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Abstract. It is known that Siegel’s theorem on integral points is effective for Galois coverings of
the projective line. In this paper we obtain a quantitative version of this result, giving an explicit
upper bound for the heights of S-integral K-rational pointsin terms of the number field K, the set of
places S and the defining equation of the curve. Our main tools are Baker’s theory of linear formsin
logarithms and the quantitative Eisenstein theorem due to Schmidt, Dwork and van der Poorten.
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1. Introduction
1.1. THE MAIN RESULT

Let C' be a projective curve defined over a number field K and z € K(C) non-
constant. For any finite set S of places of K containing the set S, of archimedean
places define the set of S-integral points of the curve C' (with respect to ) as
follows:

C(z,K,S) ={P € C(K):z(P) € Ok},

where Ok s isthering of S-integers of thefield K. The classical theorem of Siegel
[38, 26] states that |C'(x,K, S)| < oo assoon asthe genus g(C) > 1. For curves
of genus 2 or more this is covered by a result of Faltings [19], who proved that
|C'(K)| < oo wheng(C) > 2, aswas originally conjectured by Mordell.

Boththetheoremsof Siegel and Faltingsare, in general, non-effective. However,
Siegel’s theorem is effective in some particular cases, for instance, for curves of
genus 1 (Baker and Coates [5]). See [24, 34, 8] for quantitative improvements of
the result of Baker and Coates.

One more general case of effectivity of Siegel’stheoremiswhen z: C—P'isa
geometrically Galois covering of the projectiveline (thatisQ(C) /Q(x) isaGalois
extension, where Q is the algebraic closure of Q). This was proved by the author
[7, Sect. 7], and, independently, by Dvornicich and Zannier [16]. Partia results
were obtained by H. Kleiman [23, Cor. (3) of Thm 3] and Poulakis[31, Sect. 2].

In all cases the method of Gelfond-Baker [20, 2] was used, so far the single
general effective method in Diophantine analysis. In [42, 37, 36, 8, 10] one can
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find further information on the effective study of Diophantine equationsby Baker’'s
method, including extensive bibliography.

Herewe obtain aquantitative version of the effective Siegel’stheoremfor Galois
coverings. Introduce some notation. Given aprojectivevector & = (ao: ... ay) €
P*(Q), wedenoteby h(«) itsabsolutelogarithmic height (further height, we recall
the definition in Subsection 1.4). The height of a polynomial is the height of the
projective vector composed from its coefficient. Also, we definethe height function
h:{: C(Q)—R>%by h,(P) = hp(z(P)), where hpi: P1(Q)—R> isthe height on
P-.

Lety € K(C) besuchthat K(C') = K(z,y) and f(X,Y) € K[X, Y] anonzero
separable polynomial such that f(x,y) = 0. (We use lowercase letters =, y, ...,
for rational functions on C' and uppercase letters X, Y, ..., for indeterminants.)
For some flexibility, we do not assume f(z, Y") to be the minimal polynomial of y
over thering K[z]; in particular, it can be reducible.

Put
m=degy f(X,Y), n=degy f(X,Y), N =max(m,n,3), s=|59|, Q)
d=dg =[K:Q], D =Dk —thediscriminant of K over Q.

We denoteby N = N : K—Q the norm map. The norm of afractional ideal is
well-defined as a non-negative rational number. For any place v of the field K we
define N'v as the norm of the corresponding prime ided if v is non-archimedean,
and put Nv = 1if v is archimedean. Also, we denote by p(v) the underlying
rational prime (which is assumed to be oo for archimedean v), and put

N p(v), p(v) <oo, N
MMZ{L Mw:mypwwqgmw @

Finally, throughout the paper the symbols O(...), < and > imply absolute
effective constants.

THEOREM 1.1. Supposethat g(C) > 1 and z: C—P* isa Galois covering. Then
for any P € C(z,K, S) we have

AN,
ha(P) < B(S)™ (D 11 Nv> exp(D), ®

where ¥ is 400sN,(log(Ns) + O(1)) + 600dN3(h(f) + O(N)), Ny is
max(n®, 16n2m?, 256m?2), N, ismax(n?®, 10m?n), N3 ismax(mn’, 500m?n?).

1.2. AN APPLICATION: THE SUPERELLIPTIC DIOPHANTINE EQUATION
The Diophantine equation
y" = F(x) 4
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iscalled superéllipticif thepair (n, F) satisfiesthefollowing ‘LeVequecondition’:
write F'(z) = a(x — a1)™ - - (z — a)"F with pairwise distinct as, . . ., ax; then
k > 2 and the k-tuple ((n?—rl),..., (n?—rk)) is not a permutation of (v, 1,...,1) or
(2,2,1,...,1). An equivalent condition: the (non-singular model of the) plain
curve (4) has positive genus.

Asfollows from Siegel’s theorem (see also [27]), the equation (4) has finitely
many S-integral solutions (z, y) inthefield K. A. Baker [4] wasthe first to obtain
an effective bound for the size of the solutions. Though he considered only the
caseK = Q and S = {00}, and his condition on (n, F') was stronger than stated
above, it was clear that his method, suitably modified, can be applied in the general
situation. Indeed, Baker’s result was sharpened and extended to arbitrary number
fieldsand/or S-integral solutionsin [41, 43, 11, 30].

Recently P. Voutier [44] obtained anew effectivebound for theintegral solutions
of (4), having considerably improved the previous results (in the case S = S4).
He proved that any solution (z,y) € Ok x K of (4) satisfies

h(z) < (N, d)(D exp(dh(f)))" ™ /3(h(f) + log D + 1)"""*, 5)

the constant ¢(N, d) being effective. Here f(X,Y) = F(X) — Y™ and we use
the notation (1). (The reader should be warned that we express Voutier's result in
our notation, which is different from his. He uses the relative exponential height
Hg (. ..) (instead of the absolutelogarithmic height A(. . .), asin the present paper),
and his m and n correspond to our n and m, respectively.)

Since the curve (4) has positive genus and Q(z, /F(z)) isa Galois extension
of Q(x), Theorem 1.1 is applicable to the superelliptic equation. Therefore we can
evaluate the quality of the estimate (3), looking at what it givesfor the superelliptic
equationin comparisonwith theresult of Voutier. For any solution (z,y) € Ok xK
we have

max(h(z), h(y)) < c(N, d)D*> exp(600dNzh(f)),

which is better than (5) when n is sufficiently large.
Of course, the superdlliptic equation is a very particular case of Theorem 1.1.
Thus, we obtain an asymptotically better result in amore general setting.

1.3. RAMIFICATION INDICES

We identify set-theoretically P*(Q) and Q U {00} in the obvious way. For any
a € QU {co} we denote by e; = ei(a),..., e, = ey (a) the ramification
indices of the covering z: C—P* over the point . Put

eq = gcd(e, ..., ep). (6)

(Sometimes we write e, (), when several coverings of the projective line are
considered.)
Actually, we shall prove amore general result.
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THEOREM 1.2. Suppose that

d(l-exh) > 1 7
aGQ
Thenany P € C(x,K, S) satisfies (3).

