NOTE ON THE HARDY-LANDAU SUMMATION FORMULA
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%
Broadly speaking, the Hardy-Landau summation formula
is given by

[e o} e}
Z r(n)f(n) = = r(n)g(n),
n=o n=o

where r(n) is the number of integer solutions of the Diophantine

2 2
equation x +y =n, and f(x) and g{x) are transforms with
respect to the Watson kernel WJO(ZTT Nx), thatis:

i

o
gx) == [ f(t)Jo(Zml-}E)dt
[0}

and

(<]

flx) = v [ g(t)T _(2m/xt)dt .
(o]

It is the purpose of this note to show that, by means of
chain transforms, the Hardy- Landau formula can be derived
using kernels simpler than ‘ITJO(ZTT'\/-X).

DEFINITION. A function f(x) is said to belong to the

2
class G (o, ) if

One of the earliest versions of this summation formula
appears in Landau [3] (Theorem 559, p.274).
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[+ <]
(D) f(x) = - [ f£(t)at,
X

and

(i1) xf'(x) belongs to Lz(o,oo) .

2 2
The class G (o0,®) is a subclass of L (o,®) (see
2
Miller [4], Theorem 2). Also, if f(x) € G (o, ), it is not
. -1 -1 2
difficult to show that x f(x )€ G (o,®) .

LEMMA. If f(x)e¢ Gz(o,co), then there exists
2
g(x) € G (o, ®) such that

I

0
g(x) 2 f f(t) cos 2mxt dt (x> 0)
o

=>00
f(x) = 2 [ g(t) cos 2mxt dt (x> 0).
o

A similar result holds for the kernel sin %wx.

Proof. Miller [4], Theorem 1.
The following is our main result.

THEOREM 1. Let {(x) be a function belonging to

Gz(o,oo), and define @#(x) € Gz(o,co) by the equation
=00
(1) P(x) =2 [ £(t) cos 2mxt dt (x> 0) .
o

Let

748

https://doi.org/10.4153/CMB-1965-053-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1965-053-8

R 1
2) gx) =2 [ t Bt ) sinsmxt dt (x> 0).
o

2
Then
N N N N
Iim { £ r()f(n) -« [ £(t)dt} =lim { = r(n)gln) - = g(t)dt}.
N—+0 n=1 o} N->o n=1 o

2
Proof. By the lemma, @#(x)€¢ G (o,»), so
-1 -1 2
x P(x )€ G (o,®) in accordance with the remark following
2
the definition of the class G (o,®). Therefore, it follows

2 ,
from the lermnma and equation (2) that g(x)e€ G (o, ).

Denote by Ki(s)' Kz(s) (s =% + it) the Mellin transforms

of 2cos2mx, smzwx respectively. Then

- 1
2(2mw) sr‘(s) cos —sm ,

Kyls) = 2
K,(8) = (2/m°D(s) sin sw,
and
wi-ZsP(S)
/(1(5)/(2(5) ® TTU.s) =/(3(S) .

But A’3(s) is just the Mellin transform of TrJ'o(Zw'\/?c). There-

fore, appealing to results of Fox [1], we can conclude that

X o0

{ f(t) dt = { g(t)'\/_:Z/_{Ji(ZTr'\E&) dt
and

X [ <]

[amar = [ (oW 3, 2m) dt

o] (o]
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Finally, putting a =r(n) and B =1 in Theorem 2 of Guinand [2],
n
we get R (x) =mx, and the following form of the Hardy- Landau
o=

formula results:

THEOREM 2. If f(x) is an integral and f(x) and xf'(x)

2
belong to L (o,®), then

N N N N
lim { = r(n)f(n) - wf f(t)dt} = lim { Z r(n)gln) - = [ g(t)at} ,
N->0 n=1 o N-»0 n=1 o)
where

X o0

[ ey = [ fty)NxTy I, (2w Nay)dy

(o] o]

and g(x) is chgsen to be the integral of its derivative.
Combining these results, -we obtain Theorem 1.

The author would like to thank Professor A. P. Guinand,
who suggested the problem and aided in the preparation of this

note.
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