
CHARACTERS OF CARTESIAN PRODUCTS 
OF ALGEBRAS 

SETH WARNER 

Introduction. Let R be a commutative ring with identity 1. A character 
of an i^-algebra E is a homomorphism from E onto R, regarded as an algebra 
over itself. If (£ a ) a e i is a family of i^-algebras indexed by a set A and if 

E = n £«, 
then for every /3 £ 4̂ and every character vp of £#, ẑ  o pr$ is a character of E 
where pr$ is the projection homomorphism from E onto E$. Further if A is 
finite and if the only idempotents of R are 0 and 1 (equivalently, if R is not 
the direct sum of two proper ideals), it is easy to see that every character of E 
is of this form. In general, it is natural to ask: 

(1) Is every character of 

at A 

of the form v$ o pr$for some (3 £ A, where vp is a character of E$? 
If each Ea is R, E is simply the i^-algebra of all i^-valued functions with 

domain A ; we shall denote this algebra by RA, the set of its characters by 
M(RA), and its identity element by e. Since the only character of the R-
algebra R is the identity map, (1) becomes for RA: 

(2) Is every character of RA a projection! 
Question (1) appears more general than (2), but we shall see in § 1, as a 

consequence of an extension theorem of Buck, that an affirmative answer 
to (2) implies an affirmative answer to (1). 

Recently, by a measure-theoretic argument, Bialynicki-Birula and Zelazko 
(1) answered (1) in the affirmative if R is an infinite field, if each Ea has an 
identity, and if A satisfies a certain set-theoretic condition. The author 
obtained his results independently (without the hypothesis that each Ea 

possess an identity) as corollaries of a density theorem concerning a suitable 
weak uniform structure imposed on the set of characters of RA. These results 
are given in §§ 2 and 3. In §§ 4 and 5 we shall prove that if R is finite and A 
infinite, question (2) has a negative answer, but that if R is a principal 
domain having at least two non-associated extremal elements (for example, 
if R is the integers) and if A satisfies a certain set-theoretic condition, the 
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questions have an affirmative answer. These results are applied in the re
maining two sections : in § 6 we show that the only compact principal domains 
are the known ones, namely, finite fields and valuation rings of locally com
pact fields whose topology is given by a discrete valuation of rank 1 ; and in 
§ 7 we give conditions on the algebra Ê(T) of all real-valued continuous func
tions on topological space T which are both necessary and sufficient for every 
connected component of T to be open. 

1. The extension theorem. Buck's extension theorem (5, Theorem 1) 
may be stated in its most general form as follows (as observed in (8, p. 74), 
one of the hypotheses of Buck's original version is superfluous). 

THEOREM A. Let R be a commutative ring with identity, E an R-algebra, H 
an ideal of E, F an R-algebra with identity. If f is a homomorphism from H 
onto F, there exists a unique homomorphism g from E onto F extending f. 

Consequently, we see that an affirmative answer to question (2) implies 
an affirmative answer to question (1) : 

THEOREM 1. Let (Ea)aeA be a family of R-algebras indexed by A. If every 
character of RA is a projection, then for every character u of 

E=Y\ Ea 
a (A 

there exist 0 Ç A and a character vp of Ep such that u = vp o prp. 

Proof. First, let us assume each Ea has an identity ea. The restriction of u 
to the subalgebra 

F = I l Ma 
aeA 

of £ is a character of F since F contains the identity of E. As F is canonically 
isomorphic with RA, it follows from the hypothesis that there exists £ (E A 
such that u{ip{ep)) = 1, where ip is the canonical injection map from Ep 
into E. Hence if Vp = u o ip, Vp is a character of Ep, and u and Vp o prp coincide 
on the ideal ip(Ep) of E. Therefore, as vp o prp is a character of E, the unique
ness part of Buck's theorem ensures u = vp o prp. In the general case, let Ea

+ 

be the i^-algebra obtained by adjoining an identity to Ea. As Ea is an ideal 
in Ea

+, E is an ideal in 

G = n Et 
at A 

By Buck's theorem, there exists a character of G extending u, and an applica
tion of the preceding result completes the proof. 

