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Abstract

The coproduct of a family of Kleene algebras is determined firstly by describing the maximal
homomorphic image of a De Morgan algebra in the subvariety of Kleene algebras and, secondly,
by characterizing the categorical product in the dual category of Kleene spaces.
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0. Introduction

A De Morgan algebra (L; v , A , ~ ,0 ,1) is an algebra of type <2,2,1,0,0> such
that (L; V , A , 0 , 1) is a bounded distributive lattice with largest element 1,
smallest element 0, and an involutorial dual order-isomorphism ~ , that is, the
equations x = x, ~(xvy) = ~XA ~y, ~{xAy) = ~xv ~y, ~0 = 1 and
~ 1 = 0 are identically satisfied. A Kleene algebra is a De Morgan algebra which also
satisfies the equation (XA ~ J C ) A ( J V ~y) = XA ~X, while a Boolean algebra is a
De Morgan algebra satisfying the identity XA ~X = 0. The varietal categories of
De Morgan, Kleene and Boolean algebras are denoted by M, K and B, respectively,
and M=>K=>B. Each of these categories can be considered as a subcategory of the
category D of bounded distributive lattices and (0, l)-preserving lattice-homomor-
phisms. It will often be desirable to emphasize the preservation of the ~ -operation
by homomorphisms, congruences and subalgebras and so we then speak of
~ homomorphisms, ~ -congruences and ~ -subalgebras.

If x is any one of the above categories and { Yt} is a family of objects in x then
their x-coproduct is denoted by ]JX Yt; the coproduct of two objects Y, Z in x is
denoted by y J J x Z . Coproducts in D have been described, in detail, by Gratzer
(1971), Section 12, pp. 128-137, and Balbes and Dwinger (1974), Chapter 7,
pp. 132-150. On the other hand, Balbes and Dwinger (1974) gave, in Theorem 2,
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p. 216, a result of Berman and Dwinger which asserts that the M-coproduct of a
family of objects {Yt} in M is actually their D-coproduct together with the ~ -opera-
tion which is the unique extension to J J D ^ I of the ~-operation on each of the Yt.
Using a representation of the dual of M, Cornish and Fowler (1977) gave an alter-
native proof of this theorem and also a few results on K-coproducts, the principal
being the result that the M- and K-coproducts of a family of Kleene algebras are
~ -isomorphic if and only if all, but possibly one, of the algebras is actually Boolean.
Thus, the purpose of this paper is to describe the K-coproduct of a family of arbi-
jjary Kleene algebras. In Section 1, we describe the smallest ~-congruence on a
De Morgan algebra such that the quotient algebra is a Kleene algebra; there it is
interesting to contrast our description with that of the smallest ~ -congruence such
that the quotient algebra is a Boolean algebra. In Section 2, we describe the dual
of the various objects appearing in Section 1 and as a consequence obtain the
product in the category of Kleene spaces; the necessary topological preliminaries
are included at the start of Section 2. In the final section we give some results on
free Kleene algebras. Free Kleene algebras have also been discussed by Berman and
Dwinger (1973) and Berman and Kohler (1976).

We would like to thank the referees for their comments and for bringing to our
attention the aforementioned two papers together with the preprint by Urquhart,
which contain some overlap with our presentation.

1. Maximal homomorphic images

We begin this section with a part of the folk-lore of Universal Algebra. Let w
be a subvariety of a variety v of finitary algebras. Suppose A is an algebra in v,
whose congruence-lattice is C{A). As varieties are closed under the formation of
subdirect products, the set Y = {0 e C(A) :A/®e w} has a smallest member,
namely 0W(^) = 0 {© : © e Y}- The quotient algebra A/QV(A) is called the maximal
homomorphic image of A in w since each homomorphic image of A, which is in
w, is itself a homomorphic image of this algebra. Better still, as varieties are
closed under the formation of subalgebras, each v-homomorphism / of A into a
w-algebra B can be factored uniquely into the form / =fot, where t is the canonical
homomorphism of A onto A/®y,(A) and / is a homomorphism of A/Qy,(A) into
B. Thus, we obtain a reflector or reflective functor mapping the varietal category
v into the subcategory w. But a reflector preserves coproducts, see Balbes and
Dwinger (1974), Theorem 5, p. 29. In other words, if {B^ is a family of w-algebras
then ]JW Bf is isomorphic to JJV ^i/©w(LJv Bt).

