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O U T E R M E A S U R E S A N D T O T A L V A R I A T I O N 

BY 

B. S. THOMSON 

In this note we collect some observations on the outer measures ijjf and if/f 

that have been introduced in [4] and which describe the total variation of the 
function /. These properties have direct applications to the study of the 
derivative and the relative derivative. For definitions and notation the reader is 
referred to [4]. 

The outer measure ijjf in particular is closely related to what Saks [5, p. 228] 
has called the "strong variation" of a function. The connection is, however, not 
as straightforward as might be hoped. For example, if f(x) = sin IJx for positive 
x and f(x) = 0 otherwise, and K is the compact set {0}U{2/rc : n = 1, 2, 3 , . . . } 
then one can compute that ty (K) < ijjf(K) = 1 but that / is neither VB nor VB* 
on the set K; hence, the finiteness of the measures does not imply that the 
variation (in either sense) is bounded on that set. On the other hand, a function 
may be VBG* on a set without the measures i/ff and ifjf being or-finite on that 
set since they can assign infinite measure at a point. Within these restrictions 
some results are, nonetheless, available. 

THEOREM 1. Iff is VBG [respectively, VBG*] on a set X then there is a set 
C ç X that is at most countable such that on X\C the measure tyf [respectively, 
the measure \frf] is cr-finite. Should f be bounded in some neighbourhood of every 
point in X then C may be taken empty. 

Proof. Suppose firstly that / is VBG on X so that there is a sequence of sets 
{Ek} on each of which / is VB and such that X ç u E k . Let C be the collection 
of all points that are isolated in any set Ek and write Ek = Ek \ C. Consider the 
collection 

Sk = {(O, y], z) : x, y G E'k, z = xor y}. 

Because Ek contains no isolated points we can check that Sk is a member of 
^vWQ; because / is VB on Ek we must then have V(f, Sk)<+<*> and this 
shows that ^ff{Ek) is finite for each fc. Since X \ C g UJEk we have that i/rf is 
or-finite on X \ C as required. The set C is certainly countable, and can be 
dropped if there is some assurance that ijjf does not assign infinite measure to 
singletons, and so the theorem follows for the measure ifff. 

For the measure ipf we prove the following lemma. 
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LEMMA. Suppose that f is VB* on a compact set K and that a = inîK and 
b = supK are the "endpoints" of K; then 

ijjf(Kn(a, b))<+oo. 

If f is bounded in some neighbourhood of the points a and b then i/ff(l<Q<+o°. 

To prove the lemma let M be the upper bound of the sums £ 0(f, Ik) taken 
for sequences of nonoverlapping intervals {Ik} with endpoints in K; the fact 
that / is VB* on K says precisely that M is finite. Choose any S e !Q[K H (a, b)] 
in such a way that every (I, x)eS must have I^(a, b) and let {(lt, xt)} be any 
sequence from S that has nonoverlapping intervals {!;}; define the numbers 

[ai,bi] = Ii, ât = sup KD [a, at], and bt = inf K C\ [bt, b] 

all of which certainly exist since K is compact. Note that 

\f(k) - f(at)\ ̂  0(f [ât, xtJ) + 0(/, [*, bt] 

and that the collections {[ât, xt]} and {[xh bj} are each nonoverlapping with 
endpoints in K. (Degenerate intervals, of which there will, of course, be many, 
we will delete.) Accordingly then, X \f(h)~ f(at)\ cannot exceed 2M so that 
V(f, S) is finite, proving the lemma. 

To return to the proof of the theorem, let / be VGB* on X so that there 
must exist a sequence {Kn} of compact sets on each of which / is VB* and such 
that X ç UKn. Let C be the collection of the endpoints of any {Kn} and apply 
the lemma to obtain X\C^UKn\C with \\jf finite on each set Kn\C as 
required. 

In the converse direction Henstock [3] has recently shown that the vanishing 
of \\ff on a set X requires / to be continuous and VBG* on that set. This same 
proof can be used to prove that if the outer measure i// is cr-finite on a set X, 
then / must be VBG* on X. The corresponding statement using the outer 
measure ijjf and the concept VBG is false as Theorem 3 below shows. 

We turn now to the question of the relationship between the values i/>f(X), 
i/^(X), and |/(X)| where (as in Saks [5]) |JB| denotes the Lebesgue outer 
measure of an arbitrary set JE of real numbers and /(X) is the image under / of 
a set X. 

THEOREM 2. Suppose that f is continuous on R. Then |/(X)| = 0 implies that 
il/f(X) = 0.Iff has, in addition, locally bounded variation on R, then the converse 
is also true. 

Proof. Suppose to begin with that |/(X)| = 0; we follow an argument similar 
to Bruckner [2] to prove that t/>/(X) = 0. Without loss of generality we may 
suppose that X is bounded and even that X c [ 0 , 1 ) . Define now the following 
subsets of that interval: 
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M = the set of points in [0,1) at which / attains a strict relative maximum or 
minimum; i,n = the interval [ ( / - l ) 2 _ n , /2_ n) for any n = l, 2 , . . . and any 
j = 1, 2, 3 , . . . , T ; £ j n = the set of points x in X n Iin such that /(*') = /(*) for 
some other point x' + x in i,n; Bn=\Jf=1Bin\ B=C\Bn; Dn = X \ ( M U B J ; 
and D = UDn . 

