A SPECTRAL PROBLEM IN ORDERED BANACH ALGEBRAS

S. Mouton

We recall the definition and properties of an algebra cone C of a complex unital Banach algebra A. It can be shown that C induces on A an ordering which is compatible with the algebraic structure of A, and A is then called an ordered Banach algebra. The Banach algebra $\mathcal{L}(E)$ of all bounded linear operators on a complex Banach lattice E is an example of an ordered Banach algebra, and an interesting aspect of research in ordered Banach algebras is that of investigating in an ordered Banach algebra-context certain problems that originated in $\mathcal{L}(E)$. In this paper we investigate the problems of providing conditions under which (1) a positive element a with spectrum consisting of 1 only will necessarily be greater than or equal to 1 , and (2) $f(a)$ will be positive if a is positive, where $f(a)$ is the element defined by the holomorphic functional calculus.

1. Introduction

An interesting problem in Banach algebra-theory is that of finding conditions under which an element a with $\mathrm{Sp}(a)=\{1\}$ will be the unit element; or, in an operator-context, provide conditions such that if T is a bounded linear operator on a Banach space with $\mathrm{Sp}(T)=\{1\}$, then T is necessarily the identity operator. Naturally, in certain cases the problem has an obvious answer. For instance, if a Banach algebra A is commutative and semisimple, then if $a \in A$ is any element with $\operatorname{Sp}(a)=\{1\}$, it follows from the Spectral Mapping Theorem that $a-1 \in \mathrm{QN}(A)=\operatorname{Rad}(A)=\{0\}$, so that $a=1$. Other interesting answers have been obtained in, for instance, [4] and [3].

Huijsmans and de Pagter (see [12]) asked the following more general question: under which conditions will it be true that if T is a positive bounded linear operator on a complex Banach lattice with $\mathrm{Sp}(T)=\{1\}$, then $T \geqslant I$? This question has been investigated by Zhang in his papers [11] and [12]. In this paper we introduce the problem in the context of an ordered Banach algebra. In [8] and [7], and later [5] and [6], some spectral theory of positive elements in ordered Banach algebras was developed. We recall some of this information in Section 3. In Section 4 we investigate the mentioned problem in an ordered Banach algebra-context, that is, find conditions under which a positive element a in an ordered Banach algebra with $\mathrm{Sp}(a)=\{1\}$ will be greater than or equal to the

[^0]unit element. We extend the problem somewhat and provide some answers in the finite dimensional case, the case where the spectral radius of a is a pole of a certain order of the resolvent of a, and the case in which the algebra cone is inverse-closed.

We also consider the more general problem of obtaining conditions which imply that if $a \in C$, then $f(a) \in C$, where f is analytic in a neighbourhood of the spectrum of a.

Throughout we seek to obtain our results using only the intrinsic properties of Banach algebras, and therefore without using operator-theoretic arguments or relying on properties which are unique to Banach lattices.

2. Preliminaries

Throughout A (or B) will be a complex Banach algebra with unit 1. A homomorphism ϕ from a Banach algebra A into a Banach algebra B is a linear map $\phi: A \rightarrow B$ such that $\phi(a b)=\phi(a) \phi(b)$ for all $a, b \in A$ and $\phi(1)=1$. The spectrum of an element a in A will be denoted by $\mathrm{Sp}(a)$, the spectral radius of a in A by $\rho(a)$ and the distance $d(0, \mathrm{Sp}(a))$ from 0 to the spectrum of a by $\delta(a)$ (or by Sp $(a, A), \rho(a, A)$ and $\delta(a, A)$ if necessary to avoid confusion). Recall that if a is invertible, then $\rho\left(a^{-1}\right)=1 /(\delta(a))$ ([1, Theorem 3.3.5]). A map $\phi: A \rightarrow B$ is called spectrum preserving if $\operatorname{Sp}(a, A)=\operatorname{Sp}(\phi(a), B)$ for all $a \in A$. It is easy to see that a bijective homomorphism is spectrum preserving. We denote the peripheral spectrum $\{\lambda \in \operatorname{Sp}(a):|\lambda|=\rho(a)\}$ of an element a in A by psp (a), the set of quasinilpotent elements in A by $\mathrm{QN}(A)$ and the radical of A by $\operatorname{Rad}(A)$. A Banach algebra is called semisimple if its radical consists of zero only.

3. Ordered Banach Algebras

In ([8, Section 3]) we defined an algebra cone C of a complex Banach algebra A and showed that C induced on A an ordering which was compatible with the algebraic structure of A. Such a Banach algebra is called an ordered Banach algebra. We recall those definitions now and also the additional properties that C may have.

Let A be a complex Banach algebra with unit 1 . We call a nonempty subset C of A a cone of A if C satisfies the following:

1. $C+C \subseteq C$,
2. $\lambda C \subseteq C$ for all $\lambda \geqslant 0$.

If in addition C satisfies $C \cap-C=\{0\}$, then C is called a proper cone.
Any cone C of A induces an ordering " \leqslant " on A in the following way:

$$
\begin{equation*}
a \leqslant b \text { if and only if } b-a \in C \tag{3.1}
\end{equation*}
$$

$(a, b \in A)$. It can be shown that this ordering is a partial order on A, that is, for every $a, b, c \in A$
(a) $a \leqslant a$ (\leqslant is reflexive),
(b) if $a \leqslant b$ and $b \leqslant c$, then $a \leqslant c$ (\leqslant is transitive).

Furthermore, C is proper if and only if this partial order has the additional property of being antisimmetric, that is, if $a \leqslant b$ and $b \leqslant a$, then $a=b$. Considering the partial order that C induces we find that $C=\{a \in A: a \geqslant 0\}$ and therefore we call the elements of C positive.

A cone C of a Banach algebra A is called an algebra cone of A if C satisfies the following conditions:
3. $C . C \subseteq C$,
4. $1 \in C$.

Motivated by this concept we call a complex Banach algebra with unit 1 an ordered Banach algebra if A is partially ordered by a relation " \leqslant " in such a manner that for every $a, b, c \in A$ and $\lambda \in \mathbb{C}$

$$
\begin{array}{ll}
1^{\prime} . & a, b \geqslant 0 \Rightarrow a+b \geqslant 0, \\
2^{\prime} . & a \geqslant 0, \lambda \geqslant 0 \Rightarrow \lambda a \geqslant 0, \\
3^{\prime} . & a, b \geqslant 0 \Rightarrow a b \geqslant 0, \\
4^{\prime} . & 1 \geqslant 0 .
\end{array}
$$

Therefore if A is ordered by an algebra cone C, then A, or more specifically (A, C), is an ordered Banach algebra.