When g > 1 and the covering is Galois, the relation (7) holds. Indeed, in this
case al ramification indices over a point « are equal to e,,, and we write Hurwitz

formulaas
29-2+2n= 3 L(ea-1).
acQuioo} Ca
Then
20— 2
S (-t =1+ 2 et
il n
acQ

which is (7). Thus, Theorem 1.1 follows from Theorem 1.2.

Condition (7) first appeared in [6], whereit was expressed in aslightly different
(but equivalent) form. The simple argument above deducing Theorem 1.1 from
Theorem 1.2 goes back to [7]. Seeaso [8, 10].

After having submitted this paper | received a preprint of Poulakis [32] where
he also estimates heights of integral points on curves subject to condition (7). He
considersonly the case S = S, and obtains an estimate

he(P) < d-INIOCENTDINT ey (16 - 10302 N35h(§)).

Asone can see, our estimate is considerably sharper.

The approach of Poulakis is different from ours and from the approach of
Dvornicich and Zannier [16]. In the last section of his paper Poulakis gives several
concrete examples of curves satisfying the condition (7).

1.4. ADDITIONAL NOTATION AND CONVENTIONS

For any place v of the field K (and any number field to occur) the corresponding
(multiplicative) valuation |... |, is normalized so that its restriction to Q is a
standard infinite or p-adic valuation. In addition, for a non-archimedean v we shall
usean additivevaluation Ord,: K*—Z normalizing it so that 1 belongsto theimage
of Ord,. In explicit terms Ord, (o) = d, log|a|,/logN v, where d, = d,(K) =
[Ky: Qp(v)] isthelocal degree of v.

Recall the definition of the absolute logarithmic height of a projective vector
a=(ag: ...: ) € PFQ):

h(a) =d Y max d,(L)log|ail,, ®)

~ 0<i<k
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the sum being over all places of the field L = Q(«wo,- .., ax) (by the product
formula, it does not depend on the choice of the homogeneous coordinates).
With an abuse of notation, for o € Q we write () instead of i(1: ). By the

definition of the absolutelogarithmic height, foranyr € Zandaa, ..., ag, @ € Q
we have
h(ar+ -+ +ag) < h(az) + -+ + h(ag) + logk, €)
h(a---ag) < h(a1) +- -+ + h(ag), (10)
h(a”) = vIh(a). (1)
We write
f(X,Y) =go(X)Y" + termsof lower degreeinY'. (12)

Denoteby R(X) theresultant of f(X,Y) and 2L (X, V") with respectto Y and by
D(X) thediscriminant of f(X,Y") with respect to Y. Then we have

R(X) = go(X)D(X), (13
deg R(X) < (2n — 1)m, (14)
h(R) < (2n — DA(f) + O(nlog N), (15)
dey D(X) < (2n — 2)m, (16)
h(D) < (2n — 2)h(f) + O(nlogN), (17)

as follows from the standard determinant representations of the resultant
and discriminant. (Of course, the constants in (15) and (17) can be easily
made explicit. For example, the O(...)-term in (15) can be replaced by
(2n — 1) log((m + 1)(n + 1)\/n), as shown by Schmidt [33, Lemma4].)

For o € Q put
U = OrdaQO(X)a Mo = OrdaD(X)a fa(Xay) = f(a + X,Y), (18)

where Ord,, is the order of vanishing at .. Then fo(X,Y) = f(X,Y), and we
similarly write v and p instead of ug and po, respectively. We have trivialy

h(fa) < h(f) + mh(e) + O(log N). (19)

Therelation (7) isfalse when m = 1 or n = 1. Therefore we suppose further
that

n, m> 2. (20)
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This, together with (9)—«(17) and (19) will be frequently used in our estimates,
mostly without special referring.
We also need the following well-known fact (see, for example, [33, Lemma 3]).

PROPOSITION 1.4.1. Let F(X) be a polynomial of degree p with algebraic
coefficientsand s, . . . , a, its roots counted with multiplicities. Then

h(a1) + -+ -+ h(ap) < h(F) +log(p + 1).

Warning The letter e is reserved here exclusively for ramification indices; it is
never used for 2.718. .. (for the latter we write exp(1)).

1.5. PLAN OF THE PAPER

In Section 2 we summarize the necessary properties of algebraic power series, in
particular, the quantitative Eisenstein theorem due to Schmidt [33] and Dwork—
van der Poorten [18].

In Section 3 we prove that, given P € C(z,K,S) and a € K, the principal
ideal (z(P) — «) is‘amost ae,th power’. The qualitative part (Proposition 3.2) is
self-contained, whilethe quantitative part (how ‘ almost’ ?) dependson the estimates
of Section 2.

Section 4 is a summary of the auxiliary material needed for the proof of
Theorem 1.2, in particular, Siegel’s construction of convenient units [39, 12, §]
and Baker's theory [45, 46].

In Section 5 we give a detailed proof of a particular case of Theorem 1.2. The
argument is based on the results obtained or quoted in Sections3 and 4. In Section 6
we prove Theorem 1.2 inits full generality, reducing it to the result of Section 5.

2. Eisenstein theorem and further properties of algebraic power series
2.1. PRELIMINARIES

Lety = 3702 4, a,z"/¢ be an algebraic power series, where we always assume
ko > Oand a_j, # O when kg > 0. Also, we suppose that y cannot be presented
asapower seriesin z/¢ with ¢’ < e.

Let y satisfy an algebraic equation f(z,y) = Owith f(X,Y) € K(X,Y). We
use the notation m, n, u, u,, €tc., introduced in Subsections 1.1 and 1.4. Clearly,
ko/e < u < m.

Let L bethe extension of K generated by all the coefficients ay, of the series .
Itiswell-known that [L: K] < n.

THEOREM 2.1. For any placew of thefieldK thereexistreal numbers A, A} > 1
suchthat A, = A! = 1 for all but finitely many v,

d > d,logA, < (2n — h(f) + O(n(n + log N)), (21)
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d™Y " d,log A, < h(f) + O(logn), (22)

and for any place w|v of thefield L we have

|ag)w < ALAYTRE (k> —ky). (23)

. i
Furthermore, for any non-archimedean place v we have %ﬁ—v € Z and

dt > logNv < (2n — 1)h(f) + O(nlogN). (24)

dy log A
Tognw #2

Thistheorem is acombination of results of Schmidt [33] and Dwork—van der Poor-
ten [18]. Formally, they considered only the case e = 1. Though the general case
reguires no new ideas, it cannot be reduced to the case e = 1 just by the substitu-
tion z = z§. Therefore we include some details for the sake of completeness (see
Subsections 2.2 and 2.3).

In Subsection 2.4 we obtain additional auxiliary properties of algebraic power
series.

2.2. EISENSTEIN THEOREM: THE UNRAMIFIED CASE

In this subsection we assume that e = 1. Theny = >°2° , ajz”. We need one
more definition. Let F'(X') be a polynomial with coefficients in the number field
K and ay, ..., oy its roots. For any place v of the field K fix a prolongation to
K(ag, ..., ) and put

ouo(F) =min(1, |aily, .-, |aly).

Clearly, o, (F') does not depend on the fixed prolongation.

Recall that R(X) isthe resultant of f(X,Y") and g—{;(X,Y) with respectto Y.
We write R(X) = Az“T*R*(X) where R*(0) = 1.

Normalizethepolynomial f(X,Y) = go(X)Y"+...sothat go(X) = X“g§(X)
with ¢g(0) = 1. Asusual, denote by | f|, the maximum of |3|, over all the coeffi-
cientsg of f(X,Y).

