
Ergod. Th. & Dynam. Sys. (1988), 8, 637-650
Printed in Great Britain

Dynamics of the geodesic flow of a foliation
PAWEL G. WALCZAK

University of Lodz, Institute of Mathematics, Banacha 22, PL 90238 Lodz, Poland

{Received 15 July 1987 and revised 8 January 1988)

Abstract. The geodesic flow of a foliated Riemannian manifold (M, F) is studied.
The invariance of some smooth measure is established under some geometrical
conditions on F. The Lyapunov exponents and the entropy of this flow are estimated.
As an application, the non-existence of foliations with 'short' second fundamental
tensors is obtained on compact negatively curved manifolds.

1. Introduction
The geodesic flows of leaves of a foliated Riemannian manifold (M, F) glue together
with a flow on the unit tangent bundle of F. This is the geodesic flow of F, the main
object of our interest here.

We have at least two reasons for studying this flow.
First, the geodesic flow of a Riemannian manifold M has been intensively studied

during the last few years (see [A, BBE, BBS, E, FM, Mai, Ma2, K, OS] and many
others) and it has been established that the dynamical properties of this flow reflect
the geometry of M. So, we may expect that the geodesic flow of a foliation could
become a good tool in the study of the geometry of F.

Second, the last few years have seen some attempts concerning the dynamical
theory of foliations. The idea is to adapt some notions and methods of the theory
of dynamical systems to the theory of foliations. In this direction, we have, for
example, studies of invariant measures and some ergodic properties of foliations
[Ga, PI] or an attempt [GLW] made at defining and studying the entropy of a
foliation.

Also, let us note that the dynamics of the geodesic flow was used successfully
[Z] to study totally geodesic foliations of locally symmetric spaces.

In this paper, after giving some preliminary information, we begin with varying
geodesies on leaves among such geodesies. This leads to a suitable notion of Jacobi
fields (§ 2). While studying natural Riemannian metrics on the unit tangent bundle
of a foliation we ask when the Riemannian volume is preserved by our flow (§ 3).
Jacobi fields are used to estimate Lyapunov exponents (§4) and the entropy (§5)
of this flow. Using these estimations in § 6, we prove that there are no totally geodesic
foliations on compact manifolds of negative sectional curvature. Moreover, for a
manifold M like that, one can find a positive constant 77 sucfi that either the norm
of the second fundamental tensor of any foliation on M or the norm of its covariant
derivative has to exceed TJ somewhere. We end with some questions and remarks
(§7).
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638 P. G. Walczak

Finally, we would like to say that we began this work during a stay at the University
of Sao Paulo where Question B.of § 7 was posed and discussed with Fabiano Brito,
Remi Langevin and Waldyr Oliva. Also, Problem D of § 7 had already been discussed
with Etienne Ghys and Remi Langevin.

1. Preliminaries

Throughout the paper, M is an oriented C°°-manifold with a C3-Riemannian
structure g = (•,•)• F is an oriented C3-foliation of M, p = dim F, n- dim M,
0 < p < n. For any x in M, Lx denotes the leaf of F which passes through x. TF and
SF denote the tangent bundle and the unit tangent bundle of F, respectively.

We always assume that the leaves of F are complete with respect to the Riemannian
structure induced from M. For any v of TXF, cv: R-> Lx is the maximal geodesic
satisfying cv(0) = x and cv(0) = v. The maps <pt, t e R, of TF into itself are denned
by <Pi(v) = cv(t). They form a flow <p = (<?,) which is called the geodesic flow of F.
Since |<p,u| = |u|, <p preserves the bundle SF and induces the geodesic flow on SF
which is also denoted by <p.

The Levi-Civita connection on M, its curvature tensor and the sectional curvature
of M are denoted here by V, R and K, respectively. V induces a connection VF in
the bundle TF. We have

v£y=(vxy)T,
where X is a vector field on M, Y is a section of TF and

is the decomposition of a vector v e TM into the components tangential to and
orthogonal to F.