By our construction we have X ç D n U M U B n for every index n and thus 
X ç D U M U B n , which finally gives X ç D U M U R Thus in order to prove 
that i//r/(X) = 0 we need only show that each of the sets D,M, and B has 
^-measure zero. M is immediate since it is denumerable (see Saks [5, p. 261]). 
If we show that for every index n, i)jf(Dn) = 0, then i/^(D) must vanish since \\ff 

is an outer measure. This, in turn, will follow if we show that i^(Dn Ciljn) = 0 
for every index / and n. As argued in Bruckner [1] we can establish that the 
function / is monotonie on each Dn n Ijn ; but since its values lie in a set of 
Lebesgue measure zero, it is straightforward to argue i/^(Dn C)Ijn) must vanish. 

There remains only to prove that i^(B) = 0; observe that every point x in 
this set must have a sequence {*„} of points converging to x with the property 
that f(xn) = f(x) at every member of the sequence. Accordingly, there is an 
element H* of &V[B] such that for every (I, x)eH*, /(I) = 0. This immediately 
gives ifrf (B) = 0 and completes the proof of the first part of the theorem. 

For the second part of the theorem we need to prove that i/^(X) = 0 implies 
that |/(X)| = 0 under the additional assumption that / has locally bounded 
variation. We cite the following lemma: 

LEMMA (Saks-Sierpifiski). For any bounded set X ^ R and any continuous 
monotonie function f on R, 2i/rf(X)>|/(X)|. 

This is proved, in different language, of course, in Saks [5, p. 211]. 
The theorem now follows from this estimate if / is continuous and 

monotonie, and is readily extended to any continuous function that has locally 
bounded variation by replacing / by its variation function which is then both 
continuous and monotonie, and yields the same measure. This completes the 
proof. 

Incidentally, we might remark that the vanishing of i/^(X) whenever / maps x 
into a set of measure zero permits an improvement of [4, Theorem 5]. 
Applying Saks [5, p. 273], we must now have that for continuous / and g, with 
ifjf being or-finite on a set X, the extreme derivatives-fg(x) and /g(x) must be 
equal */fg-almost everywhere in X. 

THEOREM 8 . 1 / / is continuous and has locally bounded variation on R, then 
the measures ty and i(/f are identical 

Proof. We may consider without loss of generality that / is continuous and 
monotonie since / could be replaced by its total variation function on any 
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interval. If X g R and H * e £ j X ] , then the family {/:(/, x)eH*} is a cover of 
X in the classical vitali sense; thus applying Vitali's theorem for the Lebesgue-
Stieltjes measure [if associated with / there must exist a sequence {(It, Xj)}çH* 
with nonoverlapping intervals such that 

%(X) < I %(i;) < I f(It) < V(f, H*) 

But jiL/(X)>iA/(X) so that we have proved that i//(X)<i/f f(X)<i//(X) which 
establishes the theorem. 

Thus for functions that are locally of bounded variation the outer measures 
ipf and if/f coincide with the usual Lebesgue-Stieltjes measure associated with 
such a function, at least in the event that / is continuous. For discontinuous 
functions [4, Theorem 4] illustrates the fact that the measures necessarily differ. 
It is possible to relax the hypotheses and prove this result for continuous 
functions that are VBG* on the real line but it is doubtful that this can be 
extended any further. For example, it is easy to see that if every level set of / is 
perfect, then the measure i//f must necessarily vanish whereas the vanishing of 
ijjf requires / to be constant. The extreme case is illustrated by our next 
theorem. Let us restrict attention to a particular interval [a, b] and consider the 
outer measures i(/f and ij/f as arising from a function defined on this interval. By 
C[a, b] we shall mean the usual Banach space of continuous functions on [a, b] 
furnished with the supremum norm. 

THEOREM 3. For every function f in C[a, b] excepting a subset of the first 
category in that space the measure ty vanishes and the measure ij/f is non a-finite 
on each subinterval of [a, b]. 

Proof. We obtain the proof as an application of the derivation estimates of 
[4, Theorem 5] in conjunction with the known behaviour of typical functions in 
C[a, b]. Bruckner [2] gives a proof that, excepting a first category subset of 
C[a, b], every function / has each extended real value as a derived number at 
each point, i.e., that the limit points of [f(x + h)-f(x)]/h as h —> 0+ and 
h —> 0 - include every real number and +°° and -<». 

For such a function / let g(x) = x and apply [4, Theorem 5] to the derivatives 
/g(x) and /g(x); then tf must be non cr-finite or the theorem is contradicted. 
Similarly, applying that theorem to the derivatives gf(x) and gf(x), we prove 
that i(jf([a, b]) = 0 and the theorem is proved. 
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