Taking v to be the variety M of De Morgan algebras, w to be the subvariety K of
Kleene algebras and using the notation K(A) in place of &w(A) for any A ev = M,
we can summarize our observations in the following result.
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PROPOSITION 1.1. Let {#,} be a family of Kleene algebras. Then TJK Kt is isomorphic

Thus, in a sense we will have described K-coproducts if we give a description of
the congruence K(A) on any Kleene algebra A. Of course, the B-coproduct of
Boolean algebras is well known. Nevertheless, it is not without interest to describe
the congruence fl(A), corresponding to the case where A e v = M and w = B.

Let Y be a non-empty subset of a De Morgan algebra L. Then, we use the follow-
ing notation: ~ Y = {~y: ye Y}, (Y] is the ideal of the underlying lattice which is
generated by Y, and [ Y) is the filter of the underlying lattice generated by Y. In
general, ~(Y] = [~ Y) and ~[Y) = (~ Y] so that Yis an ideal if and only if ~ Y
is a filter. A particularly interesting subset is T= {teL: / < ~t} = {XA ~X\ xeL}.
We define the nucleus n{L) of a De Morgan algebra L to be the ideal (T\. As T
is hereditary, n(L) = {tlv ... vttt tteT for l ^ /<w} . In view of the remarks in
Section 4 of the paper by Kalman (1958), the following result is given without
proof.

PROPOSITION 1.2. The following conditions on a De Morgan algebra L are equiva-
lent.

(i) L is a Kleene algebra.
(ii) For any x,yeL, there exists zeL such that (XA ~X)V(>>A ~y) = (ZA ~ Z ) .

(iii) n(L) = {XA ~X: xeL}.
(iv) {JCV ~x: xeL} is a filter.
Let J and F be an ideal and a filter, respectively, in a distributive lattice. Then,

the smallest congruences ©(/) and ®(F) which have J and F, respectively, as
congruence classes are given by

x = j(©(7)) (x,yeL)ox vj = yvj for some j e J
and

x = y(®(FJ)(x,yeL)oxAf — yAf for some feF,

compare with Gratzer (1971), Corollary 4, p. 88, or Balbes and Dwinger (1974),
Theorem 17, p. 60.

In the following theorem, the notation and lattice operations are understood to
refer to the lattice of lattice-congruences of the underlying lattice of a given
De Morgan algebra.

THEOREM 1.3. Let L be a De Morgan algebra. Then,
(i) tc(L) =0(n(L))O0(~«(L)), and
(ii) 0(L) = 0(n(L)) v ©(

PROOF (i) It is easily shown that ®{n(L))c\®(~n(L)) has the substitution property
for ~ and so it is a ~-congruence. Let x,yeL. Then,

(xA~x)v(yv ~y) = 0 = xA~ x(&(n(L)))

https://doi.org/10.1017/S1446788700012131 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012131


212 William H. Cornish and Peter R. Fowler [4]

and

(XA ~ X ) A ( J V ~y) = (XA ~ X ) A 1 = XA ~x(0(~w(L))).

Hence,

(x A ~ x) v (y v ~y) = x A ~ x(0(«(L))n0( ~ n(L))),

and consequently L/@(n(L))nQ(~ n(L)) is a Kleene algebra.
Let $ bea ~-congruence on L such that LjO is a Kleene algebra. Let a,beL

be such that a = i(0(n(L))n0(~«(L))). Then there exist xlt ...,xm,yu ...,yneL
such that

av(x,A ~ X I ) V . . . V ( X M A ~xm) = Z>v(x1A~x1)v...v(xmA~xm)

and

a A (y1 v ~j!> A ... A (yn v ~ yn) = fc A ( J , V ̂ J A ... A (jn v ~jB).

Letvv denote the 3>-class of any w eL. As L/O is a Kleene algebra 3c, A ~ xt < j'y v ~ pj
for any i = 1, ...,/n andy = 1,...,«. It follows that

av[(xtA ~5c,)v...v(JcmA~5cJ]=Bv[x1A ~3ct)v...v(xmA ~ x j ]

and

SAK^A ~X1)V. . .V(XBA~XJ]=5A[(X1A ~5c1)v...v(xmA~xJ].

