
Psychological Medicine

cambridge.org/psm

Original Article

Cite this article: Zannas AS et al (2023).
Epigenetic aging and PTSD outcomes in the
immediate aftermath of trauma. Psychological
Medicine 53, 7170–7179. https://doi.org/
10.1017/S0033291723000636

Received: 10 November 2022
Revised: 12 February 2023
Accepted: 23 February 2023
First published online: 23 March 2023

Key words:
Aging; DNA methylation; epigenetics; PTSD;
stress

Author for correspondence:
Anthony S. Zannas,
E-mail: anthony_zannas@med.unc.edu

© The Author(s), 2023. Published by
Cambridge University Press

Epigenetic aging and PTSD outcomes in the
immediate aftermath of trauma

Anthony S. Zannas1,2,3,4 , Sarah D. Linnstaedt4,5, Xinming An4,5,

Jennifer S. Stevens6, Nathaniel G. Harnett7, Alyssa R. Roeckner6,

Katelyn I. Oliver6, David R. Rubinow1, Elisabeth B. Binder8,

Karestan C. Koenen9,10, Kerry J. Ressler7 and Samuel A. McLean1,4,5

1Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 2Department of
Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 3Carolina Stress Initiative, University of
North Carolina at Chapel Hill, Chapel Hill, NC, USA; 4Institute for Trauma Recovery, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA; 5Department of Anesthesiology, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA; 6Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine,
Atlanta, GA, USA; 7Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA;
8Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany;
9Department of Epidemiology, Harvard School of Public Health, Harvard University, Boston, MA, USA and
10Department of Social and Behavioral Sciences, Harvard School of Public Health, Harvard University, Boston, MA,
USA

Abstract

Background. Psychological trauma exposure and posttraumatic stress disorder (PTSD) have
been associated with advanced epigenetic age. However, whether epigenetic aging measured at
the time of trauma predicts the subsequent development of PTSD outcomes is unknown.
Moreover, the neural substrates underlying posttraumatic outcomes associated with epigenetic
aging are unclear.
Methods. We examined a multi-ancestry cohort of women and men (n = 289) who presented
to the emergency department (ED) after trauma. Blood DNA was collected at ED presenta-
tion, and EPIC DNA methylation arrays were used to assess four widely used metrics of epi-
genetic aging (HorvathAge, HannumAge, PhenoAge, and GrimAge). PTSD symptoms were
evaluated longitudinally at the time of ED presentation and over the ensuing 6 months.
Structural and functional neuroimaging was performed 2 weeks after trauma.
Results. After covariate adjustment and correction for multiple comparisons, advanced ED
GrimAge predicted increased risk for 6-month probable PTSD diagnosis. Secondary analyses
suggested that the prediction of PTSD by GrimAge was driven by worse trajectories for
intrusive memories and nightmares. Advanced ED GrimAge was also associated with
reduced volume of the whole amygdala and specific amygdala subregions, including the
cortico-amygdaloid transition and the cortical and accessory basal nuclei.
Conclusions. Our findings shed new light on the relation between biological aging and trauma-
related phenotypes, suggesting that GrimAge measured at the time of trauma predicts PTSD
trajectories and is associated with relevant brain alterations. Furthering these findings has the
potential to enhance early prevention and treatment of posttraumatic psychiatric sequelae.

Introduction

Psychological trauma and stress-related phenotypes have long been linked with accelerated
aging. This link has repeatedly captured the imagination of literary writers (Hugo, 2012;
Zannas, 2019b), has been observed in clinical settings (Bersani, Mellon, Reus, & Wolkowitz,
2019), and has been supported by epidemiological studies (Felitti et al., 1998; Vaccarino
et al., 2013). Dissecting the underlying mechanisms is important and timely, given the high
prevalence of trauma exposure and global aging of the human population (Breslau et al.,
1998; U.S. Department of Health and Human Services, 2013). Among plausible mechanisms,
epigenetics – the chemical changes that regulate genomic function without altering the genetic
code – has emerged as a key link between stress exposure and health outcomes and as a
molecular hallmark of the aging process (Cavalli & Heard, 2019; Gassen, Chrousos, Binder,
& Zannas, 2016; Lopez-Otin, Blasco, Partridge, Serrano, & Kroemer, 2013). In particular, a
critical epigenetic modification is DNA methylation (DNAm) in the cytosine-guanine
(CpG) context, which through array technology has become widely studied in humans
(Yong, Hsu, & Chen, 2016; Zannas, 2019a).

