately. Using the notation of
Theorem 5.2, we note (i) if V and P' are in the varieties 33 and 231; respec-
tively, then P e SSSBj; (ii) if V and P' are both locally finite (of finite ex-
ponent), then P is locally finite (of finite exponent); (iii) if V and P' are
periodic and W is finite, then P is periodic.

Since the case N = H has been discussed in several other papers,
we only give two corollaries here. The first slightly improves a bound on
l(P) given by Neumann [8] and the second concerns the splitting of the
permutational product. We refer the interested reader to the papers of
Bryce [17], Majeed [16] and, especially, Neumann [8], [9] and Wiegold
[11], [12], for further results concerning this case.

COROLLARY 5.4. (Neumann [8]). Let 21 = A u B\H be an amalgam of
solvable groups of solvable lengths 1{A) = n and l(B) = m, respectively, and
let B' be the derived group of B. If H is central in A, then 91 can be embedded
in a solvable permutational product P such that

l(P) ^ l[A\B' n H)+l(B') ^ n+m-1.

PROOF. Set V = B' and U = B' nH. Then HjU is central both in
AjU and in the abelian group B/B'. Let P = P(2I; 5, TL). Then P' is
the generalized direct product on AjU u BjB'\HjU which is solvable of
length l(A/B' n H), so the result follows from Theorem 5.2.

COROLLARY 5.5. In Theorem 5.2 suppose A and B are split-extensions
A =CN and B = DV, respectively, where H = (C n D)N. If SQC and
T QD, then P = P{%; S, TL) is a split-extension of the kernel of the natural
homomorphism f : P -> P' by E = <p(C),
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PROOF. Let H' = Cr,D. As in Corollary 4.3, if xeE, then [d']x = [d'x'],
(d' e W). Suppose now that x e ker / and [d']x = [d'x'] = [d']. It deW,
then d = [d']X2(v) and

dx = [d']X2(v)x
= [d']xX2(v) (Lemma 5.1)
= d.

Thus E n ker / = 1 as required.

6. N central in both A and B

THEOREM 6.1. Let A u B\H be an amalgam and g(2t; U, V) a factor
amalgam such that N = UnH = VriHisa subgroup of the centres of both
A and B. Then P = P{%; SK, TL) can be embedded in

DWr{P'; W),

where P' = Pffi; S'.T'), W = S'xT'xHjN, and D is the generalized
direct product of U and V with N amalgamated.

PROOF. We shall pattern this proof after that of Theorem 5.2. Let
W, H', Y, ^(u), (u e U), and X2(v), (v e V), be as in Theorem 5.2. Write
AX(C7) = faWlueU}.

LEMMA 6.2. The group of permutations A = (^(U), X2(V))> is iso-
morphic to the generalized direct product, D, of U and V with N amalgamated,
whenNQZ{A) n Z{B).

PROOF. The function Xx{u) -> u~x is an isomorphism from A1(C/) onto
U; similarly, A2(F) ~ V. Thus it remains to be verified that

(20) *!(«)*«(«) = hWiW, (ueU.ve V),

and

(21) ^(U) n X2{V) = ^(N) = 12(N).

We sketch the proof using the notation of Lemma 5.1. Let
d = {sk, tl, h'n) e W. Then

dX^ujX^v) = {(uayH, vtl^a)-^1] = d',

where a = skh'n, and

dX^X^u) = [usk{vb)-°+\ (vb)°H) = d",

where b = tlh'n. Then

(uay = {usky = (usk(vb)-'T+1)'r>
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and (vtl(ua)-"+1)-"+1 = (vtl)-'T+1(usk)-'r+1h'n
= (usk{vb)-<r+1)-<r+1

since (w'/)-<7+1 eN, which is in the centre of A. Thus d' = d" proving (20).
To prove (21), note first that

X1(n)=K(n), (neN).

Now let x = Xx(u) = A2(v), u e U, v e V. If d is as before,

dx = dXx(u) = ((usk)", tl, (usky+^h'n)
and

dx = ^2(t;) = (sk, (vtl)", (vtl)-°+lh'n).