An algebra cone C of A is called proper if C is a proper cone of A and closed if it is a closed subset of A. Furthermore, C is said to be normal if there exists a constant $\alpha>0$ such that it follows from $0 \leqslant a \leqslant b$ in A that $\|a\| \leqslant \alpha\|b\|$. It is well-known that if C is a normal algebra cone, then C is proper. If C has the property that if $a \in C$ and a is invertible, then $a^{-1} \in C$, then C is said to be inverse-closed.

The following theorem is well-known in an operator-context:
Theorem 3.2. ([8, Proposition 5.1]) Let (A, C) be an ordered Banach algebra with C closed and normal. If $a \in C$, then $\rho(a) \in \mathrm{Sp}(a)$.

It is interesting to note that also $\delta(a) \in \mathrm{Sp}(a)$, under the additional assumption that C is inverse-closed:

Theorem 3.3. Let (A, C) be an ordered Banach algebra with C closed, normal and inverse-closed. If $a \in C$, then $\delta(a) \in \mathrm{Sp}(a)$.

Proof: If a is not invertible, then $\delta(a)=0 \in \mathrm{Sp}(a)$, so suppose that a is invertible. Since $a \in C$ and C is inverse-closed, it follows that $a^{-1} \in C$. The normality and closedness of C implies that $\rho\left(a^{-1}\right) \in \operatorname{Sp}\left(a^{-1}\right)$, so that $\rho\left(a^{-1}\right)=1 /\left(\lambda_{0}\right)$, for some $\lambda_{0} \in \operatorname{Sp}(a)$. Since $\rho\left(a^{-1}\right)=1 /(\delta(a))$, it follows that $\delta(a)=\lambda_{0} \in \operatorname{Sp}(a)$.

Note that the condition that C is inverse-closed in Theorem 3.3 is essential. Consider, for instance, the Banach algebra A of all 2×2 complex matrices. If C is the subset of A
of matrices with only non-negative entries, then C is a closed and normal algebra cone (see Example 3.5), but C is not inverse-closed and $\delta(a) \in \mathrm{Sp}(a)$ does not hold for all $a \in C$. This can be seen by considering the element $a=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right) \in C$, which is invertible with $a^{-1}=-(1 / 3)\left(\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right) \notin C$. Also, $\mathrm{Sp}(a)=\{-1,3\}$, so that $\delta(a)=1 \notin \mathrm{Sp}(a)$.

Let A and B be Banach algebras and $\phi: A \rightarrow B$ a homomorphism. If C is an algebra cone of A, then $\phi(C)$ is an algebra cone of B. If ϕ is injective, then if C is proper, so is $\phi(C)$. Furthermore, if ϕ is continuous and bijective, then if C is closed, so is $\phi(C)$.

We conclude this section with a number of examples, which serve to illustrate the concepts.

Let $\mathcal{L}(X)$ denote the Banach algebra of all bounded linear operators on a Banach space X.
Example 3.4. Let E be a complex Banach lattice and let $C:=\{x \in E: x=|x|\}$. If $K:=\{T \in \mathcal{L}(E): T C \subset C\}$, then K is a closed, normal algebra cone of $\mathcal{L}(E)$. Therefore $(\mathcal{L}(E), K)$ is an ordered Banach algebra.

The nontrivial part of the above example follows from ([9, Lemma 3]).
Let $M_{n}(\mathbb{C})$ denote the (Banach) algebra of $n \times n$ complex matrices.
Example 3.5. Let $n \in \mathbb{N}, C$ the subset of $M_{n}(\mathbb{C})$ of matrices with only nonnegative entries and C^{\prime} the subset of $M_{n}(\mathbb{C})$ of diagonal matrices with only non-negative entries. Then C and C^{\prime} are closed, normal algebra cones of $M_{n}(\mathbb{C})$. Therefore $\left(M_{n}(\mathbb{C}), C\right)$ and $\left(M_{n}(\mathbb{C}), C^{\prime}\right)$ are ordered Banach algebra.

Example 3.6. Let $n \in \mathbb{N}$ and A_{i} an ordered Banach algebra, with algebra cone C_{i}, for each $i=1, \ldots, n$. Let $A:=A_{1} \oplus \cdots \oplus A_{n}$ and $C:=\left\{\left(c_{1}, \ldots, c_{n}\right) \in A: c_{i} \in C_{i}\right.$ for i $=1, \ldots, n\}$. Then (A, C) is an ordered Banach algebra, and if C_{i} is closed (proper, normal) for all $i=1, \ldots, n$ then C is closed (proper, normal).

The preceding two examples imply
Example 3.7. Let $n \in \mathbb{N}, k_{1}, \ldots, k_{n} \in \mathbb{N}$ and $A:=M_{k_{1}}(\mathbb{C}) \oplus \cdots \oplus M_{k_{n}}(\mathbb{C})$. Let $C:=\left\{\left(c_{1}, \ldots, c_{n}\right) \in A: c_{i}\right.$ is a $k_{i} \times k_{i}$ matrix with only non-negative entries, for all i $=1, \ldots, n\}$ and $C^{\prime}:=\left\{\left(c_{1}, \ldots, c_{n}\right) \in A: c_{i}\right.$ is a diagonal $k_{i} \times k_{i}$ matrix with only nonnegative entries, for all $i=1, \ldots, n\}$. Then both (A, C) and $\left(A, C^{\prime}\right)$ are ordered Banach algebras and both C and C^{\prime} are closed, normal algebra cones of A.
ExAMPLE 3.8. Let $A=l^{\infty}$ and $C=\left\{\left(c_{1}, c_{2}, \ldots\right) \in l^{\infty}: c_{i} \geqslant 0\right.$ for all $\left.i \in \mathbb{N}\right\}$. Then (A, C) is an ordered Banach algebra, and C is a closed, normal and inverse-closed algebra cone of A.