THEOREM 2.2 (Dwork—Raobba—Schmidt—van der Poorten). For a given place v
of the field K put

{ 2n|f|v7 p(”) = 09,
Al = (25)
[flo.  p(v) < oo
2/oy(RY), p(v) = oo,
Ay, =1 1/o,(RY), n < p(v) < oo, (26)
c(v,n)/oy(R*), p(v) <n,
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wherec(v,n) = np(U)P(”gfl. Then for any place w|v of thefield L we have
|ag|w < AYASTE (K > —ko). (27)

We indicate the main steps of the proof. Until the end of this subsection we
write o, = 0, (R*). Given aplace w of thefield L, denote by r,, the w-adic radius
of convergence of the seriesy = >°2° . ajz”.

The heart of the proof isthe following

LEMMA 2.2.1. If w|v withn < p(v) < oo then

Tw = Oy (28)
If w|v with p(v) < n then

rw = c(v,n) Loy, (29)

Proof. Forthecasen < p(v) < oo see Schmidt [33]. (Asindicated by Schmidt,
the case n < p(v) < oo isadirect consequence of a result of Dwork and Robba
[17].)

The case p(v) < n is due to Dwork and van der Poorten [18]. Let « be a
root of R*(X) with the property |«|, = o,. Then by [18, Thm 3], the series
U= _pareFah =322 | apz® convergesfor |z, < c(v,n), whencethe
result.

It should be mentioned that in [33, 18] only the case kg = Oistreated. However,
the general case can be easily reduced to the case ko = 0. Indeed, put

~ k ~ k ~
g=a"y = ap", G = ap_p,.
k=0

Clearly, theradii r,, and 7, of w-adic convergenceof respectively y and y areequal.
Further, 7 satisfiestheequation f(x, 7) = 0,where f(X,Y) = X*on f(X, X ~koY"),
Defining R and R* for f as R and R* were defined for f, we seethat R* = R*.
Thus, 7, = r, and o, = o,,. Thisreducesthe case of arbitrary kg > 0 to the case
ko = 0.

Put 7, = min(oy, Min,, 7).

LEMMA 2.2.2. Theinequality (27) holdswith
{ 2/01,, p(’l)) = 00,

1/Tv7 p(’U) < 00,

v =

(30)

and A/, defined asin (25).
Proof. Thisisaresult of Schmidt [33, LemmaZ2]. Though he considersonly the
case ko = 0, hisargument plainly worksfor arbitrary kg > 0. Also, what he proves

https://doi.org/10.1023/A:1000172615719 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000172615719

QUANTITATIVE SIEGEL’'S THEOREM FOR GALOIS COVERINGS 133

isexactly theinequality (27), but he formulates hisresult in adlightly weaker form,
with m instead of « in (27).

Now Theorem 2.2 follows as a direct consequence of Lemmas 2.2.1 and 2.2.2.

2.3. EISENSTEIN THEOREM: THE GENERAL CASE

Put

FxY) = f(xe,Y), = f:k i, (3

=—ko

sothat f(z, ) = 0. Define R, R* and @ for f as R, R* and u were defined for f.
Then

R*(X) = R*(X°), (32)

i = eu. (33)
Asfollows from (32),

oo(R*) = oy (R*)Ye. (34)

Now put
2" oy (RY), p(v) = o0,
Ay =14 1/0,(R"), n < p(v) < oo, (35)

C(Uvn)n/ov(R*)v p(U) n,

and define A! asin (25) (provided f(X,Y") is normalized as described above).
By (33), (34) and Theorem 2.2, applied to the series 7, we have (23). Further,
Schmidt [33, Lemma 5] showed that

d > dylog(1/oy) < (2n— 1)A(f) + O(nlog N). (36)
Therefore
d™y dylogA, < dY dylogoyt+nd™t > loge(v,n) + O(n)
v v p(v)<n

< (2n—2)h(f) + O(n(n +1ogN)),

whichis (21).
Theinequality (22) isobviousand, asfollowsfrom (25), for any non-archimedean
place v the quotient %{L is an integer. It remains to establish (24). In view of

(35), for a non-archimedean v, the quotient %ﬁi—“ can be not an integer only in

one of the following cases:
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@ p(v) <n;
(b) thereisaroot o of R*(X) such that %‘ﬂ—w ¢ Z for some place w of K («)
lying abovev.

We estimate separately d—1 3" log N v over non-archimedean v belonging to the
cases (a) and (b) above. For (a) the estimate is straightforward:

d_lzlog./\fv = Zlogp L n. (37)
(a) p<n
For (b), let a, ..., as be amaximal selection of roots of R*(X) pairwise non-

conjugate over K. Put v; = [K(«;): K]. If w isaprolongation of v to K(«), then
the denominator of the rational number % '09 |0‘1|w isat most v;. Therefore

d1 Z logNv < Z vih(a;)
=1

®)
< h(R*) + log(1 + deg R*)
< (2n = DA(f) + O(nlogN),

where the second inequality is by Proposition 1.4. Together with (37) this proves
(24). Theorem 2.1 is proved.

Remark 2.3.1. Given a polynomial f(X,Y), separable in Y, there exist
n(= degy f) distinct power seriesy; = 332 ;) airz™/® suchthat f(z, y;) = 0.
Asfollows from definitions (35) and (25), the values of A, and A/ depend only on
the polynomia f(X,Y") and are common for all the seriesy;. This observation will
not help us to improve the final result, but will simplify our notation in Section 3.

2.4. FIELD GENERATED BY THE COEFFICIENTS, ETC.

Let K1 be the subfield of constants of the field £1 = K((z))(y). We begin with
the following standard fact.

PROPOSITION 2.4.1. Thefield L isan extension of K 1 of degree at most e.
Proof. Since K1 C £ = L((z%*)), thefield K 1 isasubfield of L. It remainsto
provethat [L:K] < e
By [25, Prop. 2.12], there exists a primitive element ¢ of the field 1, such that
t¢ is aprimitive element of KC1(()). Write
= Mz + Aozl 4 -,

where A1, Ao, ... € Ky and A\; # 0. By Hensel’'slemma, there exists ¢, € K1 such
that t§ = A\1z. Sincet; isaprimitive element of 1, we have

Z btk = Z by ( 1/8k zk/e

k=—ko k=—ko
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with b, € K1. ThereforeL C Kl(Ai/e). The proof is complete.

Put

= {[Kﬁ K]J <TK] )

where |v] isthe maximal integer not exceedingy € R.

LEMMA 2.4.2. The field L is generated over K by a_,, ..., a,. The relative
discriminant D, i satisfies

d?1 IogN(DL/K)
< 2(2nv(p+ uv) + VA h(f) +

+O(nv(p + uv)(n+1logN) + vlogv), (39)
whererv = [L:K].
Proof. Put
Lo=K(aky---»as),  Lo=Lo((z"9)),
d =[L:Lo] = [L: Lo). (40)

Clearly, Lo(y) = L. Let o(Y) = ¢oY? 4 - -- be aminimal polynomial of y over
thering R = Lo[[zY/¢]] (at least one of its coefficients is invertible in R). By the
Gauss Lemma, the polynomial

Neo/ (@) (0(Y) € K[[z]](Y)

divides f (z, Y)[- Kil in the ring K [[z]](Y").
Denote by A(z) the discriminant of ¢(Y'). Then

NeoK (@ Ale) | D) (41)
in the ring K[[z]]. Obviously,

Ord,A(z) >0 (6 —1) (k+1)/e.
Comparing Ord,, of the both sides of (41), we obtain

elLo:K]o (6 —1) (k+1)/e < [L:Ky] p. (42)

Since§ = [L:Lg], we can rewrite (42) as

6—1<[Kf7:K]/(n+l)<1.