The second fundamental form of F can be considered either as a section A of
the bundle Horn (TXF® TF, TF) or as a section B of Horn (TF® TF, TM), where
TXF is the orthogonal complement of TF in TM. We have

and
B(X, Y) = (Vxy)x.

for a section TV of TXF and sections X and Y of TF. Similarly, the second
fundamental tensor Bx of TXF is given by

for sections X and Y of Tx F.
The connections V and VF induce a connection V in the bundle Horn (TF®

TF, TM). We have
(VZB)(X,Y) = VZB(X, Y)

-B(VZX,Y)-B(X,VF
ZY). (1)

Note that V differs from the connection V which appears in the Codazzi equations
[KN]. V is the connection in the bundle Horn {TF®TF, ^ F ) induced by VF and
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Vx, the natural connection in TXF. We have

, Y) = (VZB)(X, Y) + (VZB(X, Y))T. (2)

Now, given v in TXF we can consider the linear transformation

TXFBW-+B(V,W).

Its norm is denoted here by |B(w)|. We have

|B(o)| = sup{|B(e,w)|; |w| = l}.

Similarly, |VB(t>, w)\ (v, we TXF) denotes the norm of the linear map

Also, if v e SXF, then we denote by K(v) (respectively, by |.K(u)|) the maximum of
sectional curvatures of M (respectively, maximum of their absolute values) over
the set of all planes a- <= TXM containing v.

Finally, we equip TF (and SF as well) with two Riemannian metrics which arise
in a natural way. The first one, g = (-,-)~, is defined as the metric induced from
TM. Recall that TM carries the metric (denoted here also by g) given by

Hi, V) = <•**€, u*i?> + <C£ CV),

where £ 17 e TVTM, tr: TM -* M is the canonical projection and C: TTM -» TM is
the connection map of V. Recall also (see [GKM]) that C maps linearly TVTM onto
TXM (x = IT(V)), coincides with the canonical identification TV{TXM) = TXM on the
space of vertical vectors and satisfies

for any u of TM and any vector field X on M. On the other hand, we can define
the connection map CF of VF. CF maps TVTF linearly onto TXF where ve TXF
coincides with the canonical identification TV(TXF)= TXF on the space of vertical
vectors and satisfies

CF{Xit:u) = ^FX

for any u of TM and any section X of TF. With this map we may put

gF(t, ij) = <»*£ v*v) + <C% CF
V)

for all £ and 77 of TVTF (ve TF). gF = (-, ->F is also a Riemannian metric on TF.
The metrics g and gF coincide on TF when the foliation F is totally geodesic (i.e.,
B = 0). If M is compact, the metrics induced by g and gF on SF are quasi-isometric,
so from the dynamical point of view they are equivalent. In this paper, we shall
sometimes use one of them, sometimes the other.

Let us note that the vector field V generated on TF by the flow <p has the following
properties:
(i) 77-*° V = idTF,
(ii) CF° V = 0,

(iii) V°/xr = r-ixrif ° V, reU, where fir: TF-» TF is multiplication by r.
These properties of V follow immediately from the analogous properties (see
[GKM]) of geodesic flows of Riemannian manifolds because our flow <p restricted
to the tangent bundle TL of a leaf L coincides with the geodesic flow of L.
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2. Jacobi fields
Let us consider a curve v:(—e, e)-» TF and the mapping/:Rx(-e, e)->M given
by f(t, s) = expF tv{s), where expB is the exponential map of VF:expF (u) = cu(l)
for any u of TF. Put

X=Ud/dt), Y=Ud/ds)

and Z(t) = Y{t, 0) for t e R. Z is a vector field along the geodesic c = cu(0).
Since the vector fields d/dt and d/ds commute, and the torsion of V vanishes,

we have

R( Y, X)X = Vd/dsVd/d,X-Vd/d,Vd/dsX
and

Vd/djX = Vd/d,Y.