A proof of part of the contents of this example was given in ([5, Example 4.14]). The closedness and inverse-closedness of C follow easily from the definition of C and the definition of the (sup-) norm in l^{∞}.

Example 3.9. Let A be a commutative C^{*}-algebra, $C=\left\{x \in A: x=x^{*}\right.$ and $\operatorname{Sp}(x)$ $\subset[0, \infty)\}$. Then (A, C) is an ordered Banach algebra, and C is a closed, normal and inverse-closed algebra cone of A.

References giving the proof of part of the contents of this example was given in ([6, Example 3.3]). The inverse-closedness of C follows easily from the definition of C.

4. A SPECTRAL PROBLEM

Let A be an ordered Banach algebra with an algebra cone C. Under which conditions will it follow that if $a \in C$ with $\operatorname{Sp}(a)=\{1\}$, then $a-1 \in C$? This problem is equivalent to the problem stated in the introduction, that is, the problem of providing conditions under which it will follow from a positive and $\operatorname{Sp}(a)=\{1\}$, that $a \geqslant 1$. Originally this problem has been investigated for bounded linear operators on a Banach lattice (see [11] and [12]).

Another way to look at this problem is by considering the analytic function $f(\lambda)$ $=\lambda-1$. Then $a-1$ is $f(a)$, the element defined by the holomorphic functional calculus. So the problem becomes: provide conditions which imply that if $\operatorname{Sp}(a)=\{1\}$ and $a \in C$, then $f(a) \in C$. This problem will be investigated in a more general form.

Returning to the original problem, what can be said in the case that A is a finite dimensional Banach algebra? We begin by investigating the Banach algebra $M_{n}(\mathbb{C})$ of all $n \times n$ complex matrices, in which case the following holds:

Theorem 4.1. Let $n \in \mathbb{N}$ and C the algebra cone of $M_{n}(\mathbb{C})$ consisting of all complex $n \times n$ matrices with only non-negative entries. If $a \in C$ and $\operatorname{Sp}(a)=\{1\}$, then $a-1 \in C$.

Proof : Suppose $a=\left(\alpha_{i j}\right)$. Then $\alpha_{i j} \geqslant 0$ for all $i, j \in\{1, \ldots, n\}$. Let $b=a-1$. In the matrix b^{2} the i-th diagonal element is $\alpha_{i 1} \alpha_{1 i}+\alpha_{i 2} \alpha_{2 i}+\cdots+\alpha_{i(i-1)} \alpha_{(i-1) i}+\left(\alpha_{i i}\right.$ $-1)^{2}+\alpha_{i(i+1)} \alpha_{(i+1) i}+\cdots+\alpha_{i n} \alpha_{n i}$, which is greater than or equal to zero. Since $\operatorname{Sp} b^{2}$ $=(\mathrm{Sp}(a-1))^{2}=\{0\}$, the trace $\operatorname{Tr} b^{2}$ of b^{2} is zero, and $\operatorname{Tr} b^{2}$ is the sum of all the diagonal elements of b^{2}. Hence each diagonal element of b^{2} is zero. Also, each term in such an element is greater than or equal to zero, so that each term must be zero. In particular, $\alpha_{i i}=1$ for all $i=1, \ldots, n$ (and $\alpha_{i j} \alpha_{j i}=0$ for all $i \neq j$). Hence each entry of b is non-negative, so that $b \in C$. Therefore $a-1 \in C$.

The above proof is essentially the same as the one X.-D. Zhang used to prove a similar result for positive operators on finite dimensional Banach lattices (see [12, Theorem 4.1]).

Theorem 4.2. Let (A, C) denote the ordered Banach algebra $A_{1} \oplus \cdots \oplus A_{n}$ of Example 3.6, that is, each $\left(A_{i}, C_{i}\right)$ is an ordered Banach algebra with an algebra cone C_{i}, and $C=\left\{\left(c_{1}, \ldots, c_{n}\right) \in A: c_{i} \in C_{i}\right.$ for $\left.i=1, \ldots, n\right\}$. Suppose that for each $i=1, \ldots, n$ the following holds: if $c_{i} \in C_{i}$ with $\operatorname{Sp}\left(c_{i}\right)=\{1\}$, then $c_{i}-1 \in C_{i}$. Then if $c \in C$ with Sp $c=\{1\}$, then $c-1 \in C$.

Proof: It follows easily by recalling that if $c=\left(c_{1}, \ldots, c_{n}\right)$, then $\operatorname{Sp} c$ $=\cup_{i=1}^{n} \operatorname{Sp} c_{i}$.

Using Theorems 4.1 and 4.2, we obtain
Theorem 4.3. Let $n, k_{1}, \ldots, k_{n} \in \mathbb{N}$ and let A denote the ordered Banach algebra $M_{k_{1}}(\mathbb{C}) \oplus \cdots \oplus M_{k_{n}}(\mathbb{C})$, with algebra cone $C=\left\{\left(c_{1}, \ldots, c_{n}\right) \in A: c_{i} \in C_{i}\right.$ for i $=1, \ldots, n\}$, where C_{i} denotes the algebra cone of $M_{k_{i}}(\mathbb{C})$ consisting of all complex $k_{i} \times k_{i}$ matrices with only non-negative entries, for each $i=1, \ldots, n$. If $c \in C$ with $\operatorname{Sp}(c)=\{1\}$, then $c-1 \in C$.

An application of the Wedderburn-Artin Theorem ([1, Theorem 2.1.2]), together with Example 3.7 and Theorem 4.3, yield

Theorem 4.4. If B is a semisimple finite-dimensional Banach algebra, then B is isomorphic (as an algebra) to an ordered Banach algebra A (as in Theorem 4.3) with a closed and normal algebra cone C (as in Theorem 4.3) which has the property that if $c \in C$ and $\operatorname{Sp}(c)=\{1\}$, then $c-1 \in C$.

Finally, we have
THEOREM 4.5. Let B be an ordered Banach algebra with a proper algebra cone C_{1} and with B isomorphic (as an algebra) to an ordered Banach algebra A, with a proper algebra cone C which has the property that if $c \in C$ and $\mathrm{Sp}(c, A)=\{1\}$, then $c-1 \in C$. If C is the only proper algebra cone of A, then if $c_{1} \in C_{1}$ and $\operatorname{Sp}\left(c_{1}, B\right)=\{1\}$, then $c_{1}-1 \in C_{1}$.