2. Algebras over fields. Let K be a field equipped with the discrete topology. 
K is then a topological field whose associated uniform structure is the discrete 
uniform structure. Let MK(A) be the weakest uniform structure on A such 
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t h a t e a c h / G KA is uniformly continuous, let 255^(^4) be the weakest uniform 
st ructure on the set $(KA, K) of all K-valued functions on KA such t h a t 
u —> u(f) is uniformly continuous on $(KA, K) for a l l / G i£A , and let %$K(A) 
be the uniform st ructure induced on M(KA) by $&K(A). As the uniform 
st ructure of K is complete and separated, $&K(A) is a complete, separated 
uniform structure (4, § 1, Proposition 2, and Theorem 1). A familiar a rgument 
shows M(KA) is closed: if g is a filter on M(KA) converging to u G %(KA, K) 
and if f,g G KA, then %(fg)-*u(fg), g ( / ) - » « ( / ) , and g(g) - > « ( g ) ; for any 
F£ %, Cfg)(F) Qf(F)g(F), so $(fg) is the filter base for a filter finer tiian 
t h a t generated by %(f)-%(g); hence as g ( / ) - g ( g ) ->u(f)tt(g), so also g ( / g ) 
—» u(f)u(g), and therefore w(/g) = u(J)u(g). Similarly, w is linear. g(e) —* u(e), 
b u t as »(*) = 1 for all v G M ( i £ A ) , «(e) = 1. Hence M G M(KA). M(KA) is 
therefore a complete separated uniform space. For any finite subset Y of KA, 
let U(T) = [(a, p) G A XA:f(a) = /(/3) for all / G r ] , V(T) = [(«, ») G 
M(i£ A ) X l f ( K A ) : « ( / ) = v(f) for all / G T]. The collection of sets U(T) 
[respectively, V(T)] forms a fundamental system of entourages for UK(A) 
[respectively, %$K(A)] as T ranges through all finite subsets of KA. For each 
a G A let aA be the p ro jec t ion / —>/(a) on i£A . Then a —> aA is clearly a uniform 
s t ructure isomorphism from A into M(KA), and we shall denote by AA the 
image of A under this map . 

T H E O R E M 2. For any field K, AA is dense in M(KA). 

Proof. Let u G M(KA) ; we shall prove there exists a filter on ^4A converging 
to u. Let iiZ" be the kernel of u, a proper ideal of KA. For each finite subset 
r of H let F(Y) = [aA G AA:f(a) = 0 for all / G T]. Clearly ^ ( T O H F(T2) 
= F(TiKJ T2), so to prove the sets F(T) form a filter base for a filter g on 
^4A, it suffices to prove F(T) ^ <j> for all finite subsets F of H. Suppose F( V) = 0 
for some T = {/i, . . . ,fn) Ç H ; we define gi, . . . , gn inductively by lett ing 
gi = e and, f o r / > 1, lett ing gj be the characteristic function of 

a e A \£f*£*)(«) =0J. 

Then if A = Zin / ,g„ A G H and, since F ( r ) = 0, A(«) ^ 0 for all a G A. Bu t 
then e — h- (e/h) G i?", so / / = KA which is impossible. Finally, the filter % 
thus defined converges to u: if T — {/i, . . . ,fn) Ç i£ A , for each / let ^ = fj 
- u(fj)e; then r 0 = {hu . . . , hn\ C # . F ( r 0 ) C F ( r ) ( w ) , for if aA G F ( r 0 ) 
and if 1 < / < n, aA(fj) - u(f3) = aA(hj + u(fj)e) - u(fj) = aA(hj) = hj(a) 
= 0, by definition of F(TQ). Hence % —> it, and the proof is complete. 

COROLLARY 1. If K is a field, every character of KA is a projection if and 
only if UK(A) is complete. 