DNAm patterns have been shown to change extensively with age (Fraga et al., 2005;
Horvath & Raj, 2018), and composite (multi-CpG) methylomic markers (so-called ‘epigenetic
aging’) that combine the DNAm status of multiple age-regulated CpG sites can predict not
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only chronological age (Hannum et al., 2013; Horvath, 2013) but
also diverse health outcomes (Hillary et al., 2020; Joyce et al.,
2021; Levine et al., 2018; Lu et al., 2019; McCrory et al., 2021;
Zheng et al., 2016) [reviewed in (Horvath & Raj, 2018;
Palma-Gudiel, Fañanás, Horvath, & Zannas, 2020)]. The early
(first-generation) metrics by Horvath and Hannum et al. were
derived by regression models aiming to predict chronological
age, and the difference between DNAm-predicted and chrono-
logical age was proposed as a measure of an individual’s biological
aging (Hannum et al., 2013; Horvath, 2013). Subsequently devel-
oped (second-generation) metrics, such as the widely used
PhenoAge and GrimAge, further aimed to predict healthspan
and lifespan by including in their regression model clinical bio-
markers and mortality endpoints (Levine et al., 2018; Lu et al.,
2019).

Leveraging these markers, we and others previously linked
various types of stress and trauma exposure with advanced epi-
genetic age (Belsky et al., 2022; Boks et al., 2015; Brody, Yu,
Chen, Beach, & Miller, 2016; Copeland, Shanahan, McGinnis,
Aberg, & van den Oord, 2022; Harvanek, Fogelman, Xu, &
Sinha, 2021; Katrinli et al., 2020; Lim, Nzegwu, & Wright, 2022;
Wolf et al., 2018; Zannas et al., 2015a). Moreover, published
work to date has associated advanced epigenetic age with post-
traumatic stress disorder (PTSD) (Katrinli et al., 2020; Kuan
et al., 2021; Mehta et al., 2022; Na et al., 2022; Wang et al.,
2022; Wolf et al., 2018), though a lack of and even an opposite
direction of association have been reported (Boks et al., 2015;
Mehta et al., 2018; Verhoeven et al., 2018). Among studies report-
ing positive associations, findings further vary depending on the
timing of PTSD diagnosis: several cohorts have associated
advanced epigenetic age with either lifetime or current PTSD
(Katrinli et al., 2020; Kuan et al., 2021; Mehta et al., 2022; Na
et al., 2022; Wang et al., 2022), but a meta-analysis found this
association to be significant for lifetime PTSD only (Wolf et al.,
2018). Such variable findings suggest that epigenetic aging and
PTSD risk are linked through a complex relationship, the direc-
tion of which remains unclear. Importantly, no studies to date
have examined whether epigenetic aging measured at the time
of trauma predicts the subsequent development of PTSD out-
comes. This hypothesis is plausible, given that several hallmarks
of aging, including chronic inflammation, metabolic dysregula-
tion, stem cell dysfunction, and epigenetic alterations, are thought
to play key roles in PTSD pathogenesis (Kao et al., 2016;
López-Otín, Blasco, Partridge, Serrano, & Kroemer, 2022;
Mellon, Gautam, Hammamieh, Jett, & Wolkowitz, 2018; Seo
et al., 2019; Zannas, Provençal, & Binder, 2015b). Moreover,
there is a paucity of studies integrating epigenomic and pheno-
typic assessments with neuroimaging measures to uncover the
neural substrates underlying posttraumatic outcomes associated
with epigenetic aging.

To address these knowledge gaps, the present study leverages
the AURORA (Advancing Understanding of RecOvery afteR
traumA) cohort (McLean et al., 2020), a multi-ancestry cohort
of women and men who presented to the emergency department
(ED) after trauma. Participant assessments included blood collec-
tion at ED presentation, longitudinal PTSD symptoms during the
6 months following trauma exposure, and structural and func-
tional neuroimaging 2 weeks after trauma. To capture the poten-
tially different aspects and unique contributions of epigenetic
aging markers, we here examine all four aforementioned, widely
used epigenetic aging markers (HorvathAge, HannumAge,
PhenoAge, and GrimAge) (Hannum et al., 2013; Horvath, 2013;

Levine et al., 2018; Lu et al., 2019). Given that prevention and
treatment of psychiatric sequelae would greatly benefit from bio-
markers available early after trauma exposure, we first examine if
epigenetic aging at ED presentation predicts the development of
PTSD outcomes during follow-up. We then assess structural
and functional neural correlates of epigenetic aging that may be
relevant for PTSD outcomes. In particular, our structural MRI
analyses focus on the amygdala and the hippocampus, two
brain regions with established roles in stress and trauma-related
phenotypes (Del Casale et al., 2022; Morey et al., 2012), whereas
functional MRI analyses explore alterations in network connectiv-
ity, which have been linked with PTSD outcomes (Korgaonkar
et al., 2020; Sheynin et al., 2020).