Proof: Suppose $\phi: B \rightarrow A$ is a bijective homomorphism. Then ϕ is spectrumpreserving. Let $c_{1} \in C_{1}$ and $\mathrm{Sp}\left(c_{1}, B\right)=\{1\}$. Then $\phi\left(c_{1}\right) \in \phi\left(C_{1}\right)$. The remarks preceding the examples in Section 3 show that $\phi\left(C_{1}\right)$ is a proper algebra cone of A. Hence, by the assumption, $\phi\left(C_{1}\right)=C$, so that $\phi\left(c_{1}\right) \in C$. Since $\operatorname{Sp}\left(\phi\left(c_{1}\right), A\right)=\operatorname{Sp}\left(c_{1}, B\right)$ $=\{1\}$, it follows by assumption that $\phi\left(c_{1}\right)-1 \in C$, that is, $\phi\left(c_{1}-1\right) \in \phi\left(C_{1}\right)$. Since ϕ is injective, it follows that $c_{1}-1 \in C_{1}$.

Unfortunately, it is not possible to say more than Theorem 4.4 about the semisimple finite-dimensional case (at least by using Theorem 4.5), since the algebra cone C in Theorem 4.4 is not the only proper algebra cone of A (see Example 3.7).

We now consider the case where the spectral radius of a is a pole of the resolvent $(\lambda 1-a)^{-1}$ of a, and extend the problem to the case where $\operatorname{Sp}(a)=\{\rho(a)\}$ with $\rho(a) \geqslant 1$ (see Corollaries 4.9 and 4.15). The following proposition is vital in solving this problem:

Proposition 4.6. Let (A, C) be an ordered Banach algebra with C closed, and let $a \in C$. If $\lambda>\rho(a)$, then $(\lambda 1-a)^{-1} \geqslant 0$.

Proof: For $|\lambda|>\rho(a)$, the resolvent of a has a Neumann series representation $(\lambda 1-a)^{-1}=\sum_{n=0}^{\infty}\left(a^{n} / \lambda^{n+1}\right)$. Since $\lambda>\rho(a)$, all the terms of this series are positive, so that $(\lambda 1-a)^{-1} \geqslant 0$, since C is closed.

Proposition 4.7. Let A be a Banach algebra and $a \in A$ such that $\operatorname{Sp}(a)$ $=\left\{\lambda_{0}\right\}$. If $\lambda \neq \lambda_{0}$, then

$$
(\lambda 1-a)^{-1}=\sum_{n=1}^{\infty} b_{-n}\left(\lambda-\lambda_{0}\right)^{-n}
$$

where $b_{-n}=\left(a-\lambda_{0} 1\right)^{n-1}$.
Proof: If $\lambda \neq \lambda_{0}$, then $\left|\lambda-\lambda_{0}\right|>0=\rho\left(a-\lambda_{0} 1\right)$, so that

$$
(\lambda 1-a)^{-1}=\left(\left(\lambda-\lambda_{0}\right) 1-\left(a-\lambda_{0} 1\right)\right)^{-1}=\sum_{n=0}^{\infty} \frac{\left(a-\lambda_{0} 1\right)^{n}}{\left(\lambda-\lambda_{0}\right)^{n+1}}=\sum_{n=1}^{\infty} \frac{\left(a-\lambda_{0} 1\right)^{n-1}}{\left(\lambda-\lambda_{0}\right)^{n}}
$$

Hence the result follows.
Since this series is clearly the Laurent series of the resolvent of a around λ_{0}, we have the following

Corollary 4.8. Let A be a Banach algebra and $a \in A$ such that $\operatorname{Sp}(a)$ $=\left\{\lambda_{0}\right\}$. If λ_{0} is a pole of order k of the resolvent of a, then $\left(a-\lambda_{0} 1\right)^{k}=0$ and $\lim _{\lambda \rightarrow \lambda_{0}}\left(\lambda-\lambda_{0}\right)^{k}(\lambda 1-a)^{-1}=\left(a-\lambda_{0} 1\right)^{k-1}$.

Proof: If λ_{0} is a pole of order k of the resolvent of a, then by Proposition 4.7, the coefficient $b_{-(k+1)}=0$. Hence $\left(a-\lambda_{0} 1\right)^{k}=0$. Furthermore, since

$$
(\lambda 1-a)^{-1}=\frac{1}{\lambda-\lambda_{0}}+\frac{a-\lambda_{0} 1}{\left(\lambda-\lambda_{0}\right)^{2}}+\cdots+\frac{\left(a-\lambda_{0} 1\right)^{k-1}}{\left(\lambda-\lambda_{0}\right)^{k}}
$$

the result follows.
Using the preceding elementary result, we can state some conditions which imply that if $a \in C$ and $\operatorname{Sp}(a)=\{\rho(a)\}$ with $\rho(a) \geqslant 1$, then $a-1 \in C$.

Corollary 4.9. Let A be a Banach algebra and $a \in A$ such that $\operatorname{Sp}(a)$ $=\{\rho(a)\}$.

1. If $\rho(a)$ is a pole of order k of the resolvent of a, then $(a-\rho(a) 1)^{k}=0$.
2. If $\rho(a)$ is a simple pole of the resolvent of a, then $a=\rho(a) 1$. It follows that, if C is an algebra cone of A, then

$$
\rho(a) \geqslant 1 \Rightarrow a-1 \in C .
$$

Suppose, in addition, that (A, C) is an ordered Banach algebra with C closed, and $a \in C$.
3. If $\rho(a)$ is a pole of order k of the resolvent of a, then $(a-\rho(a) 1)^{k-1} \in C$.
4. If $\rho(a)$ is a pole of order 2 of the resolvent of a, then $a \geqslant \rho(a) 1$. It follows that

$$
\rho(a) \geqslant 1 \Rightarrow a-1 \in C .
$$

Proof:

1. Follows directly from Corollary 4.8.
2. Follows from 1.
3. It follows from Corollary 4.8 that $(a-\rho(a) 1)^{k-1}=\lim _{\lambda \rightarrow \rho(a)}(\lambda-\rho(a))^{k}(\lambda 1$ $-a)^{-1}$. Restricting λ to an interval of the form $(\rho(a), \rho(a)+R)$, we obtain $(a-\rho(a) 1)^{k-1}=\lim _{\lambda \rightarrow \rho(a)^{+}}(\lambda-\rho(a))^{k}(\lambda 1-a)^{-1}$. Since C is closed, it follows from Proposition 4.6 that $(a-\rho(a) 1)^{k-1} \in C$.
4. Follows from 3.