Thus, § = 1. This proves the first assertion. (See [13, Lemma 3] for a similar
result.)
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For the second assertion we need aresult of Silverman [40, Thm 2].

PROPOSITION 2.4.3 (Silverman). Let a = (ao: ...:ay) be a point in P*(Q),
and [K(a) : K] = v. Then

d1 log NV (Dk (a)/k) < 2v(v — 1)h(a) + vlogv. (43)
Inourcasea = (Lia_g,: ...:a.). We obtain an upper estimate for i («) from
Theorem 2.1:

h(a) < h(f) + ((2n — DA(f) + O(n(n +logN)))(u + K /e)
< <2n (% +u> + 1) h(f) + O <n(n+ log V) (% —|—u>> .

Together with (43) this givesthe desired estimate for the relative discriminant. The
lemmais proved.

Recall that y cannot be written as a power seriesin z1/¢ with ¢’ < e. Hence
for any prime g|e there exists £ Z Omodq such that aj, # 0. Denote by &(q) the
minimal among such k.

LEMMA 2.4.4. For any prime gle we have

k(g) <k/(g—1) -1 (44)

Proof. Itisvery similar to the proof of the fist part of Lemma 2.4, with thefield
Lo replaced by £1 = L((z/1)), wheree; = e/q.

Clearly, L1(y) = L. Let o(Y) = oY ? + --- be a minimal polynomial of y
over thering R = L[[zY/1]]. Then

Ney k(e (V)] f (z, V) LKA

inthering K[[z]](Y).
Denote by A(z) the discriminant of ¢(Y'). Then

Ny () A) | D (@)K (45)
inthering K[[z]]. Since

Ord,;A(z) > q (g — 1) (k(g) +1)/e,
we have

er[L:K]q(q—1) (k(q) +1)/e < [L:K4]p, (46)
which yields (44) at once.
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3. Study of afixed «

In this section we consider only non-archimedean places, unless the contrary is
stated explicitly.
Until the end of this sectionwefix o € K and P € C(z, K, S). Recall that

€a = ng(ela SR 6p)7 (47)

where ey, .. ., e, are the ramification indices of the covering z: C—P* over the
point . We say that a (non-archimedean) placev isregular if e, |Ord, (z(P) — ),
and irregular otherwise.

In this section we prove

LEMMA 3.1. We have

d7t Y logNv < 120%(ja + nug)
r%ﬁlg,
vgS

x (h(f) +mh(a) + O(n +10gN)). (48)
If e = 1, thelemmaistrivia. Therefore we may supposethat e, > 2. Inthis

caseall theramificationindicesey, .. ., e, over a are greater or equal to 2, whence
p < n/2. Consequently

pa=(e1—1)+--+(e,—1)=n—-p=n/2, (49)
which will be used in our estimates.
Let
yi= Y a(z—a) (1<i<p) (50)
k=—ko(i)

be the Puiseux expansions of y at «. Actually, for any i we have e; equivalent

expansions
yi= > awtlf@—a), (0<j<e—1), (51)
k=—ko()

where ¢; isafixed primitive root of unity of degree e;. We have

p e—1
(. Y) =golz) [T TT (Y = vi)-

i=1 j=0

We denote by L ; the field generated by all the coefficients a;;, of the series y;. Put
v; = [L;: K]. Further, for any prime gle; let k;(¢) betheminimal £ Z 0mod g such
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that a;; # 0. By Theorem 2.1 together with Remark 2.3, for any (archimedean and
non-archimedean) place v of thefield K there exist A,, A! > 1 such that

|aig], < AL AR/e (52)

and satisfying (21), (22) and (24) with A(f), v and u replaced by h(f,), u, and
L TESPECtively.
Let M beafiniteset of non-archimedean placesof thefield K defined asfollows:

M=M;UM;UM3zUM4UMs,
where

M1 = {vip(v) <n},

Mz = {v:|a|, > 1},

M3 = {v:visramifiedin oneof thefieldsLq,..., L,},

My = {vi]a,g)lv < Lforsomei € {i,..., p} and primegle;},

M5 = {U:AUA; > 1}

PROPOSITION 3.2. Anyv ¢ S UM isregular.

In view of this proposition, Lemma3.1 isadirect consequence of the following
estimates (we put ; = d 1Y, oy, log N v):

¥ L n, (53)
Y2 < h(a), (54)
%3 < 5n%(pa + tan) (h(fa) + O(n +log N)), (55)
4 < 4 (pta + ua10gy 1) (h(fa) + O(n +log N)), (56)
Y5 < 4n(h(fa) + O(n +logN)). (57)
Here (53) and (54) are obvious. It remains to establish (55)—57) and to prove
Proposition 3.2.
Proof of (55). We may suppose that for some r < s thefieldsL4,..., L, are
pairwise non-conjugate over K and any L ; isconjugatetooneof Ly, ..., L,. Then
vi+ -+ < n, (58)
which yields
V24 -+ v2 < n’ (59)
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We estimate the relative discriminant Dy, x by Lemma2.4:

A7 ogN' DLk < 2(2nwi(pa + uavi) + vE)h(fa)

+ O(nvi(pa + uavs)(n +10g N) + v;10g1;).

Using (58) and (59), we obtain

N3 < d7HY logN (D, k)

=1
< 2020 (o + wan) +n?)h(fa)
+O(n*(jta + uan)(n +10g N) + nlogn),
which proves (55) (recall that o > n/2 > 1).
Proof of (56). Let M(7,q) be the set of all non-archimedean places w of the

fieldL; suchthat |a;, q)lw < 1, @ndMy(i, q) theset of al pointsK below My (i, q).
Then

Ma = |J U Ma(i, q).
i=1gqle;
By Lemma2.4 we havek;(q) < e;uq/vi. Using Theorem 2.1, we obtain
Shlisq) 1= [d, )™t ) log ML, (w)
weM)(i,q)

< (@i (g))
< Wfa) +((2n = Dh(fa) + O(n(n + log N)))(ua + ki(q)/ei)
< 4n(ua + pa/vi)(h(fa) + O(n +logN))

(weagain use i, > n/2). Further,
Salivg) i=d b > logNw

vEM4y(i,q)
Vi (i, q)
An(viug + po)(h(fa) + O(n +10gN)).
There are at most log, e; distinct prime divisors of e;. Since

<
<

log e1 + -+ - + log, e, <ert---+er < n,
vilogyer+---+ v logye, < (v1+---+1p)l0g,n < nlog,n,
we have
T
N4 < YD Talisq)

=1 qle;
< dn(ugnlogyn + pan)(h(fa) + O(n +logN)),
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which is (56).