As L/0 is distributive it follows that a = E and so 0(n(L))n0(~«(L))£<D. Thus (i)
is established.

(ii) It is readily shown that 0(n(Z,))v0(~n(L)) is a ~-congruence and, as
XA ~x =O(0(n(Z,))), XA ~x = O{0{n(L))v0(~n(L))) for any xeL, the associated
quotient algebra is Boolean. Since O S X A ~ X and 1 = xv ~xmodulo)5(L) it
follows that 0(«(L)), 0(~n(L))£jS(Z-). It should now be apparent that

P(L) = Q(n(L)) v 0( ~ n(L)).

It should be noted that in their Theorem 4.3, Berman and Dwinger (1973)
described the congruence fi(L) as the smallest ~-congruence containing

{XA ~ X : xeL}

in a single congruence-class.

THEOREM 1.4. Let {LJ be a family of De Morgan algebras. Let Z, = J J M L f and
regard each L( as a subalgebra of L. Then,

(i) n(L) = v (n(Li)]Li where («(XJ)]L is the ideal of L generated by «(L,) and the
join is taken within the lattice of ideals of L, and

(ii) ~n(L) = v [~n(Lf))L, where [~n(Lt))L is the filter of L generated by ~n(Lj)
and the join is taken within the lattice of filters of L.
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PROOF. Obviously each n(LD is contained within n(L) and so v(n(L,)]LE/i(L).
Let a e l b e a generator of n(L), so that as£ ~a. Of course, the Lt generate L

as a distributive lattice and so

5

« = V ariA...Aark>
r = l

where for all 1 ^ r O and 14,j^k, arjeLj and Lx, ...,Lt6{L,}. Then,

~ a = A ~ariv...v~a,k,

and as a^ ~a, we have for each 1

art A ... A U , ^ ~ari v ... v ~ark.

But by the result of Berman and Dwinger referred to in the Introduction, L, as a
distributive lattice, is isomorphic to \JD

Lt- Hence"; by Gratzer (1971), Theorem 5,
p. 131, there exists 1 ^jr^k such that arjr^ ~orjr, and so arjren(LJr). It follows that
aev (n(Lj)]L. Thus, (i) is established; the proof of (ii) proceeds in a dual fashion.

Thus, Theorems 1.3 and 1.4 give detailed information about the description of
the K-coproduct, as given in 1.1. We now consider this description in a few particular
cases.

LEMMA 1.5. Let a and b be elements of a bounded distributive lattice L. Then,
0(O,a)n©(Z>, 1) = 0(aAfc,a), where for any x,yeL, &(x,y) denotes the smallest
congruence identifying x and y.

PROOF. By Theorem 3, p. 87 of Gratzer (1971) and the distributivity of the con-
gruence lattice of a lattice (Theorem 11, p. 93 of Gratzer (1971)),

0(a A b, a) = 0(a A b, 1)00(0, a) = (0(a, 1) v 0(Z>, l))n©(0, a)

= (0(a, l)n©(0, a)) v (0(0, a)n&(b, 1))

= co v(Q(0,a)n®(b, 1)) = 0(0, a)n®(b, 1).

where, as is usual, <w denotes the equality congruence.

THEOREM 1.6. Let Kt,...,K, be Kleene algebras. Suppose for each 1 <r<f, n(Kr)
is a principal ideal, whereby n(Kr) = {aeKr\ a^xr A ~xr} for a suitable choice of
xreKr. Then,

K( UMK) = e ( V (xrA ~xr)A / \ (xrv ~*r), V (*,A ~xr)).
\r=l / \r=l r=l r= 1 /
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PROOF. The theorem is a combination of our previous results.
An element x of a Kleene algebra L is called a fixed point if x = ~x. It is easy

to see that a Kleene algebra can have at most one fixed point and that, when one
exists, it is the generator of the nucleus.

COROLLARY 1.7. Let Ki,...,Kt be Kleene algebras with respective fixed points
yu...,yt. Then,

the smallest (~-) congruence identifying yi,y2, ••-,yt-
To illustrate 1.7 let us consider the coproduct 5jjK-?> where 3 is the 3-element

Kleene algebra {0,a, 1: 0 < a < 1, a = ~a} . Then, as a lattice .?]JM-? is isomorphic
to 3 ] J D 3, and it has the induced involution so we can describe the M-coproduct of
two copies of 3 by the set

{0,aAb,a,b,avb, 1: 0<a/\b<a,b<avb<l; a = ~a, b = ~b, and so on}.
Using 1.1 and 1.7 we conclude that 3\JK3 = 3. For other related results, see
Section 3 of this paper.