Methods

Study participants

All data for the present report are obtained from the AURORA
(McLean et al., 2020), a large multi-ancestry cohort study (total
n > 3000) that involves women and men presenting to the ED
within 72 h after exposure to psychological trauma. Inclusion
and exclusion criteria for AURORA participants were as follows.
Patients aged 18–75 years who presented to the ED within 72 h of
trauma exposure at participating ED sites were screened for study
eligibility. Trauma exposures automatically qualifying for study
enrollment were motor vehicle collision, physical assault, sexual
assault, fall greater than 10 feet, or mass casualty incidents.
Other trauma exposures also qualified if: (1) the individual
responded to a screener question that they experienced the expos-
ure as involving actual or threatened serious injury, sexual vio-
lence, or death, either by direct exposure, witnessing, or
learning about it; and (2) the research assistant agreed that the
exposure was a plausible qualifying event. Exclusion criteria
included administration of general anesthesia, long bone fractures,
laceration with significant hemorrhage, solid organ injury >
American Association for the Surgery of Trauma Grade 1, not
alert and oriented at the time of enrollment, not fluent in written
or spoken English, visual or auditory impairment precluding
completion of web-based neurocognitive evaluations and/or tele-
phone follow-ups, self-inflicted or occupational injury, prisoners,
individuals pregnant or breastfeeding, individuals reporting
ongoing domestic violence, and individuals taking >20 mg mor-
phine or equivalent per day. To be eligible for the study, patients
also needed to have an iOS or Android-compatible smartphone
with internet access and an email address that they check
regularly.

The present study is focused on a subset of AURORA partici-
pants (n = 289) in whom epigenetic assessments of ED blood
samples were performed. A smaller subset of these individuals
(n = 63) also underwent neuroimaging assessments 2 weeks
after trauma. Clinicodemographic characteristics of included par-
ticipants are presented in Table 1.

Phenotypic measures

Probable PTSD diagnosis at 6 months was defined using the
PTSD Checklist for DSM-5 (PCL-5) – a 20-item self-report
scale that uses a 0–4 response format asking how much the par-
ticipant was ‘bothered by’ each PTSD symptom (0–4 scale) in the
past 30 days – and a previously established PCL-5 score threshold
of ⩾31 (Blevins, Weathers, Davis, Witte, & Domino, 2015; Bovin
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et al., 2016; Kessler et al., 2021). Distinct PTSD-related symptom
trajectories (intrusive memories, hyperarousal, avoidance, night-
mares, and sleep disturbance) were characterized using data
from symptom assessments collected from AURORA participants
at 10 timepoints during the 6 months after trauma exposure
(McLean et al., 2020). Each of these symptoms is assessed through
smartphone-based surveys using 2–3 items asking participants to
rate the symptom severity or frequency (0–4 scale) experienced
over the preceding days. For each symptom, latent trajectory
classes were defined using growth mixture models. Given the
smaller cohort subset with epigenetic data, statistical power was
increased here by comparing the combined trajectories with low
or moderate recovery symptoms v. those with moderate or high
persistent symptoms over the follow-up duration. Further details
are provided in online Supplementary Methods and in Beaudoin
et al. (2023). PTSD symptoms at ED presentation and over the
lifetime were assessed using the abbreviated (six-item) civilian
version of PCL-5 (PCL-C), and the presence of significant
PTSD symptoms at ED presentation was defined using a previ-
ously established score threshold of ⩾14 (Lang & Stein, 2005).
Childhood trauma history was assessed using a modified,
11-item survey derived from the short version of the childhood
trauma questionnaire (CTQ) (Bernstein et al., 2003). The survey
included two items each from the physical neglect, emotional neg-
lect, emotional abuse, and physical abuse subtype and three items
from the sexual abuse subtype, with each item asking the fre-
quency (0–4 scale) of traumatic experience during the partici-
pant’s childhood. Lifetime trauma burden was defined as the

sum of all questionnaire items comprising the Life Events
Checklist (LEC-5) (Gray, Litz, Hsu, & Lombardo, 2004;
Weathers et al., 2013). General mental and physical health at
the time of ED presentation were derived using normative scores
based on questions from the 12-item Short Form Health Survey
(SF-12) (Ware, Kosinski, & Keller, 1996). Quantity of daily
tobacco and alcohol use at ED presentation was assessed using
the PhenX toolkit (Hamilton et al., 2011).