Proof of (57). We write Ms = Mg U Mg, where M consists of those v € Ms

for which %5284+ € Z, and Mg = Ms \ M. In accordance with this partition of

the set Ms, we write X5 = 3§ + 2. Recall that 2292 is alwaysin Z.
The sum X is estimated using (21):

S5 < d Y dy(logA, +log A})

i
vEMg

< d Y dy(logA, +log A})

< 2n(h(fa) + O(n+10gN)).
The sum X is estimated using (24):
Y2 < 2nh(fa) + O(log N).
This proves (57).

The proof of Proposition 3.2 is based on the following almost trivial fact.

PROPOSITION 3.3. Let K be a field of characteristic 0, complete with respect
to a discrete valuation with residue field of characteristic p. Let = be a primitive
element of K andn € K. For any e € Z not divisible by p and for any choice of
the root /¢, the ramification index of K (/¢) over K ise/ gcd(e, Ord,(n)).

Proof. Writer) = 7760, where T = Ord, () and @ isaunit of K. Fix aroot §/¢.
Since p is not adivisor of e, the field K (61/¢) is unramified over K. Replacing K
by K (6Y/¢) and 7 by (#¢)~1, we may supposethat n = «7.

Put ¢/ = e/gcd(e, 7) and 7' = 7/ ged(e, 7) Then n*/¢ = (x%/¢)™ for some
choice of the root 7/¢". Therefore K (n%/¢) C K(x/¢'). On the other hand,
ged(e/, ') = 1, therefore exists e € Z such that 7’a = 1mode’. Then K (n%/¢) D
K((nY¢)%) = K (zV/¢). Thus, K (n¥¢) = K (x¥¢'), thelatter field being atotally
ramified extension of K of degreee’. The proposition is proved.

Proof of Proposition 3.2. Put 20 = z(P) — « and fix v ¢ M U S. Then
7 = Ordy(zo) > 0, becausev ¢ Ma U S. If 7 = O then there is nothing to prove.
Thus, assumethat 7 > 0. Fix aprolongation of v to Q. Then all the series

w(P)= Y ai(e™) (1<i<s)
k=—ko(i)
converge in v-metric, because |zg|, < 1 and v ¢ Ms. For some: and some choice
of the root xé/ “ we have y;(P) = y(P). Fix thisi and this choice of the root until
the end of the proof, and omit the index : in the further reasoning.
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Sincev & Mg, itisnot ramified inthefieldL = L.

Denote by K, and L, the completions with respect to (the fixed prolongation
of) v. If e = ¢; divides 7, the proof is finished. Therefore we may suppose that e
doesnot divide 7, thatise’ = e/ ged(e, 7) > 1.

Let ¢ be aprime divisor of ¢'. Then ¢ cannot divide 7' = 7/ gcd(e, 7). Put

w= Z ak(w(l)/e)k.

k=k(q)

Sincev € M4 U Ms, we have

Ord, (w) = Ord, ((xg/*)"@) =

(thereis aunique prolongation of Ord, to the algebraic closure of L ).

On the other hand
k(q)-1 1 N Lo
w= 3 ap(egd)el, =Lz,
k=—ko

wheree” = e/q. Since v ¢ M1, we may apply Proposition 3.3. It implies that the
ramification index of L, over L, ise”/ged(e”, 7) = €'/q. Therefore Ord, (w) is
q/€' times an integer (recall that L, is unramified over K,). Thus, ¢ divides the
product 7'k(q), a contradiction. The proposition is proved, which completes the
proof of Lemma 3.1.

4. Auxiliary material

4.1. SIEGEL’S CONSTRUCTION OF CONVENIENT UNITS IN NUMBER FIELDS

Propositions 4.1.1 and 4.1.3 of this subsection go back to Siegel [39].

Let S = (vo,...,vs—1) be afinite set of places of the number field K and
M, - .-, Ns—1 afundamental system of S-units. The S-regulator R(S) = Rk (S) is,
by definition, the absolute value of the determinant of the matrix

[dy; 109 |70, ]1<i j<s—1- (60)
It is well-defined and equal to the usual regulator R = Rx when S = S.

PROPOSITION 4.1.1. There exists a fundamental systemof S-unitsn1,..., ns—1

satisfying
h(na) -+ h(ns-1) < s*72d**R(S), (61)
h*(na) -+ B (ns-1) < s*72CTAR(S), (62)
(Cd)~t < h(m) < s*72C572R(S). (63)
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Here () = max(1, h(n)) and ¢ = 1201 (02l )3 with d' = max(d, 3). Fur-

thermore, let [a;;]1<i j<s—1 be the matrix inverseto (60). Then
Jaijl < s*7%¢C (1< j <s—1). (64)

Proof. SeeBugeaud and Gy6ry [12, Lemmal]. Notethat theleft-hand inequality
in (63) is awell-known result of Dobrowolski [15].

COROLLARY 4.1.2. Suppose that

b bs_1
n=mn"n7,

wherens, ..., ns—1 arefromProposition 4.1. Then
h(n) < s*1°72R(S)B, (65)
B < s*Ch(n), (66)
where B = max(|by], ..., |bs—1])-

Proof. Straightforward from (63) and (64).

PROPOSITION 4.1.3. For any « € K thereexistsan S-unit  suchthat 8 = an™!

satisfies
d™t 3" dy[log|Ble] < s*TICTPR(S).
vES
v#£vg

Proof. Putn = 7721 e 772*“_*11, where b; isthe nearest integer to
s—1
0; = Zaijdvj log [y, -
j=1

Then 8 = an~! satisfies

s—1
dt Y dyllog|Bl] = d Y dy | (0; — i) log|mil,
vES vES =1
v#vQ v#vQ
s—1
<d? Z Z 10 — bildy [10g |n3]o|
i=1lvesS
s—1
< (271> dyllognil|
i=1vES

= h(m) +--- + h(ns-1)
82‘9710972}2(5)7

IN

as desired.
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Let h = hk be the class number of the field K. (The letter A will denote the
class number only in the remaining part of this subsection, and nowhere more in
this paper. Therefore there is no danger of confusing it with A4 used for heights.)
The following result was obtained independently by Bugeaud and Gyory [12,
Lemma 3] and by the author [8, Prop. 1.4.8]. (See Peth6 [29] and Hajdu [21] for
similar results.)

LEMMA 4.1.4. Assumethat S O S... Then

R(S)<hR [[ logNow.
’UGS\SOO

COROLLARY 4.1.5. Supposethat K # Q. Then

0.01
R(S) < d"VD(logD)*t [ logNv < D°'51<H NU) . (67)

vES\ S vES

Proof. Thefirst inequality follows from Siegel’s estimate [39, Satz 1]
hR < d~/D(logD)4 1.

Further, notethat log D < ¢;D% andlog Vv < ¢1(Nv)%%, whereey, o, ... are
absolute effective constants. Also, logNv < (Nv)%9 assoon as Vv > ¢y, and
there exist at most c,d non-archimedean places v with N'v < ¢,. We obtain

0.01
(logD)?4-1 H logNv < ¢4 <D H N’U)

vES\Sso vES

with c3 = ;7. Since ¢§d~? < 1, this proves the second inequality.