Comparing first co-ordinates of the expressions for dx, sk(usk)~"+1 = usk, so

(usk)-^1 = uskeH nU = N.
Thus,

(usk)-^1 = u.
Similarly,

(vtl)-^1 = veN.

Finally, comparing third co-ordinates, u = v eN, completing the proof of
the lemma.

lid= (sk, tl, h'n) e W, let u = ks~xn, v = l*~\ and A* = A1(w)A2(w) e A.
Then

(22) d = [d']X*.

If A* = A1(M1)A2(I;1) e / l and d = \d'~\X*, then a routine calculation using
the methods of Lemma 6.2 shows that

% = u[{v[)-'r+1]-1 and vx = v[(v[)-<r+1'\;

that is, A* is a uniquely determined element of A.
Let x e P and rf e T7. By (22) define ex e D^' by

^')=«.(W)^,

where

and

By Lemma 6.2 ex(d') is a uniquely determined element of D. Finally, set
rx = exx'.

LEMMA 6.3. The function defined by

(23) x -* r., (x e P),

is a monomorphism from P into DWr(P'; W).
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PROOF. The proof that (23) defines a monomorphism follows that of
Lemma 5.3, so the details are omitted.

This completes the proof of Theorem 6.1.
Several simple results again follow from Theorem 6.1, but only one will

be stated (without proof).

COROLLARY 6.4. Let 5t = A u B\H be an amalgam where A and B are
split-extensions, A = CU, B = DV, N is in the centres of both A and B,
and H = (C n D)N. Then P = P(2l; SK, TL) is a split-extension of the
subgroup E = (p(C), p(D)y by the kernel of the natural homomorphism
f : P -> P' = P(%; S', T), whenever SQC and TQD.IfU and V are direct
factors, so is ker f.

The following result is presented as a simple example of how the results
of sections 4 and 6 may be applied to embedding theorems.

THEOREM 6.5. Let 91 = A u B\H be an amalgam of solvable groups A
and B such that H is normal in both A and B. Then $( can be embedded in a
solvable group if and only if A and B have series of normal subgroups
U0 = lQU1Q---QUn = A and Vo = 1 Q V1 £ • • • Q Vn = B such that
Ui+1jUf and Vi+1IVf are abelian, Ni = UinH = Vin H, and AjV\ and
BjVt induce a solvable group of automorphisms P" on Ni+1INt for
i = 0, 1, 2, • • •, n— 1.

PROOF. One way is clear. Let A and B be solvable groups having series
of normal subgroups of length n as in the statement of the theorem. We
always assume the amalgam is proper, that is, A ^ H, B =£ H.

If A and B are abelian, then any permutational product on the amalgam
will be abelian by Lemma 2.1, so suppose the result is true whenever A
and B have normal series of length less than n. Thus the factor amalgam
% = AjU1 u B/V1\HIN1 generates a solvable permutational product
P* = p ( g ; S*, T*) for some choice of 5* and T*.

Let Kx and Lx be transversals of Nx in U-^ and Vx, respectively. With
respect to U1 and Vt choose transversals SK and TL as in (2) — (5) such that
the image SUJUj, of S is S* and TVJV1 = T*. Let %1 = A/N1u BjN^H/Nj^.
Then P' = P ( & ; S'K', TL') is solvable by Theorem 6.1, for it can be
embedded in a solvable group of the form DWrP*, where D is the direct
product of UiNJNj. and V^JN^ Finally, the group P(2l; SKKX, TLLX)
is solvable since it can be embedded in a solvable group of the form
P'l'Nj^WrP' by Theorem 4.1. The theorem follows by induction on n.

I thank Dr R. B. J. T. Allenby for the following (unpublished) result
which suggested Theorem 6.7.

THEOREM 6.6. (Allenby). Let SI = i u B\H be an amalgam of metabelian
groups such that H is normal in both A and B and P" is abelian. If the derived
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subgroups of A and B are contained in H, then 51 is embeddable in a metabelian
group.

PROOF. If P" is abelian, then A'B' is a subgroup of the centre Z(H)
of H. Let N = Z(H). Since A/N and B/N are abelian groups P' is abelian,
and the result follows by Corollary 4.2.