Also,
Vd/d,X = VF

/d(X + B(X,X) = B(X,X),

because the trajectories of X are geodesies on leaves of F. These equalities together
with (1) yield the equality

R(Y,X)X = (Vd/dsB)(X,X) + 2B(Vd
7

/dlY,X)-Vd/dlVd/d,Y,

which assumes the shape of

Z"-2B(Z'T,c)-(VzB)(c,c)-R(c,Z)c = 0 (3)

along c. Here Z' = Vd/d,Z and Z" = (Z')'.
Now, put £ = i>(0). Then

and
Z'(0) = Vd/dlY(0,0) = Vd/dsX(0,0)

From the theory of ordinary differential equations, it follows that for any $ of TTM
there exists a unique solution Zf of (3) satisfying Zf(0) = TT^ and Z^(0) = C£
However, only those with £ e TTF correspond to variations of geodesic considered
above. We call them Jacobi fields (for F) here. It is clear that Jacobi fields form a
vector space of dimension n+p.

Remark 1. If Z is a Jacobi field for F tangential everywhere to F, then Z is a Jacobi
field on a leaf of F. This can be seen easily from the construction of the Jacobi
fields described above. Also, using equality (2) and the Codazzi and Gauss equations
one can see that if W and Z are vector fields along a geodesic c and W is tangential
to F, then

{Z"-2B(Z'T,c)-(VzB)(c,c)-R(c,Z)c, W)

= (VFVFZ-/?F(c,zT)c, W)

- 2((V,B)( W, c), Zx> + <(? wB)(c, c), Zx>

+ (B(c,c),Vz±W)-2(B(c, W),VfZx).
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This equality shows that: (1) if Z x = 0 and Z is a Jacobi field for F, then it is a
Jacobi field on a leaf, (2) if F is totally geodesic, then the tangent component ZT

of any Jacobi field for F is a Jacobi field on a leaf.

LEMMA 1. If Z is a Jacobi field (for F) along a geodesic c, then (Z\ c) = constant.

Proof. With the notation used in the beginning of this section we have

<( VYB)(X, X), X) + (Vd/d,Y, B(X, X))

= (B(X,X),Vd/d,Y-Vd/dsX) =

Therefore,

^(Z,c) (Z
dt

= ((VzB)(c,c),c) + (Z',B(c,c)) = O. •

Remark 2. Since (d/dt)(Z, c) = (Z\ c) + (B(c, c), Z) we cannot claim (as for Jacobi
fields on Riemannian manifolds) that Z is constantly orthogonal to c if Z(0) and
Z'(0) are. This makes our calculation slightly different from that for the geodesic
flow of a Riemannian manifold.

LEMMA 2. For any £ of TTF and any t of U we have

w*<ptt€ = Zf(t) and Op,t£ = Z'((t). (4)

Proof. If £ = v(0) for a curve v: (~e, e)^TF, then

"*<P»*f = (d/ds)(ir ° <p, ° «)|J=0

= (d/ds)(expFtv(s))\s=0 = Z((t)
and

Gp,*€=C((s~<p,(v(s))Y(O))

= (Vd/dsX)(t, 0)

(/ e •
COROLLARY 1. <?,*&«P,,i>r = <Zf(0,Z,(0> + <Zi(0,Z',(0> /or any £ T,€T U TF
and « € TF. D

Lemma 2 and Corollary 1 show that to study the dynamical properties of the flow
(p we should investigate the behaviour of Jacobi fields.

3. An invariant measure
The existence of invariant measures for a dynamical system is an old and still
important question. For example, in [PI] and [GLW] one can find conditions
sufficient for a pseudo-group of local difEeomorphisms to admifanon-trivial invariant
measure. In the case of a flow on a manifold, a reasonable question is to look for
a smooth (i.e. absolutely continuous with respect to the Riemannian volume)
invariant measure. The geodesic flow on a Riemannian manifold (M,g) always
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preserves the Riemannian volume of (TM, g). Zeghib [Z] proved that the geodesic
flow of a totally geodesic foliation of a compact locally symmetric space always
admits an invariant smooth measure. In this context we prove here the following.

THEOREM 1. The geodesic flow <p of a foliation F preserves the Riemannian volume
of (SF, gF) if and only if F is transversely minimal, i.e. trace Bx = 0.

Proof. Denote by Cl and a>, respectively, the volume forms on TF and SF with the
Riemannian metric gF. On SF we have

a = <o A e,
where 6 is the one-form on SF given by 0(£) = {W, f)gF with W being the vertical
field on TF given by

W{u) = {t^>tu){\) (ueTF).

