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1. Introduction. Let G be a finite group and R a Dedekind domain with 
quotient field K. We denote by RG the group ring of formal linear combina
tions of elements of G with coefficients in R. By an i^G-module we understand 
a unital left i^G-module which is finitely generated and torsion-free as R-
module. In particular, if R is a principal ideal domain this is equivalent to 
considering representations of G by matrices with entries in R. Given a prime 
ideal P in R we let 

RP = {a/b;a,b G R, b$P}. 

If M is an i?G-module we write RPM = RP ®RM. 
In this paper we consider groups G which are the direct product of groups, 

G = Gi X G2. Given RG ̂ -modules Mu i = 1,2, the outer tensor product of 
Mi and M2, denoted Mi # M2, is defined as the i^G-module obtained by 
defining the action of any (gi, g2) 6 G on an element Wi <g) m2 of the i^-module 
Mi ®R M2, by (gi, g2)(mi <g) m2) = gitni (8> g2m2. We say that an i^G-module 
M can be * 'expressed as a tensor product" when there exist i^Grmodules Mu 

i = 1,2, such that M = Mi # M2. It is known that if K is a splitting field for 
G, that is if every irreducible i^G-module remains irreducible under any 
extension of K, then every irreducible i£G-module can be expressed as a tensor 
product. This does not hold in general for i^G-modules. We shall prove that 
if K is a splitting field for G and if Gi and G2 have relatively prime orders, 
then for any prime ideal P of R, every indecomposable i?PG-module can be 
expressed as a tensor product. Furthermore, under the same hypothesis every 
irreducible i?G-module can be expressed as a tensor product. We show by an 
example that the condition on the orders of Gi and G2 cannot be dropped 
in these theorems. We also give an expression for Ext1 of two outer tensor 
products. 

2. Indecomposable modules. 

THEOREM 1. Let Gi, G2 be arbitrary groups, P a prime ideal of R relatively 
prime to the order of G\, K a splitting field for G\. Then every indecomposable 
RpG-module is the outer tensor product of an irreducible RPGi-module and an 
indecomposable RPG2-module. 
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Proof. Let M be an indecomposable i?PG-module. We can consider M as 
an RPGi-module by denning for any gi G Gh m G M, g\m = (gh l)m. Let 
MGl denote this module. The first step will be to show that all the irreducible 
i^pd-submodules of MGl are isomorphic. 

Let M\ be any non-zero irreducible submodule of MGl, and let M / be the 
sum of all submodules of MGl which are isomorphic to Mi. Because. P is 
prime to the order of Gh either MGl ~ Mi or Mi is isomorphic to a direct 
summand of MGl (see 4). Repeating the argument we can get MGl = M / + . . . 
+ M / , where M / is a sum of irreducible submodules of MGl isomorphic to 
Mu 1 < i < t, and such that Mt is not isomorphic to Mj for i ^ j . Since the 
Mi are irreducible, for all i we have KM- ^ KMt

(1) + . . . + KM+S) (s 
depending on i), where Mt

U) ^ Mt for all j . This implies that M- ^ M t
(1) + 

. . . + M,(4° (see 4). Since for i ^ j , Hom G l (M/ , M / ) = 0, it follows that 
(1, g2) M / C M / for all g2 G G2, and all i, 1 < i < *. So AT/ is a G2-module, 
therefore a G-module. Since we assumed that M was indecomposable, this 
implies that MGl ^ Mi ^ Mi + . . . + Mi. 

We can then find an i?P-submodule M2 of M such that Mffl ^ Mi ®Rp M2, 
and such that for gi G Gi, mx G Mi, i = 1, 2, gi(mi ® m2) = gimi ® m2. 

Let (8) denote ® P p and H o m ^ , ) denote Hom f l ? ( ? ( , ) . 
Make M\ ® M2 into an i?PG-module as follows: for any g G G, WÎJ G M*, 

i = 1,2, choose g( m i ® ^ 2 ) to be the image of gm under the ^-isomorphism 
M ~ Mi ® M2, where m corresponds to mi ® m2 in this isomorphism. We 
then have, for any g2 G G2, 

(1, g2) G HomGlX1(Mi ® M2, Mi ® M2) ^ Homff l(Mi, Mi) ® Hom f ip (M2 |M2) . 

Furthermore, since K is a splitting field for Gi, by Schur's lemma, 
HornGl(Mi, Mi) 9^RP; therefore 

HomGlXi(Mi ® M2, Mi ® M2) ^ 1 ® Homf ip(M2f M2). 

Thus for g2 G G2, m2 G M2, we can define g2m2 by the formula 

(1, g2)(mi ® m2) = mi ® g2m2. 

It is easily verified that with this multiplication M2 becomes an i£PG2-module. 
Finally (gi, g2) (mi ® m2) = giWi ® g2m2, so we have an isomorphism of 
i^pG-modules, 

M^Mi# M2. 

Since M is indecomposable it follows that M2 must be indecomposable. 

We observe that Mi is uniquely determined by M because, since P is prime 
to the order of Gi, the Krull-Schmidt theorem holds for i?PGi-modules (see 
3); thus the components of MGl are uniquely determined. M2 is isomorphic 
to all the indecomposable components of MG2; therefore when the Krull-
Schmidt theorem holds for i?PG2-modules, M2 will also be uniquely deter
mined. 
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It follows from Theorem 1 that when the orders of G\ and G2 are relatively 
prime, and K is a splitting field for G, then for all prime ideals P of R, every 
indecomposable PpG-module can be expressed as a tensor product in a unique 
way. 