COROLLARY 2. If K is a field, (E a ) a e A a family of K-algebras indexed by A, 
and if MK{A) is complete, then for every character v of E = I I a E a there exist 
ft G A and a character v$ of E$ such that v = v$ o pr$. 
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3. T h e t h e o r e m s of B ia lyn ick i -Biru la a n d Zelazko. An Ulam measure 
on set A is a non-zero, countably additive set-function X, denned on the class 
of all subsets of A, taking on only the values 0 and 1, such t h a t \{X) = 0 
for all finite subsets X of A ; an Ulam ultrafilter on A is an ultrafilter U such 
t h a t the intersection of any countable subfamily of U is again a member of 
U; a point ultrafilter on A is simply the (Ulam) ultrafilter of all subsets of A 
containing a given point of A. If X is an Ulam measure, the sets X such t h a t 
\{X) = 1 form an Ulam ultrafilter which is not a point ultrafilter; conversely 
any Ulam ultrafilter which is not a point ultrafilter defines an Ulam measure. 
Thus A admits no Ulam measure if and only if every Ulam ultrafilter on A 
is a point ultrafilter. 

Bialynicki-Birula and Zelazko (1) proved the following results (under the 
additional hypothesis in Theorem B tha t each Ea possessed an identity) : 

T H E O R E M B. Let K be an infinite field, (Ea)aeA a family of K-algebras indexed 
by a set A which either admits no Ulam measure or has cardinality not greater 
than that of K. Then for every character u of E = TiaEa, there exist (3 Ç A and a 
character v$ of E^ such that u = v$ o prp. 

T H E O R E M C. If K is an infinite field admitting no Ulam measure, then A 
admits no Ulam measure if and only if every character of KA is a projection. 

By Corollary 2 of Theorem 1, to prove Theorem B it suffices to show t h a t 
either of its hypotheses concerning A ensures ]XK(A) is complete. If the car
dinali ty of A is not greater than t ha t of K, there exists a one-to-one function 
g Ç KA. U({g\) is then the diagonal in A X A, so UK(A) is the discrete 
uniform structure and hence is complete. Suppose A admits no Ulam measure. 
Let g be a Cauchy filter on A and let U be an ultrafilter containing g. U is 
an Ulam ultrafilter: let (\n)n>o be a sequence of distinct non-zero elements of 
K. If (Fn)n>o is any decreasing sequence of members of U such t ha t F0 = A, 
let g (a) = \n for all a Ç Fn — Fn+i, g (a) = 0 for all a Ç F = r\n>oFn, and let 
C e U be £/({g})-small. If C H (Fn - Fn+1) j* <£, C C\ Fn+1 = <j> by definition 
of g, which is impossible. Hence C Ç F, so F Ç U. Thus by hypothesis, as 
every Ulam ultrafilter is a point ultrafilter, there exists /3 6 A which is con
tained in each member of U. 13 is then an adherent point of the Cauchy filter 
§, so 3 converges to /3 and the proof is complete. 

To prove Theorem C, it suffices by Theorem B and Corollary 1 of Theorem 2 
to show tha t if UK(A) is complete and if every Ulam ultrafilter on K is a point 
ultrafilter, then every Ulam ultrafilter U on A is a point ultrafilter. For each 
/ € KA, [LQK if-^L) e U] is clearly an Ulam ultrafilter on K, so there 
exists X Ç K such t h a t J - ^ X ) € U. B u t / " ^ ) is U({ f })-small; it follows 
easily t ha t U is a Cauchy filter on A and therefore converges. As the topology 
defined by llK(A) is the discrete topology, U is therefore a point ultrafilter. 