Since the vector field W corresponds to the flow (ne>) and

LvCl = Lv(o A # + 6)A Lv0,
so

[V, W] = l i m \ ( V - M * V M , - ) = V,

= 0 and consequently

L v n = 0 iff

Now, take a local orthonormal frame X,,..., Xn of vector fields on M such that
X, is tangential to F for i = 1 , . . . , p. Denote by £, (i = 1 , . . . , p) the vertical lift of
Xi and by Ep+j (j=l,...,n) the horizontal lift of Xj. Then

ir*E,=0 and CFEi = Xi ( i = l , . . . , p )
and

TT*Ep+j = Xj and C F £ p + , = 0 (j=\,...,n).

The fields £ , , . . , En+P form a local orthonormal frame on TF, so

n(E1,...,En+p) = i

and

L v f i ( £ , , • • • , En+P) = - I n ( E , , . . . , [ V, £ , ] , . . . , £ n + p )
i = l

- T « ( £ „ . . . , [V, £ , ] , . . . , En+P). (5)
j = 2p+l

The first sum in (5) vanishes because it is equal to

LV\L&L(E\, • • •, E2p),

where ClL is the Riemannian volume form on the tangent bundle TL of a leaf L,
and the geodesic flow on TL preserves ilL. The second sum in (5) is equal to

I {ir*[V,En+jlXj). (6)

To calculate it we need the following.
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LEMMA 3. Let X be a vector field on M and Xh its horizontal lift to TF. Then for any
v of TXF we have

where Z is any vector field on M satisfying Z(t/vc) = î ,u (—e < / < e) for the (local)
flows (ij/,) of X and (tji,) ofXh. Consequently,

(nj. V, Xh](v), X(x)) = <BX(X, X)(x), v) (7)

when X is orthogonal to F and \x\ = constant.

Proof. Since TT,. ° Xh = X ° v, -a ° tjj, = i/f, ° TT for any t. Therefore,

irJL V, Xh](v)) = lim -t (TT* V(O) - irj,. V(^_,o))

= l im- (v — i/ft'ir* V(tj/-tV)) = l im- (v — I/»,*I^_,I;)
«-»o t »-»o t

= lim - (Z{x) - ^,.Z(^_,x)) = [Z, X](x).
I-.0 t

Consequently,

(**[ V, Xh](v), X(x)) = ([Z, X], X)(x)

= {VZX, X){x) - (VXZ, X)(x) = (Z, VxX)(x)

because X is orthogonal to F while Z is tangential to F along the trajectory of X
passing through x. Moreover,

(Z,VxX)(x) = (B±(X,X)(x),v).

In order to complete the proof of Theorem 1 we should just apply formula (7)
to the sum (6). •

Remark 3. The condition trace B x = 0 is equivalent to the following:
(*) Lx(o

1' = 0 for any vector field X tangential to F, where wx is the volume form
of T±F induced by g, i.e. <ox is a q-form on M (q = codim M) given by

w±(vi,...,vq) = det [(Vi, e}); i, j < q],

ex,..., eq being an orthonormal frame of TLF. In other words, a)± determines a
holonomy invariant measure in the sense of [PI]. More precisely, if Tk (k = 1, 2) is
a submanifold transverse to F and h: T, -* T2 is a holonomy map of F, then

Examples. Any Riemannian foliation is transversely geodesic (B x = 0), so it is
transversely minimal. In codimension one, the converse is true: every transversely
minimal foliation of (M, g) is Riemannian with g being bundle-like. If the bundle
T^F is integrable, then F is transversely minimal iff the leaves of the orthogonal
foliation are minimal.
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4. Lyapunov exponents
Let (/,) be an arbitrary flow on a Riemannian manifold (M,g). If x e M and
0 * v € TXM, then we put :

A(u) = limsup-log|/,.i>|. (8)
t-»+oo t

Recall that A(t>) is called the Lyapunov exponent of (/,) in the direction of v. From
the definition it is clear that the function A : TxM\{0} -»IR admits at most n = dim M
values A, < • • • < \k and that there is a filtration L,(x) c L2(x) c • • • c Lk(x) = TXM
such that each of L}{x) is a linear subspace of TXM and A (u) = A, iff u e L,(x)\L;_1(x)
(Lo(x) = 0). Clearly, A(u)=O when v is tangential to the flow.