DNA methylation

Blood samples were collected in the ED using DNA PAXgene
tubes (Qiagen, Germantown MD, USA), frozen at −20°C at
each collection study site, and then batch-shipped on dry ice to
the NIMH repository (Piscataway, NJ, USA). DNA was isolated
upon arrival to the repository using chemagen magnetic bead
technology via Chemagic 360 instrumentation (PerkinElmer,
Waltham, MA, USA). DNA concentration and purity were deter-
mined using UV/Vis on a Lunatic reader (Unchained Labs,
Pleasanton, CA, USA). Bisulfite conversion of the isolated DNA
was performed at the University of Minnesota Genomics
Center, St. Paul, MN using EZ-96 DNA Methylation Kits
(Zymo Research, Irvine, CA, USA) according to the manufac-
turer’s instructions. DNAm was quantified using the Infinium
Human MethylationEPIC BeadChip (Illumina Inc., San Diego,
CA, USA). All steps were performed manually except for hybrid-
ization and staining steps, which were performed by a liquid
handling robot (Tecan, Männedorf, Switzerland). To account
for potential technical batch effects, DNA samples from different
outcomes were randomized across beadchips. Quality control
(QC) was performed using the CHAMP package in RStudio
(Tian et al., 2017). ChAMP is an integrated analysis pipeline
that filters low-quality probes and samples, adjusts for Infinium
I and Infinium II probe design, and corrects for batch effects.
Methylation data were cleaned by removing: (i) probes with low
detection p > 0.1 or with beadcount <3 in at least 5% of samples;
(ii) previously identified cross-reactive and polymorphic probes;
(iii) probes containing SNPs that overlap with a CpG site, at single
base extension sites, or when the CpG probe was located near
short insertions or deletions; and (iv) probes located on the X
and Y chromosomes. Data were then visually inspected by singu-
lar value decomposition and remaining batch effects were
removed using ComBat (Johnson, Li, & Rabinovic, 2007; Leek,
Johnson, Parker, Jaffe, & Storey, 2012). QC-processed DNAm
data (β values) were used to calculate epigenetic aging with the
online Horvath calculator, and downstream analyses focused on
the four widely used first- and second-generation epigenetic
aging markers: HorvathAge (Horvath, 2013), HannumAge
(Hannum et al., 2013), PhenoAge (Levine et al., 2018), and
GrimAge (Lu et al., 2019). Since different immune cell types
have distinct epigenetic profiles and their blood distribution can
be influenced by stress (Adalsteinsson et al., 2012; Beis et al.,
2018), array DNAm data and standard procedures were used to
estimate blood cell proportions (CD8 + T cells, CD4 + T cells, B
cells, natural killer cells, granulocytes, monocytes) (Houseman
et al., 2012) that were included as covariates to adjust for potential
confounding in all regression models.

Genetic ancestry principal components

DNA samples were genotyped using the Infinium Global
Screening Array-24 v1.0 (Illumina Inc.) at the Stanley Center/

Table 1. Participant demographic and clinical variables

Clinicodemographic variables
Participants with ED epigenetic aging
and longitudinal phenotypes (n = 289)

Age, years (S.D.) [range] 38.5 (14.2) [18–73]

Sex, n (%)

Female 199 (68.9)

Male 90 (31.1)

Race/ethnicity, n (%)

Hispanic 7 (2.4)

Non-Hispanic Black 177 (61.2)

Non-Hispanic other 3 (1.0)

Non-Hispanic White 102 (35.3)

Probable PTSD at 6 months, n (%)

Yes 68 (27.9)

No 176 (72.1)

MRI data available, n (%) 63 (21.8)

ED epigenetic age–chronological age correlations, r

HorvathAge 0.92

HannumAge 0.91

PhenoAge 0.90

GrimAge 0.93

MRI, magnetic resonance imaging; n, number; r, Pearson correlation coefficient; S.D.,
standard deviation.
PTSD at 6 months was defined using the PTSD Checklist for DSM-5 (PCL-5) and a previously
established score threshold of ⩾31 (Blevins et al., 2015; Bovin et al., 2016; Kessler et al.,
2021).
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Broad Institute. Data were quality-controlled and principal com-
ponent analysis (PCA) was implemented using the Plink1.9 pro-
gram. We performed PCA jointly on our samples with samples
from the 1000 Genomes Project (1000G) and extracted the top
10 principal components (PCs) (plink.eigenvec and plink.eigenval
files were generated) of the variance-standardized relationship
matrix. With the 1000G PCs, we trained a decision tree and
used the rpart (Recursive Partitioning and Regression Trees)
package in RStudio (Version 2022.02.3) to test AURORA PCs
to predicate the genetic ancestry and the possible genetic ancestry
probabilities.