We note that Corollary 4.94 in one sense extends, and in another sense is included by, [12, Theorem 5.3], in the case $A=\mathcal{L}(E)$ (see Example 3.4).

Suppose that f is a complex valued function which is analytic on a neighbourhood Ω of the spectrum of a. Then an element $f(a)=(1 / 2 \pi i) \int_{\Gamma} f(\lambda)(\lambda 1-a)^{-1} d \lambda$ in A is defined, where Γ is a contour in $\Omega \backslash \operatorname{Sp}(a)$ surrounding $\operatorname{Sp}(a)$ ($[1, p .43])$. An interesting question arises, namely: if $a \in C$, when does it follow that $f(a) \in C$? Naturally, for certain functions, answers can be obtained easily. We collect some of these in

Proposition 4.10. Let (A, C) be an ordered Banach algebra and $a \in C$.

1. If $p(\lambda)=\alpha_{n} \lambda^{n}+\cdots+\alpha_{1} \lambda+\alpha_{0}$ with $\alpha_{n}, \ldots, \alpha_{0}$ real and positive, then $p(a) \in C$.
2. Suppose, in addition, that C is closed. If $f(\lambda)=e^{\lambda}$, then $f(a) \in C$.

Proof:

1. By definition, C is closed under addition, multiplication and multiplication by positive scalars. Since $p(a)=\alpha_{n} a^{n}+\cdots+\alpha_{1} a+\alpha_{0}$, it follows that $p(a) \in C$.
2. First note that $f(a)=e^{a}=\sum_{n=0}^{\infty}(1 / n!) a^{n}([2$, p. 38]). Then $f(a) \in C$ follows from the defining properties of C, together with the fact that C is closed. $]$
We provide a more general result in Theorem 4.14, if a satisfies certain spectral properties. We begin with

Theorem 4.11. Let A be a Banach algebra and $a \in A$ such that $\rho(a)$ is a pole of order k of the resolvent of a. Suppose that f is a complex valued function, analytic at least on an open disk of the form $D(\rho(a), R)$. Let $g(\lambda)=f(\lambda)(\lambda 1-a)^{-1}$ and let a_{n} denote the coefficient of $(\lambda-\rho(a))^{n}$ in the Laurent series of g around $\rho(a)$, for all $n \in \mathbb{Z}$.

1. If $f(\rho(a))=0$ and the order of f at $\rho(a)$ is k, then $a_{-1}=0$.

Suppose, in addition, that (A, C) is an ordered Banach algebra with C closed, $a \in C$ and $f(\lambda)>0$ for all λ in the real interval $(\rho(a), \rho(a)+R)$.
2. If $f(\rho(a))>0$, then $a_{-k} \in C$.
3. If $f(\rho(a))=0$ and the order of f at $\rho(a)$ is $k-1$, then $a_{-1} \in C$.

Proof:

1. If $f(\rho(a))=0$ and the order of f at $\rho(a)$ is k, then the order of g at $\rho(a)$ is zero, so that the residue of g at $\rho(a)$ is zero. Hence $a_{-1}=0$.
2. If $f(\rho(a))>0$, then the order of g at $\rho(a)$ is $-k$, so that a_{-k} $=\lim _{\lambda \rightarrow \rho(a)}(\lambda-\rho(a))^{k} g(\lambda)$. Restricting λ to the interval $(\rho(a), \rho(a)+R)$, we obtain $a_{-k}=\lim _{\lambda \rightarrow \rho(a)^{+}}(\lambda-\rho(a))^{k} f(\lambda)(\lambda 1-a)^{-1}$. Since C is closed, the assumption on f, together with Proposition 4.6, yield $a_{-k} \in C$.
3. If $f(\rho(a))=0$ and the order of f at $\rho(a)$ is $k-1$, then the order of g at $\rho(a)$ is -1 , so that $a_{-1}=\lim _{\lambda \rightarrow \rho(a)}(\lambda-\rho(a)) g(\lambda)=\lim _{\lambda \rightarrow \rho(a)^{+}}(\lambda-\rho(a)) f(\lambda)(\lambda 1$ $-a)^{-1}$. Once again the assumptions, together with Proposition 4.6, yield $a_{-1} \in C$.
By taking $f(\lambda)=1$ in Theorem 4.11 we rediscover a well-known ordered Banach algebra-result ([7, Theorem 3.2]):

Corollary 4.12. Let (A, C) be an ordered Banach algebra with C closed, and $a \in C$ such that $\rho(a)$ is a pole of order k of the resolvent of a. Let $g(\lambda)=(\lambda 1-a)^{-1}$ and let a_{n} denote the coefficient of $(\lambda-\rho(a))^{n}$ in the Laurent series of g around $\rho(a)$, for all $n \in \mathbb{Z}$. Then $a_{-k} \in C$.

Recalling that $a_{-1}=p$, where p is the spectral idempotent associated with a and $\rho(a)$, we have

Corollary 4.13. Let (A, C) be an ordered Banach algebra with C closed, and $a \in C$ such that $\rho(a)$ is a simple pole of the resolvent of a. If p is the spectral idempotent associated with a and $\rho(a)$, then $p \in C$.

The following theorem gives some results of the form "if $a \in C$, then $f(a) \in C$ ".
Theorem 4.14. Let A be a Banach algebra and $a \in A$ such that $\operatorname{Sp}(a)$ $=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}(m \geqslant 1)$ where $\lambda_{1}=\rho(a)$ and λ_{j} is a pole of order k_{j} of the resolvent of $a(j=1, \ldots, m)$. Let f be any complex valued function, analytic at least on a neighbourhood of $\mathrm{Sp}(a)$, such that f has a zero of order k_{j} at $\lambda_{j}(j=2, \ldots, m)$.