4.2. ONE MORE ESTIMATE FOR THE RELATIVE DISCRIMINANT

In Subsection 2.4 we quoted Silverman’s estimate for the relative discriminant in
terms of generating elements. We also need an estimate of a different type, interms
of ramified places. We obtain it as a consequence of Hensel’s inequality (69).

PROPOSITION 4.2.1. Let L /K be a finite extension of number fields and v =
[L:K]. Then

dHogN (D) <d M v—-1) Y logNv+O(?). (68)
v isramified in L
Proof. Given a non-archimedean place w of L, we denote by e,, = e, (L /K),

the relative ramification index, and by f,, = f.,(L/K) the relative degree of the
residue fields. We put s,, = Ord,, (ey).
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By Proposition 6.3 from [28], for any non-archimedean place v of K

Ordv(DL/K) < Z(ew -1+ Sw)fw- (69)

wlv

(This goes back to Hensel [22], who confirmed a conjecture of Dedekind [14].
See [14, p. 397] and [28] for historical comments and further references.) Since
Zw‘v ewfw = v, Wehave Zw|v(ew —1)fu < v — 1. Further,

sy l0gNv = ey,d,Ord,(ey) 10gp < eyd, 10gey, < eywd, logr,

where p = p(v). Therefore

|OgN’Ustfw < d, |OgVZewfw =d,vlogv.

w|v w|v
When p(v) > v we have s,, = 0for all w|v. We obtain:

(v — 1) log N, p(v) > v,

Ord, (D, k) logNwv <
( L/K) 9N { (1/— 1)|OgNU+ = deIOgya p(’l)) SV

Therefore
d Hog N (Dy k) < d v —1)>_ Ord,(Dy k) logNv

<dYv-1) Z log N'v

v isramified in L

+d vlogy Z dy.

p(v)<v

For the last sumwe have 3°,,,y ¢, dv = d 3¢, 1 < dv/logv, which completes
the proof.

Remark4.2.2. A similar estimate was obtained by Serre [35, Prop. 4]. However,
(68) is more suitable for our purposes.
4.3. BAKER'S THEORY

We summarize necessary factsfrom Baker’stheory of linear formsinthelogarithms
in the following proposition.

PROPOSITION 4.3.1 (Waldschmidt, Yu). Let K be a humber field of degree d
and ay, - . ., o, Nonzero elementsof K. Also, let v beaplaceof K and0 < ¢ < 1.
Suppose that

0 < |agalt---abr — 1), < exp(—eB), (70)
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wherebs, ..., b, € Zand B = max(b, ..., b, 3). Then

B < e(r,d)e () OSh* (ap) - - - h* () (log h') log(e ~R), (71)
where

h' = max(h(ay),. .., h(ay),3),

c(r,d) = exp(3rlog(rd) + O(r + logd)).

and h*(...) isdefined as in Proposition 4.1. (In the archimedean case the factor
log b’ can be skipped.)

Proof. Thearchimedean caseis dueto Waldschmidt [45]. Definethe parameters
in [45, p. 215] asfollows:

n=r+1 A =exp(h*(e)) (0<i<r),
E =exp(l), f =exp(-1), Zo =7+ 3log(r + 1) + logd.

Applying Corollary 10.2 from [45] in this set-up, we obtain

B
B < d)h* < h ()| 3 ,
£ < el )i ao) 1) log (3+ 10— )
which yields (71) (without the factor log 4') after obvious calculations.
The non-archimedean case is due to Yu [46]. Define the parameters in [46,
p. 241-242] asfollows:

: €ye . ,
n=r+1, 0 =min (l, 2|ng> ) hi = 2h*(ey)logp (0< i < 1),

where e, isthe ramification index of v over Q (in particular, e, < d). Inthisset-up
thethird displayed formula on [46, p. 242] would turn into

e <l () (0n) - (o) log ) logle ),
which yields (71) at once.

5. Themain argument

In this section we suppose that one of the following conditions holds:

(A) There exist distinct v, 3 € Q such that e, and ez have a common divisor
e > 3.

(B) Thereexistdistinct o, 8,y € Q suchthat e, e and e, haveacommon divisor
e=2.
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Put
Vo = [K(a):K], ka =n2(ttq + nua)(h(f) + mh(a) + O(n + log N)),

and definevg, vy, K3, K, similarly. Also, put

T eVl in the case (A),
| evsg max(va, v,) inthe case (B),

de’vovg  inthecase (A),
J = ) _ © = sT(log(Ns) + O(1)),
de“v,vgr, inthe case(B),
Q) = 1300 + ed(22v,vg(ka + Kg) + 15v,15(Ky + Kg)).

THEOREM 5.1. Supposethat either (A) or (B) holds. Thenfor any P € C(z, K, S)
we have

ha(P) < P(S)°(D [ Nv)*™ exp(€), (72)
veES

wherein the case (A) the terms v, and «., should be replaced by v, and k.

Proof. In a few words, the proof is organized as follows. For a given P €
C(z, K, S) we construct algebraic numbers ¢ and ¢’ with the following three
properties:

(i) the heights of  and ' are of the same magnitude as h,.(P);
(i) each of  and ¢’ is ‘amost an S-unit’ (an S-unit times an algebraic number
of bounded height);
(iii) for some place vg theratio ¢/’ (slightly modified) is ‘very close to 1" with
respect to the vg-metric.

Using (i), (iii) and Baker's theory, we estimate the heights of ¢ and ¢'. In view of
(i), thiswould give a bound for h, (P).

1. Thechoice of vg

Fix P € C(z, K, S) and put 2o = z(P). We have

he(P) =d™ 1" dyl0g|zolw,
vES

whence
hz(P) = h(zo) < s10g|zo|w, (73)

for some vg € S. Somehow extend vg to Q and fix this prolongation until the end
of the proof.
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We put

{ max(|alvy, [Blugs 1) in the case (A),
° aX(|tluo 18luos [71vos 1) in the case (B),
P - { 2(
ax(

2. Definition of  and field L

h(a), h(5), 1) inthe case (A),
h(c), h(B), h(v), 1) inthe case (B).

If |zoly, < 10eoq then (73) implies an upper bound for h,(P) much better
than (72). Hence we may suppose that |zo|,, > 10eoo, whence the series 1 +

zil(l/e)(mo ﬁ) convergesin vo-metric, and its sum, denoted by ¢/ 2=3, satis-
fies

Jzo—«a
xo— [

Fix aprimitive eth root of unity £ (in particular £ = —1 in the case (B)) and put

< L9 (74)

-1
|Z0lv

Vo

0=¢i =5 =K(a, f.0), = (z0—B)(0-1)".
If |20y, > cebod, Where c is a sufficiently large absolute effective constant, then
v # 0and

(6= 1)7(z0 — B) "N — Ly < 300|055 < |70l (79)

as follows immediately from (74) and the trivial estimate |¢ — 1/, > e !
It isworth mentioning that

= (Vo — a — /zo — p)° (76)
when the roots /zo — « and /zo — (3 are appropriately defined.