THEOREM 6.7. Let 31 = A u B\H be an amalgam of metabelian groups.
If N = (A' n H)(B' n H) is in the centres of both A and B, then 91 can be
embedded in a metabelian group.

PROOF. The abelian groups U = A'N and V = B'N have the same
intersection N with H and are normal subgroups of A and B, respectively.
By Theorem 6.1. P(9t; SK, TL) is a metabelian group, since A/U and BjV,
and thus P', are abelian.

EXAMPLE 6.8. James Wiegold [10] has given an example of an amalgam
A u B\H of the Pruefer group of type 2°° with the dihedral group of order 8
which is embeddable in no nilpotent group. In this example Wiegold lets

A = gp{*i. a2, • • • ,«„ , • • •; a\ = 1, ai+i = a», n = 1, 2, • • •),
B = gp{c, d; ci = di = (cd)2 = 1 ) a n d

H = gp{c), where c = a2.

This amalgam satisfies the conditions of Theorem 6.5 if we take Uo = Vo = 1,
Fx = gp{c2), U1 = VlnH, C/2 = A, and F2 = B. Hence the embedding
group of Theorem 6.5 need not be nilpotent when A and B are.

Wiegold [11] has also given examples of cyclic groups of order 2"
amalgamated with certain generalized dihedral groups which are only
embeddable in nilpotent groups of class Cn ^ /(«) where f(n) -> oo as
w -^ oo. These examples together with Examples 6.8 give rise to the follow-
ing remarks.

REMARK 6.9. Let 91 = A u B\H be an amalgam of groups which are
each unions of ascending chains of subgroups, say .4 = U£Lî 4<» B= Uj^i-B,.
where At Q Ai+1 and 53- Q Bi+1, for all positive integers i, j . Suppose for all
i, j , A( n Bj = H. Suppose also the amalgams 2ItJ- = Ai u B^B. can be
embedded in groups GiS such that when i0 £S * and /„ ^ /, the subgroup of
GiS generated by 91, y is isomorphic to G( , and the restriction of this
isomorphism to 2t,o,o is the identity. Then an ascending union of the Gijt

G = Lim_, Gti, will embed A u B\H (here iojo 5̂  ij if and only if i0 ^ i
and j0 ^ /). Furthermore, G is solvable or nilpotent of length at most m
if and only if each Gu is solvable or nilpotent of length at most m. The
following theorem shows such embedding groups Git can always be found.

THEOREM 6.10. Let 21 = A u B\H be an amalgam and 9lx = Ax u £ i l #
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a subamalgam of 21. Choose transversals K of H in Alt S of Axin A, L of H
in Bx and T of Bx in B. Then there is an isomorphism from Px = P(9l1 ;K, L)
onto the subgroup of P = P(2l; SK, TL) generated by p(A1) and p(Bx) which
acts as the identity when restricted to ty.x.

PROOF. If p(a1) e p(A1) Q P, then (sk, tl, h)p(a1) = (sky, tl, hx), where
khax = kxhx and this last equation is precisely the same equation arising
by calculating p(ax) in Px. If

x = P(ax)p{b2) • • • PK) e <P(A1), P(BX)> Q P,

then x -> x' = p(ax)p{b2) • • • p(an) e Px

is the required isomorphism.
Thus, in Remark 6.9, choose transversals 5 and T of H in A and B

to be S = I J^ ! - ^ a n ( i T = IT£=î i> where St is a transversal of At_x in
At, Ao = H, and Tt is similarly chosen. Then P(2T; S, T) is the ascending
union of the subgroups P[%j', S(, J,) by Theorem 6.10, proving the exis-
tence of the G^ required in Remark 6.9. This remark also explains why the
calculations in Lemma 8.3 [9] are natural and could be used to give a
somewhat more direct proof of Corollary 4.8.

Finally, using the methods of Theorem 6.5 the following results of
Higman [5] follow.