1. If $f(\rho(a))=0$ and the order of f at $\rho(a)$ is k_{1}, then $f(a)=0$.

Suppose, in addition, that (A, C) is an ordered Banach algebra with C closed, $a \in C$ and $f(\lambda)>0$ for all λ in a real interval of the form $(\rho(a), \rho(a)+R)$.
2. If $f(\rho(a))>0$ and $k_{1}=1$, then $f(a) \in C$.
3. If $f(\rho(a))=0$ and the order of f at $\rho(a)$ is $k_{1}-1$, then $f(a) \in C$.

Proof: By the holomorphic functional calculus an element $f(a)=(1 / 2 \pi i) \int_{\Gamma} g(\lambda)$ $d \lambda \in A$ is defined, where $g(\lambda)=f(\lambda)(\lambda 1-a)^{-1}$ and we may suppose that Γ is a union of small circles (say with radii r_{1}, \ldots, r_{m}) with centres $\lambda_{1}, \ldots, \lambda_{m}$. Therefore $f(a)$
$=\sum_{j=1}^{m}(1 / 2 \pi i) \int_{C\left(\lambda_{j}, r_{j}\right)} g(\lambda) d \lambda$. Since the order of g at λ_{j} is zero, it follows that $\int_{C\left(\lambda_{j}, r_{j}\right)} g(\lambda)$ $d \lambda=0$, for $j=2, \ldots, m$, so that $f(a)=(1 / 2 \pi i) \int_{C\left(\rho(a), r_{1}\right)} g(\lambda) d \lambda$. Since g is analytic in a deleted neighbourhood of $\rho(a)$ containing $C\left(\rho(a), r_{1}\right)$, the quantity $(1 / 2 \pi i) \int_{C\left(\rho(a), r_{1}\right)} g(\lambda)$ $d \lambda$ is the residue of g at $\rho(a)$. Therefore, if a_{n} denotes the coefficient of $(\lambda-\rho(a))^{n}$ in the Laurent series of g around $\rho(a)$, for all $n \in \mathbb{Z}$, then $f(a)=a_{-1}$. The results now follow from Theorem 4.11.

Corollary 4.9 can now be obtained as a consequence of Theorem 4.14:
Corollary 4.15. Let A be a Banach algebra and $a \in A$ such that $\operatorname{Sp}(a)$ $=\{\rho(a)\}$. Let $k \in \mathbb{N}$.

1. If $\rho(a)$ is a pole of order k of the resolvent of a, then $(a-\rho(a) 1)^{k}=0$.
2. If $\rho(a)$ is a simple pole of the resolvent of a, then $a=\rho(a) 1$. It follows that, if C is an algebra cone of A, then

$$
\rho(a) \geqslant 1 \Rightarrow a-1 \in C .
$$

Suppose, in addition, that (A, C) is an ordered Banach algebra with C closed, and $a \in C$.
3. If $\rho(a)$ is a pole of order $k+1$ of the resolvent of a, then $(a-\rho(a) 1)^{k} \in C$.
4. If $\rho(a)$ is a pole of order 2 of the resolvent of a, then $a \geqslant \rho(a) 1$. It follows that

$$
\rho(a) \geqslant 1 \Rightarrow a-1 \in C
$$

Proof: Let $f(\lambda)=(\lambda-\rho(a))^{k}$. Then f is an entire function with a zero of order k at $\rho(a)$ and $f(\lambda)>0$ for all real $\lambda>\rho(a)$. Furthermore, if $f(a)=(1 / 2 \pi i) \int_{\Gamma} f(\lambda)(\lambda 1$ $-a)^{-1} d \lambda$ (with Γ a small circle with centre $\rho(a)$), then $f(a)=(a-\rho(a) 1)^{k}$.

1. If $\rho(a)$ is a pole of order k of the resolvent of a, then $f(a)=0$, by Theorem 4.14 1. Hence $(a-\rho(a) 1)^{k}=0$.
2. Follows from 1.
3. If $\rho(a)$ is a pole of order $k+1$ of the resolvent of a, then $f(a) \in C$, by Theorem 4.14 3. Hence $(a-\rho(a) 1)^{k} \in C$.
4. Follows from 3.

We conclude this discussion by giving some more corollaries of Theorem 4.14, involving the sine and \log functions.

Corollary 4.16. Let A be a Banach algebra and $a \in A$ such that $\rho(a)$ $=k \pi \in \operatorname{Sp}$ (a) with $k \in \mathbb{N}$ an even number, and

$$
\operatorname{Sp}(a) \backslash\{\rho(a)\} \subset\{n \pi: n \in\{0, \pm 1, \ldots, \pm k\}\}
$$

1. If each spectral value of a is a simple pole of the resolvent of a, then $\sin a=0$.

Suppose, in addition, that (A, C) is an ordered Banach algebra with C closed, and $a \in C$.
2. If each element of $\operatorname{Sp}(a) \backslash\{\rho(a)\}$ is a simple pole and $\rho(a)$ is a pole of order 2 of the resolvent of a, then $\sin a \in C$.

Proof: Let $f(\lambda)=\sin \lambda$. Then f has simple zeroes at all spectral values of a and $f(\lambda)>0$ for all λ in a real interval of the form $(\rho(a), \rho(a)+R)$. Since $f(a)=\sin a$,

1. Follows from Theorem 4.141 .
2. Follows from Theorem 4.143.

Corollary 4.17. Let (A, C) be an ordered Banach algebra with C closed, and $a \in C$ such that $\rho(a)=(k+(1 / 2)) \pi \in \operatorname{Sp}(a)$ with $k \in \mathbb{N}$ an even number, and

$$
\operatorname{Sp}(a) \backslash\{\rho(a)\} \subset\{n \pi: n \in\{0, \pm 1, \ldots, \pm k\}\} .
$$

If each spectral value of a is a simple pole of the resolvent of a, then $\sin a \in C$.
Proof: Let $f(\lambda)=\sin \lambda$. Then f has simple zeroes at all values in $\operatorname{Sp}(a) \backslash\{\rho(a)\}$. Furthermore, $f(\rho(a))>0$ and $f(\lambda)>0$ for all λ in a real interval of the form $(\rho(a), \rho(a)$ $+R)$. Since $f(a)=\sin a$, the result follows from Theorem 4.142 .

Corollary 4.18. Let A be a Banach algebra and $a \in A$ such that $\operatorname{Sp}(a)$ $=\{\rho(a)\}$ with $\rho(a)>0$.