If M is compact, we have Oseledets' Multiplicative Ergodic Theorem ([O], see
also [M] and [Wa]) which says that M contains a Borel set A such that (i) fi(A) = 1
for any Borel /,-invariant probability measure on M and (ii) for any x in A there
are unique constants A^x) < • • • < X.k(x) and unique decomposition TXM = £,(x)©
• • -®Ek(x) for which

lim -log |/i»«| = A.-(x)
f-*±ao I

if and only if v e £,(x).
In [M] elements of the set A are called regular for the flow (/,).
In this section, we will estimate Lyapunov exponents of the geodesic flow of F.

For this purpose we shall apply Corollary 1 of § 2. Our calculation is analogous to
that of [S] with one difference: we have to remember that Jacobi fields orthogonal
to a geodesic at one point do not remain orthogonal to it all the time.

First, let us put

*(u) = 4|B(«)| + |VB(ti,u)| + |K(ti)| (9)

for M e TF, take £e TVTF (£ # 0) and put

\ Z \ ) \ 2 ( R )

where a is a positive constant and Z = Zf is a Jacobi field along the geodesic c = cv.
We have

') + -(Z' ,Z")
a

-<5(Z'T, c), Z') + -{(VzB){c, c), Z')
a a

-(R(c,Z)c,Z')<2a\Z\-\Z'\
a

-\B(c)\-\Zf + -\VB(c,c)\-\Z\-\Z'\
a a

-\K(c)\ • \Z\ • |Z'|<(a+-<I>(c))
a \ a I zn.
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Therefore,

(log za)'<a+-<i>(c)
a

and

1 i if
limsup-log za(t)<a-\—limsup- 4>(c(s)) ds.

«-+«> t a <̂ +» t Jo

Now, if f(t) = \Z(t)\2 + \Z'(t)\2, then f<a-za for some positive constant a.
Therefore,

1 i if
l imsup- log / (0 : S a+- l imsup- *(c(i)) ds (10)

»~+°° t t <^+°o / J o

for any a > 0. Estimation (10) is the best when

f if 1 1 / 2

a = limsup- <I>(c(s)) ds
L r^+ o° ' Jo J

With this constant we get
i r i f ii/2

limsup-log/(0=s2 limsup- ®(c{s))ds\ . (11)
I-+OO ( [_ J-.+OO t J0 J

Next, let us assume that ir%f; ± c'(0) and consider the function ya :R-*R given by

where ae(0; 1) is fixed. Assume also that (Z'(0), c(0)) = 0, i.e. that (Lemma 1)
(Z',c) = 0. Then

y'a = 2a(Z, Z') - 2(Z, c)(Z, B(c, c)>

and

iyj = a{Z, Z") + a\Z'\2-(Z, B(c, c)f

-(Z, c)(Z', B(c, c))-{Z, c)(Z, (VeB)(c, c)>.

From (3) we get

l)\VB(c,c)\-\B(c)\2)

+ \Z\ • \Z'\(2a-l) • \B(c)\ + \Z'\2al (12)

Assume now that the sectional curvature of M is negative, KM < Ko < 0. Then
for any 5 > 0 there exists 77 > 0 such that the sum in the square brackets in (12) is
always non-negative for any ae(5,1 — S) if only |B(c)| < TJ and \VB(c, c)\ < 77. For
these a we have

y:*-2aK(c)ya>-2aKoya.

If, moreover, £ is horizontal (C£ = 0), then ya(6) = a\ir^\2>0 and y'a(0) = 0. So,
it is easy to see that in this case

ya(t)^>+oo when f-»+oo. (13)
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Now, put

Va(u) = (l-\B(u)\)(K{v)ta-l)-\B(u)\-\VB(u,u)\) (ueTF) (14)

and

g(/) = (Z(r),Z'(/)> (ten).