3. Estimating h(y) and D

We have either
h(p) < h(zo) < eh(p) 77

or h(zo) < e(h + e), which is much better than (72). Indeed, by the definition of
o wehaveh(p) < h(zo) 4 h + e whence either h(zo) < h + e or h(p) < h(zo).
Further, rewrite (76) ast§+ 5 — o = (/¢ +to)¢, wheretg = /zo — (. Thus, tgisa
root of apolynomial of degreee — 1 and height O (h () + h +¢). By Proposition 1.4
wehave h(to) < h(p) + h + e, whence h(zo) < eh(to) + b < e(h(p) + h+e).
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If h() > h+ e then h(zo) < eh(p), and if h(y) < h + e then we have
h(zo) < e(h + e).
We a'so have to estimate the discriminant D, . By Proposition 2.4

d " og N (D (a)/k) < 2V30(a) + o 10gv, < 2Waka, (798)

(dva) "M 109N (a) (Dk (a,8) /K (o)) < 2/5h(B) + vglogus < 2ugrg.  (79)

Indeed, 1o, > n/2, as we have seen in Section 3, and on the other hand i, <
deg D(X) < (2n—2)m. Thereforev,, < 4m,whencev,h(a)+10gv, < kq. This
proves (78); in the same manner one obtains (79).

Further, if a non-archimedean place v of the field Lo = K(«, §) isramified in
L then either p(v) < n, or e does not divide one of the numbers Ord, (o — «) and
Ord, (zo — 3). By Lemma3.1

S(e) i=d ) > log N v < 12k,
v & S and e does not
divide Ordy (zg — )
and similarly one defines and estimates >(3). Denote by Sp the set of placesof Lo
above S. By Proposition 4.2
d HOgNL (D) < (e—Ddl > logNiw+ O(e?)
v isramified in L
e(diy - 109N + S(@) + 2(8)) + O(e?)

vESH

< e(d ) 109N + 12k + 12kg).
veES

Finally
DL < DeyaVBN(DK(a)/K)eUBNK( (DLO/K ) NLO(DL/LO)

evavg
( (H NU) P(14d(rq + ’%’))) : (80)

veS

4. pisalmost a unit
For any place v of thefield L put

Oy = max(l, |Oé|1,, |/6|U)7 Qv = |Oé - ﬁ|’U

Let S1 be the set of places of L above S. Then s1 := |S1| < sev,vg and for any
v ¢ S1 we have

le
Oy

Qg |(10|'u < Oy
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Indeed, |¢|, < o, by (76). Further, we have po- - pe—1 = (8 — @),

149

where

or = (2o — ) (€80 — 1)°. Since ¢ = g and for any k we have |p;|, < 0,, We

obtain ||, > o502,

Letns, ..., ns,—1 beafundamental systemof S;-unitsof thefield L constructed

in Proposition 4.1. Then
h*(m) -+ h* (ns,-1) < 55 UR(Sh).

By Proposition 4.1 there exists a unit n = ng . ﬁsil 7, suchthat

dit > dy(L) |log ]| < sTHIR(S),

vESy
v#vg
where 1) = ¢n 1. We shall show that 1) has a bounded height.
Obviously, |4, = |¢|, forany v ¢ S1. Therefore

h() = (2dp) 1Zd )[1og ]y

< dgt )y dy(L)|loglyl|
VF£VQ

<dt Y dy(u) flog | +dit Y dy(L)lloglpl]
”;Eésl v¥€S1
vF#vQg

< s%lis(Sl) + d[lZe(logUy + [log ov])

v

< s2B1R(Sy) + eh.
In addition, estimate R(.S1). Corollary 4.1 and (80) yield

EValg

vES

0.52
R(S1) < (Do.51 <H Nv) exp(7.2d(kq + /@g)))

5. Definition of ' and L'

(81)

(82)

(83)

In the case (A) let £’ be a primitive eth root of unity distinct from ¢ (here we use

the assumption e > 3). In the case (B) put ¢’ = —1. Put
e ;’O—ja in the case (A),

0 =
e “""0* in the case (B),

L K(a, 3, 8') inthecase (A),
a { K(y, 8, ') inthe case (B),
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where theroot ¢ “’0 |s defined as the sum of the series

e\ (B=7)"
SSIES
2 zo — fB
Defining in the obvious manner ', ¢/, 7/, etc., we refer to the analogues of (75)—
(83) as (75')—(83'). For example, in the case (B)

ew,uﬁ
D < (D <H Nv) exp(14d(k + Hﬁ))) (80')
vES
and in the case (A) - and v, should be replaced here (and everywhere below) by
Ko and v,
6. Estimating B

Put B = max(3, by, ..., bs,—1, by, ..., b;,l_l). We shall see that either h(zo) can
be estimated much better than in (72) or

h(zo) < c1R(S1)B, (84)
B < 01|0g |:Eo|v0, (85)

where ¢1 = exp(6.70). Indeed, h(yp) < h(y) + h(n) + O(1), where h(n) <
s>151R(S1) B by Corollary 4.1. Combining this with (77) and (82), we obtain
h(zo) < c1R(S1)B + ¢%h. We may assume c1R(S1)B > ¢2h (otherwise it would
be h(zo) < e?h, better than (72)). Therefore h(zo) < c1R(S1)B

Remark 5.2. Here and below we may write < instead of < becausetheimplicit
constant is absorbed by the O(1)-term of ©.

Further, by Corollary 4.1
max(bi, .. ., bs, 1) < s75h(n) < s75(h(p) + h(1) + O(2))

and similarly for max(b}, ..., b, _,). Combining this with (73), (82), (82), (77)

and (77"), we obtain B < cl(log |(II0|U0 +¢2), wherecy = b+ c1(R(S1) + R(S})).
If log |zo|v, = c2 thenB < c110g|xo|y,, asdesired. If log |zo|y, < c2thenh(zo) <
sd~tcp; using (83) and (83'), we estimate h(zo) better than in (72).

7. Use of Baker'stheory

In the sequel we can assumetheinequality ¢/’ # (£ — 1)¢/(¢' — 1)°. Indeed, the
equality ¢/’ = (€ —1)¢/(¢' — 1)¢ isanon-trivial algebraic relation involving zo,
which yields an estimate for 4, (P) much better than (72).
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Put 7o = ( ’_—ll)eg. Using (75) and (85), we obtain

12

< |:Eo|v

Vo

7
= 770—,—1
n

K]

Putr = s1+s) —2 < 2sevg(va +vy) andwriten,,, ..., n, andb,,, ...,

of 7, ..., ”;’rl and —b7,..., — b;’rl’ respectively. Then
0 < |nong* -+ nfr — 1u, < &Xp(—cy ' B),
[Q(no, 11, -, m): Q) < § < sN?,
h*(10) < c1R + O(eh),
h*(m) -+ h*(n,) < GR(S1)R(SY),

B = max(h(ny), ..., him), 3) < e1R,

< exp(—cqy

151

1B). (86)

b, instead

where R = max(R(S1), R(S}), 3) and h*(...) is defined in Proposition 4.1. By

Proposition 4.3
B < c1p(vo)’ %" (no)h* (m1) - - - h* () (log 1) log(cah')
x exp(3rlog(rd) + O(r +10gd))
< B(S)" O3(R + h)R(S1)R(S1) (log” R) exp(1236.
By (84), (83) and (83)
h(zo) < P(S)’~*3(R + h)R(S1)*R(51)(log” R) exp(1306)

217
5(S)° (D 1T J\/’u) exp(Q).

vES

Theorem 5.1 is proved.