1. If $\rho(a)=1$ is a simple pole of the resolvent of a, then $\log a=0$.

Suppose, in addition, that (A, C) is an ordered Banach algebra with C closed, and $a \in C$.
2. If $\rho(a)$ is a simple pole of the resolvent of a and $\rho(a)>1$, then $\log a \in C$.
3. If $\rho(a)=1$ is a pole of order 2 of the resolvent of a, then $\log a \in C$.

Proof: Let $f(\lambda)=\log \lambda=\log |\lambda|+i \arg \lambda$. Then f is analytic on a neighbourhood of the spectrum of a, so that the element $\log a=(1 / 2 \pi i) \int_{\Gamma} f(\lambda)(\lambda 1-a)^{-1} d \lambda \in A$ (where Γ is a small circle with centre $\rho(a)$ in the right half plane) is defined ([2, p. 40]). Furthermore, f has a simple zero at 1 , and $f(\lambda)>0$ for all real $\lambda>1$. Hence the results follow from Theorem 4.14.

The final corollary follows in a similar way from Theorem 4.142 :
Corollary 4.19. Let (A, C) be an ordered Banach algebra with C closed and $a \in C$ such that $\mathrm{Sp}(a)=\{1, \rho(a)\}$ (with $\rho(a)>1$). If both 1 and $\rho(a)$ are simple poles of the resolvent of a, then $\log a \in C$.

We now turn our attention to the case in which the algebra cone C of A is inverseclosed. (Some properties of inverse-closed algebra cones were investigated in the context of positive operators on Banach lattices in [10].)

Recalling the problem of providing conditions under which $f(a)$ will be positive if a is positive, we have the following result to complement Proposition 4.10 and Theorem 4.14:

Proposition 4.20. Let (A, C) be an ordered Banach algebra with C inverseclosed, and $a \in C$. Let $p(\lambda)=\alpha_{n} \lambda^{n}+\cdots+\alpha_{1} \lambda+\alpha_{0}$ and $q(\lambda)=\beta_{m} \lambda^{m}+\cdots+\beta_{1} \lambda+\beta_{0}$ with $\alpha_{n}, \ldots, \alpha_{0}, \beta_{m}, \ldots, \beta_{0}$ real and positive. Suppose that $q(\lambda)$ has no zeroes in $\operatorname{Sp}(a)$ and let $r(\lambda)=(p(\lambda) / q(\lambda))$. Then $r(a) \in C$.

Proof: It follows from Proposition 4.101 that $p(a) \in C$ and $q(a) \in C$. By the Spectral Mapping Theorem $q(a)$ is invertible, and since C is inverse-closed, $(q(a))^{-1} \in C$. Since $r(a)=p(a)(q(a))^{-1}([1$, Lemma 3.3.1]), it follows that $r(a) \in C$.

We now return to the problem of finding conditions such that if $a \in C$ and $\mathrm{Sp}(a)$ $=\{1\}$, then $a-1 \in C$, under the assumption that C is inverse-closed. Here we extend the problem to the case $\delta(a) \geqslant 1$ (with no other restrictions on $\mathrm{Sp}(a))$ (see Theorem 4.23).

The following lemma is obvious:
Lemma 4.21. Let (A, C) be an ordered Banach algebra with a and b invertible elements of A such that $a \leqslant b$ and $a^{-1}, b^{-1} \geqslant 0$. Then $b^{-1} \leqslant a^{-1}$.

ThEOREM 4.22. Let (A, C) be an ordered Banach algebra with C closed and inverse-closed. If $a \in C$ and a is invertible, then

1. $a \geqslant \alpha 1$ for all $\alpha \geqslant 0$ with $\alpha<\delta(a)$, and
2. $a \leqslant \beta 1$ for all $\beta>\rho(a)$.

Proof:

1. If $0<\alpha<\delta(a)$, then $(1 / \delta(a))<(1 / \alpha)$, so that $(1 / \alpha)>\rho\left(a^{-1}\right)$. It follows from Proposition 4.6 that $\left((1 / \alpha) 1-a^{-1}\right)^{-1} \geqslant 0$. Therefore $(1 / \alpha) 1-a^{-1}$ $\geqslant 0$, so that $a^{-1} \leqslant(1 / \alpha) 1$, since C is inverse-closed. The result now follows by applying Lemma 4.21 .
2. If $\beta>\rho(a)$, then $(\beta 1-a)^{-1} \geqslant 0$, by Proposition 4.6. Since C is inverseclosed, it follows that $\beta 1-a \geqslant 0$, and hence $a \leqslant \beta 1$.
Using Theorem 4.22, we obtain results of the form "if $a \in C$ and $\delta(a) \geqslant 1$, then $a-1 \in C$ " and "if $a \in C$ and $\operatorname{Sp}(a)=\{1\}$, then $a=1$ " (see Theorem 4.23). Let $C(0,1)$ denote the circle with centre 0 and radius 1 in the complex plane.

Theorem 4.23. Let (A, C) be an ordered Banach algebra with C closed and inverse-closed, and let $a \in C$. Then we have the following implications:

1. $\delta(a)>1 \Rightarrow a>1$ and $\delta(a)=1 \Rightarrow a \geqslant 1$; hence $\delta(a) \geqslant 1 \Rightarrow a-1 \in C$.
2. If a is invertible: $\rho(a)<1 \Rightarrow a<1$ and $\rho(a)=1 \Rightarrow a \leqslant 1$; hence $\rho(a) \leqslant 1 \Rightarrow 1-a \in C$.
If, in addition, C is proper, then we also have:
3. $\mathrm{Sp}(a) \subset C(0,1) \Rightarrow a=1$.
4. $\mathrm{Sp}(a)=\{1\} \Rightarrow a=1$.