Let x be any one of M, K and D and Fx(xu ...,xt) denote the free x-algebra whose
free generators are xu ...,xt. Of course, this free algebra is isomorphic to t copies
of the free x-algebra on one generator. The free algebras FM(xx) and F K ^ I ) a r e

one and the same; as lattices they coincide with the 6-element lattice FD(xu ~xt),
where xt and ~xt are the free generators, and the involution is the unique exten-
sion of the map x1++~xl, ~xl++x1. Moreover, n(FK(Xi)) = {0,xt A ~XI}. In
general, FM(xu ...,x,) is as a lattice the free D-algebra on the It free generators
xlt...,xt, ~x1,...,~xt, and the involution is the unique extension of the map
xi+->~xi, ~Xi++Xi for all l ^ /<f . These remarks are contained in Theorem 3,
p. 218 of Balbes and Dwinger (1974). Using 1.1 and 1.6 and these observations,
we obtain a description of the free Kleene algebra on a finite number of generators
which can be symbolized by

COROLLARY 1.8.

FD(xu...,x,, ~xu...,~xt)
FK(xu ...,*,) =

/ ' ' ' \ '
©( \ / (xrA~Xr)A /\ (x,V~Xr), V (XrA~Xr)\

\ r=l r = l r=\ )

2. Dual spaces

We now consider the topological representations of the duals of M and K and so
develop an effective method for obtaining K-coproducts.
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An ordered (topological) space (X; ^ , T ) is a partially ordered set (X; < ) which
has a topology T; when there is no possibility of confusion we simply refer to an
ordered topological space (X; < , T) by means of the underlying set X. A subset
U of an ordered space X is called increasing (decreasing) if x^y, x,yeX, and
xeU(yeU) imply y e U (x e U). A totally order-disconnected space X is an ordered
space such that whenever x^ y, x,yeX, there exists a clopen (= closed and open)
increasing subset U such that xeU whilst yeX\U. The set @(X) of all clopen
increasing subsets of an ordered space X is always a bounded distributive lattice
with respect to the set-theoretic operations. Moreover, if X is compact and totally
order-disconnected then @(X)u{X\ U: UeSi(X)} is a sub-base for the topology
on X. The category, whose objects are compact totally order-disconnected spaces
and whose morphisms are continuous monotone ( = order-preserving) functions,
is denoted by TODC. It is well known that TODC and D are dual isomorphic as
categories, see, for example, Cornish (1975). The dual of a D-object L is Pr(L),
the Priestley space of L; Pr(L) can be considered as the set of all prime ideals of
L, ordered by the reverse of set-inclusion, and the map a++(pePr(L): a$p},aeL,
is a lattice-isomorphism of L onto @(Pr (Z,)).

Cornish and Fowler (1977) showed that the dual of the category M is isomorphic
to a category whose objects (X, g) are totally order-disconnected spaces X which
possess a homeomorphism g: X^X such that g is also a dual order-isomorphism
and g2 = I*, and whose morphisms are continuous monotone functions
/ : (Xug1)-*(X2,g2) such that /ogt = g2of. Previously, we called this category
G-TODC. However, in this paper we will call it the category of De Morgan spaces
and denote it by MS. If L is an object in M then its dual object in MS is (Pr (L),g),
where g is defined by g(p) = L \ ~p for each prime ideal p e Pr (L); if ~ is defined on
0(Pr(L)) by ~ U = Pr(L)\g(£/), C/e®(Pr(L)) then Land ®(Pr(L)) are '—isomor-
phic De Morgan algebras with respect to the canonical mapa-t->{/?ePr(L): a$p}.
The category KS of Kleene spaces is the full subcategory of MS whose objects
(X,g) are such that x and g(x) are comparable for each xeX; in Theorem 3.2,
Cornish and Fowler (1977) showed that K and KS are dual isomorphic categories.

An order-subspace Y of an ordered space X is subspace Y of the topological
space X, endowed with the partial order which is the restriction of the order on
X to Y. A subset Y of a De Morgan space (X, g) is said to be g-invariant if g( Y) £ Y.
As g is an involution, a subset Y is g-invariant if and only if g( Y) = Y.