THEOREM 6.11. (Higman [5]) Let A — A\j B\H be an amalgam of
nilpotent groups. If there are central series

U0=\QU1Q---QUn=AandVQ=\QV1Q---QVn = B

of A and B, respectively, such that Uf n H = Vt n H, i = 0, 1, • • •, n, then
9t can be embedded in a solvable group P.

THEOREM 6.12 (Higman [5]). Let 21 = 4̂ u B\H be an amalgam of
finite p-groups. The amalgam is embeddable in a finite p-group P if and only
if there are chief series of A and B, say {£/,} and {F,}, respectively, such that
{Ut nH}= {F, n H}.

7. Finite nilpotent groups

The results here can be derived from the foregoing results on permuta-
tional products, but the proofs here are based on the following very general
result of Wiegold.

THEOREM 7.1. (Wiegold [11]) Let Aa u Ba\Hx be an amalgam of two
groups which is embeddable in a group of a variety 33 for each a in some index
set M. Then if A = xAa, B = xBa, H = xHa are the restricted direct
products of the Aa, Ba, and Ha respectively, then the amalgam A u B\H is
also embeddable in some group of the variety 33.
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THEOREM 7.2. Let A and B be finite nilpotent groups. The amalgam
91 = A u B\H is embeddable in a finite nilpotent group G if and only if A
and B have chief series (As) and (Bk), respectively, such that

(A,) nH= (Bk) n H.

PROOF. Let px, • • •, pr be the distinct primes dividing the orders of A
and B. The groups A, B and H are the direct products of their Sylow
/>rsubgroups, Af, Bt and Ki, respectively. If {Aj) and (Bk) are chief series
of A and B such that (Aj) n H = (Bk) n H, then, since AJAi+1 and
BrIBr+1 are cyclic of prime order, (Aj) n Ai and (Bk) n Bt are chief series
of Ai and Bt, satisfying the conditions of Higman's Theorem (Theorem
6.12). Thus At u B{\H{ is embeddable in a ^>rgroup G, for all i = 1, . . ., r.
Hence 91 is embeddable in the direct product Xi=i^» which is nilpotent.

Conversely, if 91 is embeddable in the nilpotent group G, then any
chief series of G, say (G3), determines the necessary chief series in A and B,
(A^ = A n (Gj) and (B}) = B n (G3), completing the proof.

COROLLARY 7.3. / / A and B are finite nilpotent groups and H is cyclic,
then A u B\H is embeddable in a nilpotent group.

PROOF. AS Higman points out [5], a cyclic ^-group has one chief
series, so the conditions of Theorem 7.2 must hold.

THEOREM 7.4. / / H is a normal subgroup of both the finite nilpotent
groups A and B, then 91 = A u B\H is embeddable in a finite nilpotent group
if and only if the group P" of automorphisms induced by A and B on H is
nilpotent.

PROOF. One way is clear. Again we assume A, B and H are direct
products of their Sylow ^-subgroups Ait B{, and Hit for distinct primes
pit i = 1, • • •, r. The H( are characteristic subgroups of H, so

Aut (H) = X Aut (Ht).
<=i

Furthermore A u B\H is embeddable in a nilpotent group if and only if
A{ u Bi\Hi is embeddable in a ^>rgroup, i = 1, • • • r, by Theorem 7.1.
We now show that At and Bt induce a ^>rgroup P'/ on Hit i = 1, • • •, r,
and the result will follow by Theorem 4.1. Let Aut^ (H) denote the auto-
morphisms induced by A on H.

Now AntA(H) = XLiAut^ (H{) and if x e A, then x = ay, where
aeA{ and the order of y is prime to pt. Thus y commutes with every
element of At, and x induces the same automorphism as a. Hence, for
each i, KntA (Ht) = Aut^. (H(), so Aut^ (H) = XLi A u t ^ (HJ; similarly,
AutB (H) = XLi AutBi. (H<). Thus P" is the direct product of the subgroups
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P " of Aut {Hi), because Aut^ {Ht) Q Aut (Hf) and AutB. {Ht) Q Aut {H(),
i: = 1, • • •, r.