Then

g' = (Z,Z") + \Z'\2>-K(c)ya

+ [\Z\2(K(c)(a-l)-\VB(c,c)\)

-2\Z\-\Z'\-\B(c)\ + \Zf]

and if £ and a are such that condition (13) holds, then for t big enough we have

g'(t) > \Z(t)\\K{c{t))(a -1) - \VB(c(t), c(t))\

\Z'(t)\2(l-\B(c(t))\)

if |B(c)|<l and \B(c)\ + \VB(c, c)\<K(c)(a-l). In this case, g(f)>0 for f big
enough and

1 1 f
limsup-logg(r)>21imsup- (^a(c(s)))1/2 ds.

r-»+oo ( i-»+oo t Jo
Finally, since

1 1 f
limsup-log/(r)>21imsup- (^a(c(s)))1/2 ds. (15)

r-.+oo ( (^+oo / J o

Let us recapitulate the above results as follows.

THEOREM 2. The Lyapunov exponents A(£) of the flow <p satisfy
< l i m s u p - I <t>(<psv)ds\ , (16)

L '^+o° t Jo J
where £ e 7^5F a«d 4> is given by (9). Moreover, if the sectional curvature of M is
negative, if\B{q>sv)\ and \VB(<psv, <psv)\ are small enough for any s, and if g is horizontal,
then there exists a e (0; 1) such that

>limsupM (Va(<psv
' -+« t J o

2 ds (17)
' -+« t J o

(14).
/ From Corollary 1 and (8), it follows immediately that (16) is equivalent to

(11) while (17) is to (15).

5. Entropy estimate
In this section, M is assumed to be compact. Denote by A the set of all points
regular for cp. For any v of A denote by x(v) the sum of all positive Lyapunov
exponents of <p counted with their multiplicities:

X(v)= X \,(v) • dim E,(v)
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with notation of § 4. The measure entropy h^icp) of <p with respect to any <p-invariant
Borel probability measure î satisfies (see [R])

THEOREM 3. The measure entropy of<p with respect to any invariant measure /J, satisfies

• (18)j
Therefore, the topological entropy ofcp satisfies

k 1 / 2 . (19)
SF

Proof First, for any point v regular for <p put

E"(v)= ® ^ £,(»),

Es(v)= 0 £,(»)

and

E°(v) = \{; lim -log|?,.f| = 0|.
^ /-»±oo I J

Denote by cr the isometry of SF given by o-(v) = -v. Then

<p_,°o- = a° <p, (teU)

and therefore

Next, observe that the Birkhoff Ergodic Theorem asserts that the limit

1 f
a(v)= lim - I ^((psv) ds (21)

(-+0O ( J Q

exists almost everywhere and if fi is an ergodic invariant measure, then

a(v)= * d / t . (22)
JSF

for fi -almost all v.
From (16), we get

x(v)<dimE"(v)-a{v)U2 (a.e.)

and therefore

almost everywhere. Since dim E°(v)>\ and dim E"(o-(v)) = dim Es(v) according
to (20), we have

X(v) + x(<r(v))^(n+pr2)a(v)1'2 '" " (a.e.)

Also,

lim - log \(p-,*o-*t;| = lim - \<p,*^\,
(-»OO ( »-»<» I
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so Lyapunov exponents of the flow (p~x = (<?-,) at cr(v) coincide with those of <f> at
v. Therefore

JSF
Finally,

(*+A">or)4i<(n+p-2) a1/2dfi
JSF JSF

|J Jj |J
proving (18) for ergodic measures. Inequality (18) for an arbitrary measure follows
now directly from the ergodic decomposition and Jacobs theorem (see, for example,
[Wa]). Inequality (19) follows immediately from (18) because

^(lp). •

Remark 3. If F is a trivial foliation with the single leaf M, then p = n and (18)
reduces to

the inequality proved in [S] in the case K < 0.

6. Foliations of hyperbolic manifolds
In this section, we get the following application of estimates obtained in § 4.

THEOREM 4. Let M be a compact manifold of negative sectional curvature. Then there
exists a positive number r\ such that there are no non-trivial foliations of M with the
second fundamental form B satisfying \B\<T) and \VB\<t] everywhere on M. In
particular, there are no totally geodesic foliations of M.