Neuroimaging measures

T1-weighted structural MRI and resting-state functional MRI
(rs-fMRI) data were collected across five sites with harmonized
acquisition parameters at the 2-week follow-up timepoint
(Harnett et al., 2021). Data were preprocessed using FMRIPREP
v1.2.2 (Esteban et al., 2019). Brain surfaces were reconstructed,
and subcortical volumes were extracted using FreeSurfer v6.0.1
(Dale, Fischl, & Sereno, 1999), in order to generate volumetric
data for the hippocampus and the amygdala (left and right).
Each hippocampus was subdivided into 21 subregions (Iglesias
et al., 2015) and each amygdala into nine nuclei (Saygin et al.,
2017). For each of these metrics and to minimize the number
of comparisons, analyses examined the sum volume of both
sides (left and right) as the variable of interest. The rs-fMRI
data (TR = 2.36 s, 230 volumes, 9:05 min scan time) were pro-
cessed using ICA-AROMA as part of the FMRIPREP pipeline,
which has been shown to handle motion artifacts in a robust,
data-driven fashion that performs equal to or better than standard
scrubbing or censoring procedures (Pruim et al., 2015b; Pruim,
Mennes, Buitelaar, & Beckmann, 2015a). The rs-fMRI data were
further processed within the Analysis for Functional
NeuroImages program 3dTproject to perform linear detrending,
censoring of non-steady state volumes identified by FMRIPREP,
bandpass filtering (0.01–0.1 Hz), and regression of white matter,
corticospinal fluid, and global signal to account for potential
physiological noise. Network connectivity was estimated by cor-
relating the mean fMRI time-course from regions of interest
(ROIs) in the Yeo 7-Network atlas (Yeo et al., 2011).
Independent Pearson correlation coefficients were calculated for
each pair of ROIs to represent the strength of network-to-network
functional connectivity. Pearson correlations were z-transformed
prior to statistical analyses.

Statistical analysis

All statistical analyses were performed in R version 4.2.0. Logistic
regression models tested ED epigenetic aging markers as the pri-
mary (four total) independent variables and 6-month probable
PTSD diagnosis as the primary dependent variable of interest.
These primary analyses were corrected for multiple testing with
the conservative Bonferroni method (Bland & Altman, 1995),
leading to an adjusted α ( p value threshold) of 0.05/4 = 0.0125.
Secondary analyses evaluated associations between epigenetic
aging and distinct PTSD-related symptom trajectories and
between individual GrimAge CpG sites and PTSD outcomes.
Other secondary analyses evaluated associations between epigen-
etic aging and amygdala and hippocampus volumes as well as
resting-state functional connectivity. These analyses were

corrected for multiple testing using the false discovery rate
(FDR) method (Benjamini & Hochberg, 1995). All models were
adjusted for age, sex, self-reported race/ethnicity, educational
level, marital status, and DNAm-estimated blood cell proportions.
We further controlled all models involving MRI data for imaging
site and models involving structural MRI for total intracranial vol-
ume. Additional sensitivity analyses adjusted for CTQ and life-
time trauma scores, PTSD symptoms at the time of ED
presentation and over the lifetime, SF-12 mental and physical
health scores, quantity of tobacco and alcohol use, income,
body mass index (BMI), and the first three genetic ancestry
(SNP-based) PCs.

Results

Cohort overview and clinicodemographic characteristics

The characteristics of participants (n = 289) are summarized in
Table 1. Most participants were non-Hispanic Black women less
than 40 years of age. As expected, all four epigenetic aging mar-
kers (HorvathAge, HannumAge, PhenoAge, and GrimAge) were
strongly correlated with chronological age (all pairwise correlation
p values < 2.2 × 10−16). Approximately one in four participants
had probable PTSD 6 months after trauma. There were no
significant differences in chronological age, sex, or race/ethnicity
between participants with and without 6-month PTSD (all
p values > 0.46).