4. Algebras over finite r ings . We next ask for wha t other commutat ive 
rings R with identi ty does question (2) (and therefore question (1)) have an 
essentially affirmative answer. We first consider finite rings. 
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Let R be a finite commuta t ive ring with ident i ty 1. If 7 and 6 are idem-
potents in R, we write 7 > ô if yô = ô, and obtain thus the usual part ial order
ing of idempotents ; idempotent e is minimal if e ^ 0 and if ô < e implies 
5 = 0 or ô — e. Let (e7)i<.j<n be the set of all minimal idempotents . Then if 
j ^ k, ejek = 0, and clearly 1 = E i % - ( f° r otherwise, as R is finite, idem-
potent 1 — ^in€j > some minimal idempotent not in (e^)i<7<w.) Then R is the 
direct sum of ideals (Rej)^^, and every idempotent is the sum of a sub
family of (cy)i<y<ro (so there exist exactly 2n idempotents in R). If X is a subset 
of A, let <f>x G ^ A be its characterist ic function. If u is a character of RA, 
u(<t>x) is then an idempotent in R since <f>x is an idempotent in RA. 

T H E O R E M 3. Let R be a finite commutative ring with identity, ei, . . . , e„. 
(n > 1) its minimal idempotents, and let <£ be the class of all ultrafilters on A. 
For each character u of RA and for 1 < j < n, let %UJ = [X Q A : u(<t>x) > e j . 
Then u —» (Sw,i, • • • , %u,n) is a one-to-one map from M(RA) onto 3>n. Hence 
if A is finite and has m members, M(RA) has mn members; if A is infinite with 
cardinality X, M(RA) has cardinality exp (exp(X)) . 

Proof. %u>j is an ultrafilter: as u{4>A) = 1 > ej and uifo) = 0 < ej, A £ %nJ 

and </> #$w , ,-; if X , Y £ $uj, U{4>X(\Y) = u{<t>x)u(4>Y) > e/2 = ef, so X C\ Y 
€ 3?Mi</; if X £ gMt-7 and 7 3 1 , ^ = 4>x<£r, so ^(<£x) = u(cf>x)u(cf>Y)y t h a t is, 
u(<j>Y) > u(4>x) > e ,̂ and therefore F Ç gM>;; finally, if X $ JÇw.i» u(<t>x)tj ~ 0 
by minimali ty of e7, so 

u(<l>A-x)ej = [ W ( 0 A - X ) + tt(0x)ta = u(<t)A)ej = ej} 

t h a t is, u(<t>A-x) > e;, and therefore ,4 - I f g M j . T h u s %uj is an ultrafilter. 
Next, suppose %uj = ^p></ for 1 < 7 < w. Given subset X of ^4, 

«(**) = E k : e, < u(4>x)] = E ^ ;* e &,,] = L h : i e g„,,] 

As i£ is finite, the functions <t>x generate RA; hence u — v. T h u s the map is 
one-to-one. Next , let $1, . . . , \$n be any n (not necessarily dist inct) ultra-
filters on A, and let 1 < j < n. As R is finite, for each / 6 i£A there exists 
one and only one \f>j Ç R such tha t / - 1 (X/ f > / ) G %j. lî f, g f RA and if \x G R, 
there exists 

a f f-i(\f.,) ng-i(\„j r\ (/ + g)-*{\,+,.j) r\ C/^-HX,,..,) n («fr'Cx,./.,) 
since S i is a filter. Hence 

W , = (f+g)(*) =/(«) + g (a) = X,,, + X,,„ 
\r*.:/ = (fg)(<*) = f(ot)g(a) = \ftj\çj, 

and 

Krj = (/*/)(«) = M / ( « ) = M / j . 

Let 
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u(f) = X) h,fr-

Then clearly from the above u is linear, and for any / , g Ç RAl, 
/ n \ / n \ n rz. 

u(J)u(g) = I £ x/;e;H XI W J = 2 £ /̂.A.*^* 
71 7Z 

Also, clearly Xe>i = 1. Hence u £ M(RA). For any subset X of /I , 

if and only if X £ g^, and 

if and only if X (£ g7-; therefore u(4>x) = ILUJ '-X £ S^], and so u(<t>x) > ^ 
if and only if X G g^. Hence gM)̂  = 3^ f° r 1 < J < w> a n d therefore the map 
is onto $n. If 4̂ is finite with m members, every ultrafilter on A is a point 
ultrafilter, and therefore $n has mn members. Suppose A is infinite with 
cardinality X. Then <ï> has cardinality exp (exp(X)) (2, Exercise 14(c), p. 73), 
so M(RA) has cardinality [exp (exp (X))]71 = exp (exp (X)). 