Theorem 8.3 of Hashimoto (1952) may be interpreted in the context of the
Priestley duality. It yields a dual-order isomorphism T++&(T) of the lattice of
closed order-subspaces T of the Priestley space of the bounded distributive lattice
L onto the lattice of congruences of L; ®(T) is the congruence given by:
a = bi@{T)), a,beL, if and only ifd nT=bnT, where a = {PePr(L): a$P}. When
L is a De Morgan algebra and T is in addition g-invariant, it is not hard to see that
0(2") is a ~-congruence and T, together with the restriction of g, is isomorphic to
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the De Morgan space of the algebra L/®(T). Thus, for any De Morgan algebra L,
Hashimoto's map T++®(T), induces a dual-order isomorphism of the lattice of
g-invariant closed order-subspaces of De Morgan space (Pr (L),g) onto the lattice
of ~ -congruences of L. In Theorem 5, Urquhart (1978) gave an ab initio proof of a
similar result for algebras in which all the De Morgan axioms hold with possible
exception of the law of double negation.

We now define some order-subspaces of a De Morgan space (X,g). They are:

Z = {xeX:x>g(x)},

XK =
and

Of course, g(X) = %, g{X) = X and so both XK and XB are ^-invariant.

LEMMA 2.1. Let (X,g) be a De Morgan space. Then, each of %,%,XK and XB is
closed.

PROOF Suppose x$X~ so that x^gix). Let Ue@(X) be such that g(x)eU and
xeX\ U. Then, g(U)n(X\ U) is a clopen decreasing neighbourhood of x which
is readily seen to be disjoint from Jt. Thus, X is closed. As g is a homeomorphism
% = g(X) is closed and the result follows.

THEOREM 2.2. Let L be a De Morgan algebra with associated De Morgan space
(X = Pr(L),g).Then,

(i) 2 is the dual in TODC of the lattice L/&(n(L)).
(ii) X is the dual in TODC of the lattice L/&(~n(L)).

(iii) (XfoglXx) is the dual in MS of the Kleene algebra L/K(L).

(iv) (XB,g\Xv) is the dual in MS of the Boolean algebra L/fi(L).

PROOF. (i)LetaeZ,. Suppose pe (a A ~a)Tt%. Then, pe (a A ~a)A and p^g(p).
AS(OA ~a)A is increasing g(p)e{a A ~a)A,thatis, SA ~a$g(p). But/>e(aA ~a)A

and so a/\~a$p. Thus, av ~a$ ~p and hence av ~aeg(p) = L\~p. As
aA~a^av~a, a A ~aeg{p). We have an impossible situation. Thus,

for all aeL. Thus, n(L) is contained within the kernel of the congruence &(X)
associated with the closed deceasing set X. Hence O(«(L)) £ &(X).

Conversely, let r,seL be such that r = s(&(%)). Then,

f = (rnX)v(rn(X\X))£Sv(X\X~).
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p
LetpeX\X. Then p^g(p). Thus, there exists apeL such pedp and g(p)eX\d
so thatpeX\g(dp) = (~ap)A. Hence, (ap A ~tfp)A is a clopen increasing neighbour-
hood of peX\X. Then, {s}u{(apA ~ap)A : peX\%} is an open cover of f. Using
compactness, we find that r^sv(atA ~at)v ... v (OBA ~an) for some suitable
au ...,aneL. By symmetry, we obtain a similar inequality with the roles of r and s
interchanged. We can now conclude that r = s(@(n(L))). Thus, @(«(L)) =©(X),
and (i) is established in view of the remarks which precede this theorem.

The proof of (ii) is dual to that of (i). Then (iii) and (iv) follow from our remarks
and 1.3.

Actually 2.2(iii) and 1.3 combine to give an alternative proof of Theorem 3.2
of Cornish and Fowler (1977)—a result which gives K and the category KS of Kleene
spaces as dually equivalent categories. In their Theorems 4.4 and 4.5, Berman and
Dwinger describe the sets of prime ideals of the quotients L/K(L) and L/j8(L);
our Theorem 2.2 can be regarded as a sharpening of their results.

Perhaps, it should be pointed out that XK and XB may be empty. For example,
in the case of the tetrad

{0,a,b, 1:0 = a/\b<a,b<avb — 1, a = ~a, b = ~b},

they are the dual spaces of the single element Kleene and Boolean algebras,
respectively.