If P " is a finite nilpotent group, then each P " is a nilpotent group
generated by the ^-groups Aut^ (ff,) and AutB. {Ht), so P " is a/>rgroup,
t = 1, • • •, r. Hence the amalgams At u B^\Hit i = 1, • • -,r are embeddable
in a ^>rgroup as required.

8. The pull apart property

We now discuss a simple embedding result (Corollary 8.5) which does
not seem to have appeared elsewhere. This section will also indicate uses
to which amalgam embedding theorems can be put. Let AnB\H denote the
generalized free product associated with A u B\H.

Let Q be a group property. The group G is residually Q if and only if
for each g e G, g ^ 1, there is a normal subgroup Ng of G such that g $Ng

and G\Ng has property Q.

THEOREM 8.1. {see Baumslag [2]). Let L be a group property such that
if G is an L-group, then every subgroup of G is an L-group. If the amalgam
A u B\H can be embedded in an L-group G, and N Q H, then S = AnB\N
is an extension of a free group by an L-group.

DEFINITION 8.2. [4]. A property Q is a root property, if:

(1) if a group is Q, then so also is every subgroup.
(2) if G and H have Q, then so also has the direct product GxH,
(3) if G Si H S; K ^ 1 is a series of subgroups, each normal in its

predecessor, and GjH, H\K are Q, then K contains a subgroup L, normal
in G, such that GjL is Q.

Let us note that if Q is any property satisfying part (3) of the definition
of root properties, and H is a normal subgroup of G such that GjH is Q and
H is residually Q, then G is residually Q [4, Lemma 1.5], and if Q is a root
property, then every free product of residually Q groups is itself residually
Q if and only if every free group is residually Q [4].

Using these remarks together with Theorem 8.1, we easily have the
following simple but useful, corollaries.

COROLLARY 8.3. Suppose A and B are Q-groups, where Q is a root property
such that every free group is residually Q. Suppose the amalgam A u B\H
can be embedded in a group having Q and N QH. Then AnB\N is residually Q.

COROLLARY 8.4. Let Q be a root property. Suppose every free group is
residually a Q-group {residually a finite Q-group). If A and B are finite
Q-groups, then AnB\H is residually a Q-group {residually a finite Q-group)
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if and only if the amalgam A u B\H is embeddable in a Q-group (finite
Q-group).

COROLLARY 8.5. Let A and B be finite Q-groups, where Q is as in Corollary
8.4. If A u B\H is embeddable in a Q-group (finite Q-group) and N QH,
then A u B\N is embeddable in a Q-group (finite Q-group).

PROOF. Since A u B\H is embeddable in a (finite) @-group, AnB\N
is residually a (finite) @-group by Corollary 8.3. But A u B\N is embeddable
in a (finite) @-group by Corollary 8.4.

Intuitively, if A u B\H is embeddable in a finite ^-group, then as A
and B are 'pulled apart', so as to have a smaller common subgroup, the
new amalgam of A and B is again embeddable in a finite @-group.

The above theorem includes the cases when Q is 'solvable', 'finite' and
'finite _£-group', but not 'finite nilpotent', which can be done as follows.

Let X be a given abstract class of groups. (That is, all isomorphic copies
of any group in X are also in X.) We shall say that X has the pull apart
property, if, whenever A u B\H is embeddable in a group in X, then A u B\N
is also embeddable in a group in X for any subgroup N QH.

THEOREM 8.6. The class of groups X has the pull apart property if and
only if for any group A in X and any isomorphic copy A* of A the amalgam
A u A*\H is embeddable in a group in X, where H is any subgroup of A
amalgamated with its image H* Q A*.

PROOF. Suppose X has the pull apart property and let A be in X. Then
we may consider A as embedding the amalgam A v A*\A and thus
A u A*\H is embeddable in a group in X.

Conversely, suppose any amalgam A u A*\H is embeddable in a group
in X and that A u B\H is embeddable in a group G in X. Let N QH. If G*
is any isomorphic copy of G, then G KJ G*\N is embeddable in a group G**
in X and since G** embeds A u B*\N (where N = N*) which is amalgam
isomorphic to A u B\N, we are through.