We see therefore that the answer to question (2) is in general negative 
if R is finite: 

COROLLARY. Let R be a finite commutative ring with identity 1, A a set containing 
more than one element. Then every character of RA is a projection if and only 
if A is finite and the only idempotents of R are 0 and 1. 

5. Algebras over integral domains. 

THEOREM 4. Let D be an integral domain, K its field of quotients. The following 
two conditions are both necessary and sufficient for every character of the 
D-algebra DA to be a projection: 

(1) Every character of the K-algebra KA is a projection; 
(2) For every u £ M(DA) and every f Ç DA such that f(a) 9^ 0 for all a £ A, 

u(f) * 0. 

Proof. Necessity: if u is a projection of DA and if f(a) ^ 0 for all a G A, 
then u(f) 9e 0; hence (2) is necessary. If (1) does not hold, there exist charac
ters of KA which are not projections. Then by Corollary 1 of Theorem 2, 
UK(A) is an incomplete uniform structure. Let % be a non-convergent Cauchy 
filter on A for UK(A). Then for any / £ DA, /(JÇ) is a Cauchy filter base in 
D, hence l im/(§) exists and lies in D since D C K is closed and K complete. 
Clearly u:f—> l im/($) is a character of DA, and for the characteristic function 
<j)a of any {a}, a Ç A, u(<j}a) = 0 since g is not convergent. Thus u is not a 
projection. 
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Sufficiency/: let u £ M(DA). If / g KA, f is the quot ient g/h of functions 
g, h £ DA where h (a) 9* 0 for all a Ç .4, and so by (2) «(A) ^ 0. I t is easy 
to see t ha t if we define v{g/h) to be u(g)/u(h) for all g, h £ DA such t h a t 
h (a) 5^Q for a l l a f. ^ then v is a well-defined character of KA extending u. 
As v is a projection by (1), u is also a projection. 

In discussing principal domains we shall use the terminology and results 
of § I of Bourbaki 's Algèbre, chapter 7. Also, we assume as pa r t of the definition 
of compactness t h a t compact spaces are separated. 

T H E O R E M 5. Let D be a principal domain possessing at least two non-associated 
extremal elements w and a. If A either admits no Ulam measure or has cardinality 
not greater than that of D, every character of DA is a projection. 

Proof. By Theorem 4 and Theorem B, it suffices to prove t h a t if u is a 
character of DA, then u(f) 3^ 0 for every / £ DA satisfying f(a) ^ 0 for all 
a Ç A. Define p Ç DA such t h a t for each a £ A, p(a) is the highest power 
of 7T dividing f(a). Then / = pa with q Ç DA such t h a t (ir, q(a)) = 1 for 
each a Ç A, and hence there exist gi, g2 (E DA such t h a t wgi + qg2 = e. This 
implies iru(gi) + u(q)u(g2) = 1 and therefore u(q) 9e 0 since T is not in-
vertible. Similarly, there exist hi, h2 Ç DA such t h a t ahi + >̂A2 = e, yielding 
u(p) ?* 0. Therefore u(j) = u{p)u{q) ^ 0. 

The au thor is indebted to the referee for the following theorem and remark. 

T H E O R E M 6. If R is a compact commutative ring with identity and if . 1 is 
any infinite set, there exist characters of RA which are not projections. 

Proof. Let U be any ul t rahl ter on A which is not a point ultrafilter. For 
any / Ç RA, f(U) is an ultrafilter base on R and thus converges. Hence u\ 
/ —• lirrijf(U) is clearly a character of RA which is not a projection. 

If D is the ring of />-adic integers for some prime p, D is a compact principal 
domain ; if A is a countably infinite set, A admi ts no Ulam measure bu t there 
exist characters of DA which are not projections by Theorem 6. T h u s the 
condition in Theorem 5 t h a t D have a t least two non-associated extremal 
elements cannot be omit ted wi thout other restrictions on D. 