Duality together with 2.2 and the results of Section 1 allow us to assert the
following corollary. Of course, a direct verification provides the best proof, while
1.3 and 2.2 give the content of the results.

COROLLARY 2.3. Let (X,g) be an object in MS. Then, (X^g^, with gK = g\XK,
is the largest KS-subobject of (X, g). Furthermore, KS is a coreflective subcategory
of MS and (X^g^) is the coreflection of (X,g) in KS.

By Theorem 2.4 of Cornish and Fowler (1977), we know that the product
(FI ixu Sd > P>)of a f a m i l y i(xi>Si)} of objects in MS is (([] Xt, f]Si) \ Pi), where ]~I xi
is the topological product endowed with the direct product order, Y\ gi '^\ %t -* Y\ xi
is the product function defined by (n^iM*.) = (Si(*i))> and the pj are just the
usual projections of \\ Xt onto Xj, for each j .

Category theory (see, for example, Balbes and Dwinger (1974), Theorem 5,
p. 29) allows us to assert that the coreflection of the MS-product is the product of
the KS coreflections and so we obtain

THEOREM 2.4. Let {(Xt, gt)} be a family of objects in KS. Then, ((([] A^K, (f] Si)td, ?i)>
where for each j , qj is the restriction of the projection Pj mapping Y[ Xi on^° Xj>
is the Ks-product of the (Xh gf). Moreover, each of the projections qt is onto.

A method for constructing the coproduct of Kleene algebras follows almost
immediately:
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COROLLARY 2.5. Let (X,g) be the KS-product of a family {(X,,g,)} of Kleene
spaces. Then,

(i) X is isomorphic to the TODC-product Yi^-i,
(ii) -X" is isomorphic to the TODC-product Y[X;, and
(iii) X is the set-union of X and X.

Before proceeding it might be interesting to point out that Theorem 2.4 was
suggested to us by Theorem 1 of Preller (1968); there, Preller considers the nature
of the (categorical) product of a family of algebras in an algebraic category which
is not closed under the formation of direct products.

As an instance of the use of 2.5 we give the following result which is of indepen-
dent interest.

THEOREM 2.6 Let Ku K2 and K3 be Kleene algebras. Then, Ki\\y^K2 x K3)
is isomorphic to (Kt JJ K K2) x (Kt \J K K3).

PROOF. For i = 1,2,3 let (Xt,g{) be the dual space of Kt. Let the dual space of

K-i LI K(*I X Ks) b e denoted by (X,g).
The dual space of the direct product of two Kleene algebras is isomorphic to the

disjoint union of the dual spaces—the topology is the 'disjoint-union topology',
the order is the cardinal sum, and the g-function is the obvious extension of the
two ^-functions. We will only indicate the details for the underlying Priestley
space; the details concerning the compatibility of the isomorphism with the
g-functions are easy but tedious.

By 2.5

and

X=XKJX.

There is no interconnection between the ordered sets XlxX2 B.nd
nor is there between Xl x%3 and Xt xX2. Thus, it follows that

X^ [X, xX2)U(Xt xX2)M(Xt x* 3 )u (* , xX3)].

Because of 2.5, the above right side is the Priestley space of (Kt ]J K K2) x (K1 \J K ^3)
and the theorem follows.

Another consequence of 2.4 and 2.5 is the 'subalgebra-coproduct property' for
K-coproducts; this was established by purely algebraic means in Theorem 3.8
of Cornish and Fowler (1977) and states that if Ax and Bl are subalgebras of the
Kleene algebras A and B, respectively, then A t JJ K ̂ 1 is isomorphic to the sub-
algebra of A ] J K ^ which is generated by Ax and Bt.
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3. Free Kleene algebras

We now turn to the subject of free Kleene algebras. At the end of Section 1,
we mentioned that the free De Morgan algebra FM(xt) and the free Kleene algebra
^K(*I)

 o n a single free generator xt are one and the same 6-element De Morgan
algebra, whose dual space is actually the tetrad X = {Pi,p2,p3,p^- P\ <P2,P$ <PA\
p2 and p3 are incomparable; g(j>i) = p^siPi) — PuSiPs) = P3}> endowed with the
discrete topology. Here X = {p2,p3,Pt} and X = {p2,P3,Pi}- Due to 1.1, 1.8 and
2.5 the dual space of FK(x1,...,xn) is ( H " . ^ ] ^ ^ ^ . As there are 2" points in
( f l W ^ d l ? ^ ) w e h a v e > i n v i e w o f Corollary 14, p. 73 of Gratzer (1971),