Proof:

1. Suppose $\delta(a) \geqslant 1$. Let $\left(\alpha_{n}\right)$ be a sequence of real numbers such that $0 \leqslant \alpha_{n}<\delta(a)$ and $\alpha_{n} \rightarrow 1$ as $n \rightarrow \infty$. Then $a \geqslant \alpha_{n} 1$, by Theorem 4.22 1. By taking limits as $n \rightarrow \infty$, it follows that $a \geqslant 1$, since C is closed. If $\delta(a)>1$, the case $a=1$ is not possible, so that then $a>1$.
2. Suppose $\rho(a) \leqslant 1$. Let $\left(\beta_{n}\right)$ be a sequence of real numbers such that $\rho(a)<\beta_{n}$ and $\beta_{n} \rightarrow 1$ as $n \rightarrow \infty$. Then $a \leqslant \beta_{n} 1$, by Theorem 4.222 , so that $a \leqslant 1$, as in 1. If $\rho(a)<1$, the case $a=1$ is not possible, so that then $a<1$.
3. If $\mathrm{Sp}(a) \subset C(0,1)$, then $\delta(a)=1=\rho(a)$, so that both $a \geqslant 1$ and $a \leqslant 1$ hold. Since C is proper, it follows that $a=1$.
4. Follows from 3.

Finally we observe that in the case of a normal algebra cone C, the behaviour of the spectrum in 3 above is quite restricted.

If X is a set, let $\# X$ denote the number of elements in X.
Lemma 4.24. Let A be a Banach algebra and $a \in A$. If there exist a $k \in \mathbb{N}$ and a $0 \neq \lambda_{0} \in \mathbb{C}$ such that psp $\left(a^{k}\right)=\left\{\lambda_{0}\right\}$, then $\#$ psp $(a) \leqslant k$.

Proof: If $\lambda \in \operatorname{psp}(a)$, then $\lambda^{k} \in \operatorname{psp}\left(a^{k}\right)$. Equivalently, $\lambda^{k}=\lambda_{0}$ for all $\lambda \in \operatorname{psp}(a)$. Hence psp (a) consists of some, or all, of the k-th complex roots of λ_{0}, so that the result follows.

Theorem 4.25. Let (A, C) be an ordered Banach algebra with C closed and normal. If $a \in A$ and there exist a $k \in \mathbb{N}$ and an $\alpha>0$ such that $a^{k} \geqslant \alpha 1$, then

1. $\operatorname{psp}\left(a^{k}\right)=\left\{\rho(a)^{k}\right\}$, and
2. \#psp $(a) \leqslant k$.

Proof:

1. Since $\operatorname{psp}(\beta a)=\beta \operatorname{psp}(a)$ for every $\beta \geqslant 0$, we may assume without loss of generality that $\rho(a)=1$. Let $b=a^{k}-\alpha 1$. Then $b \geqslant 0$. Since $a^{k}=b+\alpha 1$, it follows that $1=\rho\left(a^{k}\right)=\rho(b+\alpha 1)$, so that $1=\sup \{|\lambda+\alpha|: \lambda \in \operatorname{Sp}(b)\}$. Since $\rho(b) \in \mathrm{Sp}(b)$, by Theorem 3.2, this supremum is exactly $\rho(b)+\alpha$. Hence $\rho(b)=1-\alpha$, so that $\operatorname{Sp}\left(a^{k}\right) \subset\{\lambda+\alpha:|\lambda| \leqslant 1-\alpha\}$.
Now suppose $z \in \operatorname{psp}\left(a^{k}\right)$. Then $z=\lambda+\alpha$ with $|\lambda| \leqslant 1-\alpha$, so that $|z-\alpha| \leqslant 1-\alpha$, and $|z|=1$. Consequently $z \in \bar{D}(\alpha, 1-\alpha) \cap C(0,1)$. Let $z=c+d i$. Then $(c-\alpha)^{2}+d^{2} \leqslant(1-\alpha)^{2}$ and $c^{2}+d^{2}=1$, so that $2 \alpha c \geqslant 2 \alpha$, and hence $c \geqslant 1$, since $\alpha>0$. Since $c^{2}+d^{2}=1$, it follows that $c=1$ and $d=0$, so that $z=1$. Hence the result follows.
2. Follows from Lemma 4.24.

The proof of Theorem 4.251 follows the lines of the proof of [12, Theorem 2.10].
Theorems 4.221 and 4.251 now yield

ThEOREM 4.26. Let (A, C) be an ordered Banach algebra with C closed, normal and inverse-closed. If $a \in C$ is an invertible element, then $\operatorname{psp}(a)=\{\rho(a)\}$.

The above theorem implies that if the algebra cone C in Theorem 4.23 is normal, then the only way in which the case $\operatorname{Sp}(a) \subset C(0,1)$ in 3 can occur, is if $\operatorname{Sp}(a)=\{1\}$, as in 4.

References

[1] B. Aupetit, A primer on spectral theory (Springer-Verlag, New York, Heidelberg, Berlin, 1991).
[2] F.F. Bonsall and J. Duncan, Complete normed algebras (Springer-Verlag, New York, Heidelberg, Berlin, 1973).
[3] J.J. Grobler and C.B. Huijsmans, 'Doubly Abel bounded operators with single spectrum', Quaestiones Math. 18 (1995), 397-406.
[4] M. Mbekhta and J. Zemánek, 'Sur le théorème ergodique uniforme et le spectre', C.R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.
[5] H. du T. Mouton and S. Mouton, 'Domination properties in ordered Banach algebras', Studia Math. 149 (2002), 63-73.
[6] S. Mouton, 'Convergence properties of positive elements in Banach algebras', Proc. Roy. Irish Acad. Sect. A (to appear).
[7] S. Mouton (née Rode) and H. Raubenheimer, 'More spectral theory in ordered Banach algebras', Positivity 1 (1997), 305-317.
[8] H. Raubenheimer and S. Rode, 'Cones in Banach algebras', Indag. Math. (N.S.) 7 (1996), 489-502.
[9] H.H. Schaefer, 'Some spectral properties of positive linear operators', Pacific J. Math. 10 (1960), 1009-1019.
[10] H.H. Schaefer, M. Wolff and W. Arendt, 'On lattice isomorphisms with positive real spectrum and groups of positive operators', Math. Z. 164 (1978), 115-123.
[11] X.-D. Zhang, 'Some aspects of the spectral theory of positive operators', Acta Appl. Math. 27 (1992), 135-142.
[12] X.-D. Zhang, 'On spectral properties of positive operators', Indag. Math. (N.S.) 4 (1993), 111-127.

Department of Mathematics
University of Stellenbosch
Private Bag X1
Matieland 7602
South Africa
e-mail: smo@sun.ac.za

[^0]: Received 16th July, 2002
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