6. C o m p a c t pr inc ipa l d o m a i n s . Let K be a field with a discrete valuat ion 
v of rank 1. Then the valuat ion ring D = [x Ç K : v{x) > 0] is a principal 
domain whose field of quot ients is K, and P = [x £ K : v(x) > 0] is the unique 
maximal ideal of D. If the topology on K defined by v is locally compact 
(equivalently, if K is complete and if the residue class field D/P is finite 
(3, Exercise 24, p. 59)) , D is compact . 

T h u s finite fields and valuat ion rings of locally compact fields whose 
topology is given by a discrete valuat ion of rank 1 are compact principal 
domains. We now show these are the only compact principal domains. 

T H E O R E M 7. If D is an infinite compact principal domain, then there exists a 
non-trivial discrete valuation v of rank 1 on the field of quotients K of D such that ; 
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(1) The topology of K defined by v is locally compact and induces on D its 

given topology. 
(2) D is the valuation ring of K with respect to v. 

Proof. As in the example following Theorem 6, if A is a countably infinite 
set, A admi ts no Ulam measure bu t by Theorem 6 there exist characters of 
DA which are not projections; hence as D is infinite, D is not a field by Theorem 
B, so by Theorem 5 there exists an extremal element p G D such tha t \p) 
is a representative system of extremal elements. For each non-zero element 
x of K there exist a unique unit u of D and a unique integer n such that 
x = upn; if x = upn, let v(x) = n, and let z/(0) = + °°. Clearly v is a discrete 
valuation of rank 1 on K and its valuation ring is D. The topology Xv induced 
on D by the topology of K defined by v is separated, and the given topology 
X of D is compact . Hence to prove X = Xv it suffices to show Xv is weaker 
than X, t h a t is, for all positive integers n, Un = [x G D :v(x) > n] is a 
neighbourhood of 0 for X. Let F be a neighbourhood of 0 for X not con
taining 1, p, p2, . . . , pn. By (3, Exercise 7, p. 56) there exists a neighbourhood 
IF of 0 for X satisfying DW C V. Let x = upk 6 IT. If fe < », £/r = irl{iipk) 
Ç DW Ç F, a contradiction. Hence k > n, t ha t is, x G Z7W. Thus W Q Un, 
so ï p = ï . But then Z> is a compact neighbourhood of 0 for the topology 
of K, so i£ is locally compact. 

COROLLARY. A compact principal domain is metrizable, totally disconnected, 
and has exactly one maximal ideal. 

7. A topolog ica l app l i ca t ion . Let T be a topological space, S ( T ) the 
algebra over the real numbers R of all continuous real-valued functions on 
T. We shall apply Theorem B to give necessary and sufficient conditions on 
2(7") for every connected component of T to be open. Let us call an algebra 

decomposable if it is the direct sum of two proper ideals, indecomposable other
wise. T h e following theorem is well known and easy to prove: 

T H E O R E M 8. T is connected if and only if (§,(T) is indecomposable. 

Let us call Ulam1 s Axiom the assertion tha t there exist no Ulam measures; 
it is known tha t Ulam's Axiom is consistent with the usual axioms of set theory 
(9, pp. 207-8) . Let us call an algebra fully decomposable if it is isomorphic 
with the Cartesian product of indecomposable algebras. 

T H E O R E M 9. If every connected component of T is open, ($,(T) is fully decom
posable. Conversely, Ulam's Axiom is equivalent to the following assertion: if T 
is any topological space such that Ç£(T) is fully decomposable, then every con
nected component of T is open. 

Proof. If (Ta)aeA is the family of all connected components of T and if 
each Ta is open, clearly 6(7") is isomorphic with UaeA 6 ( T a ) , and by Theorem 
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8 each fë(7«) is indecomposable. To prove the second assertion, we shall 
first prove the following lemma: 

LEMMA. Let {Ea)atA be a family of non-zero algebras over the real numbers R 
indexed by a set A admitting no Ulam measure, and let g be an isomorphism 
from E = UaeAEa onto E(JH). Then T is the topological sum of a family (Ta)aeA 

of subsets, also indexed by A, and for all a Ç A pa o g o ia is an isomorphism 
from Ea onto ®(r a) , where ia is the canonical injection isomorphism from Ea 

into E, pa the restriction homomorphism from &(T) into (&(Ta). 