Proof. Assume that TJ is such that the Lyapunov exponents A(f) of the geodesic
flow (p in the direction of horizontal vectors satisfy (17) for some a>0 if |B|<TJ

and |VB|< rj. In this case, A(£)>0 for any horizontal vector £ of TVSF such that
Tr̂ f 1 v and therefore

for any regular point v. From (20), it also follows that

dim Es(v)3:n-l

and since dim E°(v) >1 we get

n+p-l=dim TvSF>2n-\
and n = p.

Let us note that this argument is possible because - according to the Multiplicative
Ergodic Theorem - the set of regular points is non-empty. If M is non-compact, this
is no longer true, so there exist many totally geodesic foliations of compete non-
compact hyperbolic spaces.
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7. Final remarks
(A) Our entropy estimates are obtained in the way analogous to that of Sarnak [S]
who also gives estimates from below. In the same way, one would use inequality
(17) and the Pesin formula ([P], see also [M]) to estimate /iM((p) under some
conditions on M and F. However, one should be careful since, as we could see in
the proof of Theorem 4, we arrived at the conclusion dim F = dim M assuming
inequality (17) for all horizontal vectors. Also, the entropy estimates from [S] have
been improved by Freire-Mane [FM] and Osserman-Sarnak [OS]. In both papers,
the problem is reduced to the study of some Riccati type matrix equation of the form

U'(s)+U2(s) + R(s) = 0, (23)

where R(s) is a symmetric matrix. The symmetry of R(s) allows Green's results to
be applied [Gr] to get estimates of the growth rate of Jacobi fields. In our case, the
Riccati type equation deduced from (3) has the form

U'(s)+U2(s) + A(s)U(s) + B(s) = 0, (24)

where B{s) is, in general, nonsymmetric and indefinite. In fact, a straightforward
but lengthy calculation shows that B(s) is symmetric and definite if and only if F
is totally geodesic, the sectional curvature of M vanishes for all planes spanned by
a vector tangent to F and by a vector orthogonal to F, and the sectional curvature
of the leaves has a constant sign. So, one could follow this procedure in some very
special cases only and therefore estimating /î (<p) from below (for a smooth invariant
measure fi) seems to be promising.

(B) One may also ask: when is <p Anosov? Some necessary conditions are obvious:
codim F should be even and all geodesic flows of the leaves of F should be uniformly
hyperbolic, therefore the leaves could not admit conjugate points. Trying to study
this problem by the methods analogous to those of [E] we find the difficulty
mentioned in (A): the matrix B(s) in (24) need not be neither symmetric nor definite.
It seems that the problem becomes even more interesting when <p is the geodesic
flow of a non-integrable subbundle of TM (equipped with the connection induced
from TM by the orthogonal projection). In this case, <p cannot be decomposed into
the family of the geodesic flows of leaves.

(C) Let us note that there are several results concerning the existence of totally
geodesic foliations of Riemannian manifolds. For example, it is known that
codimension-one totally geodesic foliations of closed Riemannian manifolds of
strictly positive (or, negative) Ricci (or, fc-sectional) curvature do not exist [Br].
Also, there are no complete totally geodesic foliations of locally symmetric negatively
curved Riemannian manifolds of finite volume [Z]. (A foliation of a Riemannian
manifold is said to be complete when all its leaves are complete with respect to the
induced metric.)

In this context several questions arise. For example, do totally geodesic foliations
(of codimension greater than one) exist on compact manifolds of negative fc-sectional
curvature? Or, when it is the set of regular points (in the sense of Oseledets' Ergodic
Theorem) of <p non-empty (if the foliated manifold is not compact) ? Is this true
when M has negative curvature and finite volume, and F is close to geodesic?

https://doi.org/10.1017/S0143385700004740 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004740


650 P. G. Walczak

An answer to these questions could allow us to reprove (or, to improve) Zeghib's
result.

(D) In [GLW], the geometric entropy of a foliation of a compact Riemannian
manifold is denned. It is shown that this entropy depends on the transverse structure
of a foliation, more precisely, on its holonomy pseudogroup. Therefore, the authors
expect that the topological entropy of the geodesic flow of a foliation F could be
related to the geometric entropy of F, the rate of growth of leaves and the second
fundamental tensor of F.
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