Advanced GrimAge at the time of trauma predicts PTSD
outcomes in the ensuing 6 months

Primary analyses tested whether any of the four measures of epi-
genetic aging (HorvathAge, HannumAge, PhenoAge, and
GrimAge) predicted 6-month PTSD outcome. After adjusting
for age, sex, self-reported race/ethnicity, educational level, marital
status, and DNAm-estimated blood cell proportions, and correct-
ing for multiple comparisons (Bonferroni-adjusted α < 0.0125),
only ED GrimAge significantly predicted 6-month probable
PTSD diagnosis (n = 244, β = 0.11, S.E. = 0.04, z = 2.5, p = 0.0114).
This effect remained significant after further stepwise adjustment
for childhood and lifetime trauma burden, PTSD symptoms at
the time of ED presentation and over the lifetime, general mental
and physical health, quantity of tobacco and alcohol use, income,
BMI, and genetic ancestry PCs ( p values between 0.0092 and
0.0414). Moreover, a dose–response relationship between epigen-
etic aging and PTSD was observed, with individuals in the highest
GrimAge tertile having 17% greater risk than those in the
medium and 44% greater risk than individuals in the lowest tertile
(Fig. 1a, b). Secondary analyses assessed whether ED GrimAge
predicts distinct PTSD-related symptom trajectories: intrusive
memories, hyperarousal, avoidance, nightmares, and sleep disturb-
ance. As expected, pairwise positive correlations were observed for
scores obtained for all five symptom categories at each of the 10
timepoints (all p values < 4.8 × 10−7). In adjusted analyses,
advanced GrimAge significantly predicted worse trajectories
of intrusive memories (n = 289, β = 0.10, S.E. = 0.04, z = 2.5,
p = 0.0125) and nightmares (n = 289, β = 0.09, S.E. = 0.04, z = 2.1,
p = 0.0319) during the 6 months after trauma, and these predic-
tions did not change after further controlling for PTSD symptoms
at ED presentation ( p = 0.0177 for intrusive memories and 0.0405
for nightmares). In contrast, no significant findings were observed

Psychological Medicine 7173

https://doi.org/10.1017/S0033291723000636 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291723000636


for hyperarousal, avoidance, and sleep ( p values > 0.24). Taken
together, these findings suggest that advanced epigenetic age is
associated with heightened PTSD risk and, in particular, increased
intrusive memories and nightmares in the aftermath of trauma.

GrimAge CpG sites and PTSD outcomes

The prediction of PTSD trajectories by the composite
(multi-CpG) GrimAge marker also prompted us to examine
whether it may be driven by specific CpG sites. To address this
question, we separately tested if 6-month probable PTSD was
associated with ED methylation levels at each of the 1030 CpGs
that comprise GrimAge (Lu et al., 2019). After adjusting for
age, sex, self-reported race/ethnicity, educational level, marital sta-
tus, and DNAm-estimated blood cell proportions, a total of 39
CpGs sites were found to predict PTSD at the nominal but not
the FDR-adjusted level of statistical significance (online
Supplementary Table S4). Among these 39 CpG sites, ED methy-
lation at only two sites was also significantly associated with the
GrimAge-predicted intrusive memories and nightmares symptom
trajectories (cg06722193, cg02716826; online Supplementary
Table S4). To rule out the possibility that associations merely
reflect correlation strength of these CpGs with GrimAge in our
data, we performed pairwise correlations of each GrimAge CpG
with the composite GrimAge metric. When ranking correlations
from smaller to larger p values, cg06722193 and cg02716826
were respectively ranked #286 and #53 among all GrimAge
CpGs. The association with cg06722193 (shown in Fig. 2) is par-
ticularly interesting, given that this CpG is located within IRX6, a
gene that is involved in neuronal development and is epigeneti-
cally regulated by stress exposure (Del Corvo et al., 2020; Leung
et al., 2022; Star et al., 2012). These findings provide limited evi-
dence for genomic site-specific prediction of PTSD outcomes and
rather support this prediction as an overall (i.e. emergent) prop-
erty of the composite GrimAge marker.