Proof. E has an identity e as it is isomorphic with S(7"), so for all a £ A, 
Ea has ea = pra(e) as its identity. Then ha = {go ia)(ea) € S(T) is an idem-
potent, hence the characteristic function of an open-closed set Ta C T. Now 
a 7& fl implies ia(ea)-ip(ep) = 0 and thus ha-hp = 0, that is, Ta H Tp = <£. 
Furthermore, for any t £ T, tAo g is a character of J5 and hence, by Theorem B, 
/Aog = vaopra for some a € 4̂ and some character va of £ . Then ha(t) = /A(&«) 
= tA(g(ia(ea))) = (vaopra)(ia(ea)) == ^« (0 = 1 and therefore / £ 7«; this shows 
T is the union and hence the topological sum of ( r a ) a e A . Next, suppose 
(ppo g o ip) (x) = 0 for some x Ç Ep. Then (g o ip(x)) (t) = (pp o g o ip(x)) (t) 
= 0 for / £ 7^, whereas for £ £ r« ^ 7^, ^ ( / ) = 0 and hence 

(goiflW)W = (goip(xep)){t) = (goip(x))(t)-hp(t) = 0; 

this means g o fy(#) = 0 and therefore, as g and ^ are isomorphisms, x = 0. 
Hence pp o g o ip is one-to-one, Finally, pp o g o ip is onto: for any /^ Ç S(7^) 
l e t / € 6 ( r ) be the function defined b y / W = /,(/) if * Ç 7>, /(/) = 0 other
wise. Since f-ha = 0 for any a y£ /3, we have 

= ̂ (r1(/)-r1(W) = (praorl)if'ha) = o 
for a ?± (3. This implies (^ o prp) {g~~l(f)) = g_1(/) and thus 

(p^ogoip)(prp(g-1(f))) = pp(f) = fp, 

where prp(g~~l{f)) Ç £#. 
We return now to the proof of the theorem. Let us assume Ulam's Axiom 

and suppose (§,(T) is fully decomposable. Then by the lemma, T is the topo
logical sum of a family (Ta)a€A of subsets, and for all a £ A, d£(Ta) is isomorphic 
with an indecomposable algebra. Hence by Theorem 8 each Ta is connected. 
(Ta)afA is therefore the set of all connected components of T, and each Ta is 
open. Finally, suppose Ulam's Axiom is false. Now Ulam's Axiom is equivalent 
to the assertion that every discrete space S is a Q-space (that is, the weakest 
uniform structure 3SR(»S) on 5 for which each / Ç S (S) is uniformly con
tinuous is complete). (Q-spaces are defined and discussed in (7); a summary 
of results about Q-spaces is contained in (6, pp. 351-2), and their relation 
to Ulam's Axiom is discussed in (9, pp. 206-8).) Therefore there exists a 
discrete space 5 which is not a Q-space. Let T be the completion of S for 
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25R(5). Then S(T) is isomorphic with S (5), and as 5 is discrete, E(5) = RiS, 
a fully decomposable algebra. Therefore S(T) is fully decomposable. For any 
s Ç 5, there exists an open set F in T such that 7 / ^ 5 = {5} ; then s Ç F 
= F H S Ç ( F H 5 ) ~ = {5}" = {5}, so {5} is both open and closed in T. 
Let C be a connected component of T containing some point in T — S. Then 
by the preceding, 5 $ C for all s (z S. Hence C Ç^ T — S. But then C cannot 
be open, since S is dense in T. Ç£(T) is therefore fully decomposable, but not 
every connected component of T is open. 

COROLLARY. Assume Ularris Axiom. A topological space T is locally con
nected if and only if for every open subset G of T, Ë(G) is fully decomposable. 
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