Thus in view of Theorems 8.6 and 7.4, the pull apart property also
holds for the class of finite nilpotent groups.

Suppose now that Q is a property such that every @-group is finite.
One might ask if the above 'pull apart property' holds for residually
(^-groups, i.e., if A u B\H is embeddable in a residually @-group andiV Q H,
must A u B\N be embeddable in a residually @-group?

The following example shows this is not the case.
Let gp(a) and gp(b) be infinite cyclic groups. Consider the amalgam

gp (a) u gp (b) \ap = b", where the subgroup <ap> generated by av is identified
with the subgroup <&«> by the isomorphism given by ap<-> bq. Here p and q
are distinct odd primes. The above amalgam can be embedded by the in-
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finite cyclic group G = gp(a, b, \av = bq, ab = ba), in the natural way.
(The group G is generated by avbu, where u and v are integers such that
up+vq = 1.)

Hence the above amalgam is embeddable in a residually finite ^-group.
Now consider <apa> J <«"> QsPia)- We shall show that the amalgam

51 = gp(a) u gp(b)\av" = bqi is not embeddable in any residually finite
p-gxowp.

Suppose the contrary, that $ can be embedded in some group G which
is residually a finite ^-group, and recall that [x, y] = x~xy~xxy. Consider
the element s of G, s = [b2q, apq~2].

Either s = 1 or s / 1.

CASE 1. s =£ 1. Since G is residually a finite ^-group, we can choose a
normal subgroup N of index p* in G, i 2; 1, such that s is not an element
of N. Since (p, q) = 1, we can choose integers u, v such that 1 = qu-\-pi+1v,
so

(24) q = q^u-\-pi+1qv.

Note that if d is the natural homomorphism from S to SjN, then
6(b*>) = b2uQ*N by the above equation (24) and the fact that N has index
pi in G, so 0(629) = a2ptuN.

Hence
6(s) = [0(6a«), 0(a*«-2)]

= [a2ptuN, avq-2N] = N, so seN,

contrary to hypothesis. Therefore, if G is residually a finite p-gvoup, we
must have case 2.

CASE 2. s = 1. Now b2q and avq-2 commute, and avq~2 = bq% • or2,
so b2q and a2 commute.

If we could show that s — 1 forces G to have an element x of order q
or q2, then G couldn't be residually a finite />-group, because any non-trivial
image of a; in a factor group of G would have order q or q2. Now

q2(a2vb-2q)q2 = a ^ V 2 9 ' = b2Q3b~2q3 = 1,

because a2" and b~2a commute, and apq = bq*. The above remark shows that
a2pb'2q can't be of order q or q2. Therefore a2v = b2q. But a2p and b2q are
not in the amalgamated subgroup, because p and q are odd numbers, so if
a2v = b2q the amalgam 9t is not embedded in G, a contradiction. Hence,
91 is not embeddable in a group which is residually a finite p-gxowp, which
was to be shown.

For further results on the residual properties of generalized free
products see [2] and [3].
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Before closing we ask a question. Allenby [15] has shown that every
permutational product is a generalized regular product on % that is, if
ip(S, T) is the natural homomorphism from F = AnB\H onto P(5t; S, T)
where % = A u B\H, and S and T are arbitrary transversals of H, then
the kernel of yi(S, T) is in the cartesian subgroup C, C = <[«, b]\a eA, b e£>,
of F. For any given amalgam 91, can S and T be chosen such that ker y>(S, T)
is maximal with respect to being a normal subgroup of F contained in the
cartesian C? In other words, is at least one permutational product on 91
a minimal generalized regular product on 51?

I thank Dr Allenby for sending me a copy of an unpublished result
due to Graham Higman, which states that an amalgam A u B\H can be
embedded in a standard wreath product similar to that used in Theorem 4.1,
when H is normal in both A and B. This in turn suggested a special case of
Theorem 4.1 in an earlier version of this paper. Originally the rest of the
results on permutational products were proven directly from Theorem 3.1.
The present unified treatment, considering permutational products as
subgroups of permutational wreath products is due to the referee, to whom
we acknowledge our indebtedness and offer our thanks.
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