Advanced GrimAge is associated with brain alterations
relevant for PTSD outcomes

To identify posttraumatic brain alterations associated with
advanced epigenetic age (assessed via ED GrimAge), we leveraged
structural and functional neuroimaging (MRI) data available in
a smaller subset of individuals at the 2-week follow-up
timepoint (n = 63; 40 women, 23 men; age mean, 35.1; age range
= 18–67). Structural MRI analyses focused on the amygdala and
the hippocampus, two brain regions with established roles in
stress and trauma-related phenotypes (Del Casale et al., 2022;
Morey et al., 2012). After adjusting for age, sex, self-reported race/
ethnicity, educational level, marital status, DNAm-estimated blood
cell proportions, imaging site, and total intracranial volume,
advanced GrimAge was significantly associated with reduced
whole amygdala volume (n = 62, β =−22.7, S.E. = 10.8, t =−2.1, p
= 0.0413) but not hippocampal volume ( p = 0.21). Secondary ana-
lyses examined if this association was driven by selected amygdala
subregions (nine measures total). After covariate adjustment and
FDR correction for multiple testing, advanced GrimAge was signifi-
cantly associated with smaller volumes of the cortico-amygdaloid
transition and the cortical and accessory basal nuclei
(FDR-adjusted p values between 0.0013 and 0.0169; example
shown in Fig. 3). We next explored associations between advanced
GrimAge and resting-state functional network connectivity
(21 measures total). After covariate adjustment and FDR correction,
GrimAge was not significantly associated with any network con-
nectivity measure (n = 63; all FDR-adjusted p values > 0.07).

Discussion

Prior research has linked stress exposure and PTSD with
advanced epigenetic age (Belsky et al., 2022; Boks et al., 2015;
Brody et al., 2016; Copeland et al., 2022; Harvanek et al., 2021;
Katrinli et al., 2020; Kuan et al., 2021; Lim et al., 2022; Mehta

Fig. 1. Advanced GrimAge at emergency department (ED) presentation predicts increased risk for posttraumatic stress disorder (PTSD) 6 months later. (a)
Proportion of participants with 6-month probable PTSD stratified by ED GrimAge tertile. (b) Graph depicting how ED GrimAge predicts the probability for
6-month PTSD diagnosis. Predicted probabilities have been adjusted for covariates (details in Methods section). Depicted GrimAge residuals are after adjusting
for chronological age. Additional statistics are provided in Results.
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et al., 2022; Na et al., 2022; Wang et al., 2022; Wolf et al., 2018;
Zannas et al., 2015a), but no studies have examined whether epi-
genetic aging measured at the time of trauma predicts subsequent
development of PTSD outcomes. Leveraging the AURORA cohort
(McLean et al., 2020), the present study showed that advanced
epigenetic age (measured with GrimAge) at ED presentation pre-
dicts increased PTSD risk and worse intrusive memories and
nightmares symptom trajectories in the ensuing 6 months. In a
cohort subset with neuroimaging data 2 weeks after trauma,
advanced ED epigenetic age was further associated with reduced
whole amygdala and amygdala subregion volumes.

Recent work in the AURORA study has identified promising
clinical predictors (Kessler et al., 2021; Ziobrowski et al., 2021),
but personalized interventions would also benefit from molecular

markers of risk for developing distinct posttraumatic outcomes
(Howie, Rijal, & Ressler, 2019; Linnstaedt, Zannas, McLean,
Koenen, & Ressler, 2020; Smith et al., 2020; Zannas et al.,
2015b). Epigenetic signatures have been proposed as prime candi-
date markers of posttraumatic vulnerability (Howie et al., 2019;
Linnstaedt et al., 2020; Smith et al., 2020; Zannas et al., 2015b),
given the epigenome’s role as a molecular interface between envir-
onment and health (Cavalli & Heard, 2019; Gassen et al., 2016).
Our finding that GrimAge is a predictive marker of PTSD extends
previous studies observing advanced GrimAge in individuals with
current or lifetime PTSD (Katrinli et al., 2020; Na et al., 2022;
Wolf et al., 2018; Yang et al., 2021). Moreover, our prospective
observations build on previous longitudinal studies indicating
that both trauma exposure and increased PTSD symptoms are

Fig. 2. Example of a GrimAge CpG, the methylation levels of which predict 6-month posttraumatic stress disorder (PTSD) and related symptom trajectories at the
nominal level of statistical significance. Predicted probabilities have been adjusted for covariates (as described in Methods). Detailed statistics are provided in
online Supplementary Table S4.