3. Irreducible modules. 

THEOREM 2. If G± and G2 have relatively prime orders, and K is a splitting 
field for G, then every irreducible RG-module M can be expressed as a tensor 
product. 

Proof. By Theorem 1, for every prime ideal P in R which divides the order 
of G, there are PpG rmodules, MiPl i = 1,2, such that 

RPM Ç* M1P # M2P. 

Then 

KM ^ KM1P # KM2P. 

Therefore, since every irreducible KG-modu\e is uniquely expressible as an 
outer tensor product, it follows that the modules MiP, for the different primes 
P , are all i£-isomorphic, for i = 1,2. From a result of Maranda (4) it follows 
that there exist PG rmodules Mit i = 1,2, such that RPMt ^ MiP for all 
P. Thus 

RPM^RP(M1iM2). 

This implies that for some ideal A in R 

M^A(M!# M2) = AM! # M2. 

If Miy Mi are irreducible RG^-modules, i = 1,2, such that 

Jkfi # M2 S Af/ # iWY, 
then for all P 

RPMt # i?PAf2 9Ë P P M / # PPM2 ' . 

Since the Krull-Schmidt theorem holds for PpG-modules, it follows that 
RPMi ^ RPM/, i = 1,2. Then there are ideals 4 , in R such that ikf/ ^ A tMu 

i = 1,2. Therefore 

A1A^M1§M2)^Mi§M2. 

It is shown in (4) that this implies the existence of a G K such that A XA2 = aR; 
from this we conclude that 

Mi' ^ J4 iAfi, M2' ^ il x-iJkf2. 

If the condition that the orders of G\ and G2 be relatively prime is dropped 
from Theorems 1 and 2, they do not hold in general. The following example 
will prove this assertion. 
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Let Gi = G2 = D, the dihedral group of order 8, defined by generators 
a, by and relations 

a4 = b2 = ly b a b = a-im 

The irreducible representations of D over the rationals Q consist of four 
one-dimensional representations and a two-dimensional representation X, 
which can be defined by the matrices 

It is easily seen that X remains irreducible under any extension of Q, and 
this shows that Q is a splitting field for D. 

Consider also the representation Y defined by 

TO = [_i ']• YW-i1 _J-
It can be verified that X and Y considered as representations over the 2-adic 
valuation ring of Q> Z2, are not equivalent. Now let W = VYV~l, where 

then 

Finally consider the representation T of D X D defined by 

r=[J ^}r®47 u-]> 
where 

- [ . ; ; ] • 
and / is an identity matrix of suitable dimension. T is seen to have entries 
in the integers. Further, T is an irreducible representation because X and W 
are irreducible. Now T restricted to one of the factor groups D is of the form 

[*J. 
where X and Y are irreducible and non-equivalent over Z2. But since Q is a 
splitting field for Z), the Krull-Schmidt theorem holds for Z2Z)-modules. Thus 
T cannot be the tensor product of two representations of D over Z2. 

4. Extensions of tensor products. For the notions used in this section 
we refer the reader to (1). 
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THEOREM 3. Let d and G2 be arbitrary groups, Tt = RGU i = 1, 2, r = RG. 
If Mi are Ti-modules, i = 1, 2, then 

Extr(Mi # M2, M\ # M'2) ^ UomTl(Mh M\) ®R Extr2(M2, M'2) 

+ Extr^Mi, M\) ®RUomV2(M2, M'2), 

Hom r(Mi # M2, M\ # M'2) ^ H o m r i ( M i , M\) 0 B Hom r 2 (M 2 , M'2). 

Proof. Let (g) denote (S)/?. 
Suppose the complex X* with derivation dt is a projective resolution of 

i f *, i = 1, 2. All the modules of X* can be assumed IYfree, and finitely 
generated as IYmodules. Consider now the complex X1 # X2, where 

(x #x )m = 22 Xjjfxk1 
j+k=m 

and where the derivation on X / # Xk
2 is di ® 1 + ( — l)j ® d2. The modules 

of X1 # X2 are T-free, and for m > 0, 

^ ( Z 1 ® X2) = TorS(Mi, M2) = 0. 

It follows that X1 if X2 is a projective resolution of M1 # M2. 
Therefore 

Ext r(Afi # M2, MS # M2') ^ i ^Homr tX 1 # X2, M1 ' # M2')]. 

Now observe that 

H o m r ( r , MS # M2') ^ M / # M2 ' ^ Hom r i ( r i f M / ) <g> Hom r 2 ( r 2 , MJ). 

Therefore since the modules of X1 are IYfree and finitely generated, it follows 
that 

H o m r l l 1 # X2, MS # MS) ^ Homr^X1 , MS) ® Hom r2(X2, M2 '). 

Next observe that Hom r i(I\-, M/) = M( is torsion-free and /^-projective, so 
the modules of Hom r i(X*, MS) are torsion-free, jR-projective. Then from 
Kunneth's theorem we get 

tfw[Homri(X\ M\) ® Hom r2(X2, M'2)} 

^ E Hj[nomTl(X\M\)]®Hk{HomT2(X\Mf
2)] 

j+k=m 

+ £ Torf[ff,[Homr1(X1,M'i)],H*[Hom r t(X i
lM'2)]]. 

j+k=m— 1 

From this, taking m = 1 and observing that ToriR [Horn r i (Mi, M / ) , 
Hom r2(M2 , M2')] = 0 , we obtain the formula for Extr1. Similarly, with 
m = 0, the formula for Hom r follows. 
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