6. Proof of Theorem 1.2
Therelation (7) implies that one of the following conditions holds:

(a) thereexistar, 5 € Q suchthate, > 3andeg > 2
(b) thereexist o, B, v € Q suchthate, = eg = e, = 2.

The case (a) is contained in (b) and the following three cases:

(al) thereexist o, 8 € Q suchthat e, = eg > 3;
(a2) thereexist o, § € K suchthate, > 3andeg > 2,
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(a3) thereexist o € K and 3 € Q suchthat [K(3):K] < 2ande, > 3,e5 = 2.

Indeed, supposethat o ¢ K and a1 = «, ap, ..., «, arethe conjugates of « over
K. Then we redefine 3, putting 5 = a3y, and obtain the case (al). In a similar
manner the case

BEK, es>3
can be reduced to (al), and the case
K(B):K] >3,  es=2
can be reduced to (b).

6.1. CAses(al) AND (b)

Let a1 = «, ay,..., o, bethe conjugates of « over K. All them are roots of
D(X) of order . Therefore

deg D(X)
deg go(X)

Since o > n/2, as we have seen in Section 3, we obtain v, < 4m. (We have
already used this in the previous section.) Similarly, v, v, < 4m. Furthermore,

< 2mn, (87)
<

m.

Valla

<
Vol <

h(a1) = ... = h(ay, ). Hence, by Proposition 1.4
Vapah(a) < h(D) +log(2mn) < 2nh(f)+ O(nlogN), (8)
Vauah(a) < h(go) +log(m +1) < h(f)+ O(logN).
Combining (87)—(88), we abtain
Vakia < 60°m(h(f) +O(n +logN)). (89)
In the same manner one estimates 13+ and v, x.,. Hence
vavg(ka + k3) < 4m(vaka + Vgkg)
< 48n°m2(h(f) + O(n +log N)), (90)
and similarly one estimates v, v3(k~ + rg). Further,
T < 16m?n, (91)
< { 16dm?®n? ?n the case (A), )
256dm3  inthe case (B),

0 < 16m?ns(log(Ns) + O(1)). (93)
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Substituting the estimates (90)—<92) to (72), we obtain

16m?2

2.1n
ha(P) < (ﬁ(S)dm""““z’Sm) <DHNv> exp(lsosm) : (94)

vES

where Q; = snlog(Ns) 4+ O(sn) + 3dn*(h(f) + O(n +logN)). As one can
easily see, (94) is better than (3). This completes the proof in cases (al) and (b).

6.2. CASE(a2)

Pute = es andt = /= — 0. Let C 5 C be the covering corresponding to the
embedding Q(C) — Q(C)(t). ThecurveC isdefined over K and K (C) = K (y, ¢).

Wehave f(t,y) = 0, where f(T,Y) = f(B+T¢,Y). In paticular,
m=degy f =me,  7n:=degy f =n, h(f) < h(f) + mh(B).

The coveringsC % € % P! and C -5 P! have the following two properties.

(i) Forany P € C(z, K, S) and P € ¢~}(P) there exists an extension K of K
such that [K: K] < e,

Dy < <D <H Nv) exp(72dn®m(h(f) + O(n + IogN)))) . (95)

vES

and P € C(t, K, S) , where S isthe set of places of K above S.
(i) Put
=< /a—p, [=¢ta, ¢=-eqlz)

where ¢ is a primitive eth root of unity. Then e () and eg(t) are divisible by

€.

Proof of (i). We have P € C(t, K, S) with K = K({/z(P) — ) for an
appropriate definition of the root. By Proposition 4.2, Lemma 3.1 and (89) we have

d’llogN(DR) <edt Y ~|og/\/u+o(62)

v isramifiedin K

< ed’? S+ D>+ > logN'v 4 O(e?)

ves S and
€ p(’u) <e dzegnot dividee
Ordy (z(P) — o)

<e <d_l Z logNv + 12ﬁa>

vES
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<e <d—1 > logNv + 72nm(h(f) + O(n + log N))) ,

vES

which yields (95).

Proof of (ii). Below divisor meansdivisor on C. Wehavet® —y = z — a, where
v = a — 3. Write the principal divisor (t¢ — «y) as the difference of two positive
divisors with digoint supports:

(% =) = (#° = 7)o = (t° = V)oo-

Then (t° — 7)o = (z — «)o, the latter divisor being divisible by e. (We say that a
divisor D isdivisibleby aninteger [ if D = [.D’ for somedivisor D’.) On the other
hand,

(t—7)o=(t—a@)o+ (t—La)o+ -+ (t — & a)o. (96)

The divisor in the left-hand side of (96) is divisible by €. Since the divisorsin the
right-hand side have pairwise digjoint supports, each of them is divisible by €. In
particular, e divides e~ () and eg(t), as desired.

We have
h(@) < e H(h(e) + h(B) + O(1)) < 4e *n(h(f) + O(log N)),

and similarly one estimates /() and ﬁg. Also,

T:= gljaljg < €e%e,

g 2~ 3:2
0 =dge Vgl < de’e”,

5:=15] < se,
O := 35T (log(N3) + O(1)) < 3se3¢(log(N S) + O(1)).

Furthermore, defining uy, fiz, % and ﬁg in the obvious manner, one easily finds
that

Uy = Uy =ta,  flg = iy = o 97)

a

The rest of the argument splits into two cases: ez > 3 and eg = 2. Inthefirst
case we may suppose that

Ha + NUq < g + NUg, (98)
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interchanging « and 3 if necessary. Defining in the obvious manner % and using
(87), (88) and (98), we obtain

Ry = D30 (fig + niig) (W(f) + mh(@) + O(R + log N))

< n%(pta + nua) (B(f) + m(h(a) + 2h(B)) + O(N)) (99)
< nPm(3nh(f) + (e + nua)h(e)

+2(pg + nug)h(B) + O(nN)) (100)
< 1203m(h(f) + O(N)). (101)

In the similar way one defines and estimates %E. By Theorem 5.1

he(P) < e(ht(P) + h(B) + O(1))

217
< ﬁ(g)g (DE H NK”) exp(130(:) + 37%6[(17517/&(%&’ + 7))

= g
vES
< (38D ([[N0) " exp(40007)) " (102)
< (38D ([['v) " exp(40002)) (103)

with Q, = slog(NS) + O(s) + L.5dn3m(h(f) + O(N)). Thisis better than (3).
Now supposethat e = eg = 2. Then we cannot assume (98) any more. Instead,
we shall use the estimates
fa + nua < 3mn, (), h(B) < 4h(f) + O(logN),

which can be deduced from (87), (88) and (49).
We still have (99), but instead of (100) we obtain

Fx < 40n>m(mh(f) + O(n +mlog N)).

Therefore instead of (102) we have
. 3.1 e’e
r(P) < (p(5)02" (T A) " exp(aomny)

< (ﬁ(S)d"D2~l (ITAw) > exp(39993)> > (104)

with Q3 = slog(NS) + O(s) + 4dnm(mh(f) + O(n + mlog N)). Again we
obtain an estimate better than (3).
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6.3. CASE (a3)
We have

Di(s) < D?exp(2d(h(B) + O(1)) < D? exp(8d(h(f) + O(1).
Applying (104) with the field K(3) instead of K, we obtain

16n

(P) < (9(5) 02 (T Vo) explacony))
again better than (3).

Theorem 1.2 is proved.
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