Fig. 3. Advanced GrimAge is associated with reduced
amygdala subregion volumes. Example is shown for vol-
ume of the accessory basal nucleus of the amygdala.
The brain image on the right depicts the accessory
basal nucleus from a single subject. Depicted GrimAge
residuals are after adjusting for chronological age and
DNA methylation-estimated blood cell proportions.
Additional statistics are provided in Results.
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associated with accelerated epigenetic aging over time (Belsky
et al., 2022; Mehta et al., 2022; Sumner, Colich, Uddin,
Armstrong, & McLaughlin, 2019; Wolf et al., 2019; Yang et al.,
2021). The unique ability of GrimAge to capture vulnerability
in the immediate aftermath of trauma may stem from its develop-
ment as a predictor of healthspan and lifespan, which likely makes
it more amenable to environmental stressors as life advances. In
contrast, we speculate that DNAm-based predictors of chrono-
logical age may undergo more tightly programmed epigenomic
changes as a result of advancing age. Intriguingly, our longitu-
dinal data spanning distinct symptom categories further show
that GrimAge predicts worse trajectories only for intrusive mem-
ories and nightmares, thereby suggesting that advanced epigenetic
age contributes to psychiatric risk through select PTSD symptoms
that develop and persist longitudinally after trauma exposure.

Leveraging neuroimaging data available in a subset of study
participants, we also found that GrimAge is associated with
reduced volume of the whole amygdala and specific amygdala
subregions, including the cortico-amygdaloid transition and the
cortical and accessory basal nuclei. Reduced volume in the
whole amygdala and in select amygdala subregions has been pre-
viously observed in PTSD (Morey et al., 2012, 2020). Work in ani-
mal models further shows that amygdala subregions can shrink in
stress-exposed mice and further predispose to exacerbated behav-
ioral sequelae after stress exposure (Golub et al., 2011; Yang et al.,
2008). Our findings thus suggest that advanced epigenetic age is
associated with structural alterations in the amygdala and related
increased vulnerability for PTSD development and persistence.
This possibility is congruent with a prior study linking
GrimAge with brain region-specific cortical atrophy (Katrinli
et al., 2020). It is important to note that all neuroimaging mea-
sures in the present study were obtained 2 weeks after ED presen-
tation. While this timepoint was in part selected due to challenges
inherent to performing MRI at the time of trauma exposure, it
also lies temporally between ED presentation and the 6-month
follow-up. Thus, an intriguing hypothesis is that early structural
brain alterations associated with advanced GrimAge could predis-
pose to worse PTSD trajectories in the aftermath of trauma.
However, the current study design limited our ability to test
this hypothesis, given the lack of neuroimaging measures before
trauma exposure that would be necessary to temporally disentan-
gle the observed associations.

Additional limitations should be considered when interpreting
the findings reported herein. Although our analyses adjusted for
several potential confounders, the study’s unique design and
observational setting did not allow us to include a control (non-
trauma) group that would disentangle the extent to which
advanced GrimAge was a direct consequence of or already present
before the traumatic event. However, given that blood samples
were collected within hours of trauma exposure and neuroima-
ging was performed at the 2-week follow-up, it is likely that epi-
genetic patterns and brain alterations were already present prior
to trauma. Moreover, the study design precluded us from testing
whether PTSD symptoms accelerate epigenetic aging, which is a
more commonly studied direction of association. Analyses were
adjusted for key potential confounders, including childhood and
lifetime trauma burden, ED and lifetime PTSD symptoms, and
general mental and physical health, but the possibility that
other undocumented confounders could in part account for the
observed associations cannot be ruled out. As expected, all symp-
tom scores showed significant positive pairwise correlations and
thus do not represent independent signals; however, our findings

suggest that advanced GrimAge is specifically associated with
worse intrusive memories and nightmares symptom trajectories.
Our sample size was modest, especially for analyses involving
neuroimaging data. This limited our power for conclusively test-
ing genomic site-specific predictions and precluded us from test-
ing if brain alterations statistically mediate the prediction of PTSD
outcomes by GrimAge. Epigenetic assessments were conducted in
whole blood, and while our analyses adjusted for blood cell com-
position, the findings’ mechanistic relevance remains to be dis-
sected in brain tissues with direct phenotypic relevance, such as
the amygdala. The presented findings will thus benefit by replica-
tion and further dissection in larger independent cohorts and
postmortem datasets.

In sum, the findings presented here shed new light on the rela-
tion between biological aging and trauma-related phenotypes,
suggesting that GrimAge measured immediately after trauma pre-
dicts subsequent PTSD trajectories and is associated with relevant
brain alterations. Furthering these findings has the potential to
enhance early prevention and treatment of posttraumatic psychi-
atric sequelae.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291723000636
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