THEOREM 3.1. FK(xu ...,xtt) is a distributive lattice of length 2 . 3"-2".
Since K is a variety with distributive congruence lattices and such that each

subdirectly irreducible is simple (the only subdirectly irreducibles are 2 and 3),
the very general results 1.4 and 1.5 of Berman (1975) can be used to give another
proof of 3.1.

The dual space of FK(xl, x2) has 14 elements; it is the subposet of the 16 element
poset (lattice) consisting of the direct product of 2 copies of the tetrad obtained
by omitting the two points (puP*) and {p^.,Pi)- Thus, we omit its diagram. However,
in Table 3.2 we list its 84 increasing subsets, that is, Table 3.2 gives the list of the
84 elements of free Kleene algebra on two free generators, which are conveniently
labelled as a and b. The 84 elements are tabulated in 15 rows. These rows are such
that each element in a particular row is less than some element in the row above
and greater than some element in the row below. Also the rows are such that no
two elements in the same row are comparable. The ~ -operation works as follows:
If x is in the middle row (that is, row 8) then ~ x is found in the symmetrical position
with respect to the other end of the row. Otherwise, if x is not in the middle row,
say x is theyth element in row i{i # 8), then ~x is the j th element in row (16-/).

Free Kleene algebras have also been discussed by Berman and Dwinger (1973)
and Berman and Kohler (1976). Amongst other things, Berman and Dwinger gave
the length oiF^x^, ...,xn) and the cardinal ofFK(x1,x2) while Berman and Kohler
have found by means of a general computer program that FK(xux2,x3) has 43,918
elements. We have retained our Section 3 in the hope that it contains extra infor-
mation.

TABLE 3.2.

row

1 1.
2 aV~aV<>V~6.
3 a\lb\l ~b,a\l ~a\Jb,a\l ~aV ~b, ~aV6V ~b.
4 a\lb\l{~ah~b),a\l~b\l(~af\b),a\l~a,b\/~b,

~a\j ~bV(aAb).
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row

5 a\J(~aA(bV ~b)), ~aV(aA(6V ~b)), aV ~b, a\lb, ~aVb, ~aV ~b,

6 a\/(~aAb),a\/(~aA~b), ~a\/(aAb), ~a\J(aA ~b), (aV ~a)A(bA ~b),
bV{~aA~b), ~b\](aAb), ~bV(~aAb).

7 (aAb)V(aA~b)\/(~aAb),(aAb)\/(~aA~b)V(aA~b),aV(bA~b), ~aV(bA~b),
b\j(aA~a), ~b\J(aA~a),{aAb)V(~aAb)\/(~aA~b),

8 (aA(6V ~b))\I{~aAbA ~b), (6A(aV ~fl))V(flA ~aA ~b), (aAb)\J(~aA ~b), a, ~b,
b,~a, (aV6)A(~aV ~b), (~6V(aA ~a))A(aV ~a\Jb), {~a\I(b A ~b)) A(a\tb\l ~b).

9 (~oV~6)A(~aV6)A(aV~6), (~aV ~6)A(aV&)A(~aV6), ~aA(*V~6),
A/\(.bW ~b), ~bA{aV ~a), 6A(aV ~a), (~aV ~6)A(aV ~b)A(a\fb),
1~aVb)A(.a\J~b)A(.aVb).

10 ~aA(aV ~6), ~aA(ayb), oA(~flV ~6),
~bA(~a\]b), ~bA(a\Jb), 6A(~aV ~6

11 ~aA(aV(6A~6)), aA(~aV(6A~W), ~aA6, ~aA~b, aA~b, aAb,
~b A(b\/(a A ~a)), b A(~b\/(a A ~a)).

12 ~aA~6A(aV6), ~aAbA(aV~b),aA~a,bA~b,aA~bA(~a\/b),
aAbA(~a\/~b).

13 ~aA~bAb,aA~aA~b, aA~aAb,aAbA~b.

14 aA~aAbA~b.

15 0.
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