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THE VOGT-RUSSELL THEOREM, AND NEW RESULTS ON AN OLD PROBLEM 

Helmuth Kahler 

Hamburger Sternwarte 

1. THE VOGT-RUSSELL THEOREM 

Half a centry ago Henry Norris Russell and Heinrich Vogt inde-
pendently made a conjecture concerning the structure of spherical 
stars which are in hydrostatic and thermal equilibrium (Russell, 
1927; Vogt, 1926). This conjecture has later come to be known as 
the Vogt-Russell theorem and is usually formulated as follows: The 
structure of a star is uniquely determined by the mass and the 
composition. In other words, the statement claims the existence 
and uniqueness of a stellar equilibrium configuration for given 
parameters mass and composition, and you may find what is called 
a mathematical proof in many textbooks on stellar structure. 

In the last decade, however, there have been found many counter-
examples which disprove the theorem. In fact, both the existence 
and the uniqueness part of the theorem are violated. Let me give 
you some examples. Consider first the existence part: For a given 
mass and composition there should exist an equilibrium model. But 
you certainly can't find a model composed of iron with a mass of 
two solar masses: Since iron doesn't burn there could be at best a 
cold degenerate model, but for such models there is an upper mass 
limit at about 1.2 solar masses, the so-called Chandrasekhar 
limiting mass. 

Consider next the uniqueness part: For given parameters there 
should be only one model. In numerical calculations however, up to 
9 different models have been encountered. Let me give you an example 
of such multiple solutions which is closely connected with stellar 
evolution. The HR diagram in Fig. 1 shows the post-main-sequence 
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Fig. 1. Evolution of a star of two solar masses (see text), 

evolution of a star of two solar masses (Roth, 1973). The heavy 
solid part of the evolutionary path corresponds to a slow phase in 
which the star evolves on a nuclear time scale. Thereafter the 
evolution speeds up and the star moves on a thermal time scale 
through the Hertzsprung gap, until it goes again through a slow 
phase near the Hayashi line which is indicated by a dashed line. 
During these phases the star has a burnt-out helium core and a 
hydrogen-burning shell source. Consider now the corresponding 
equilibrium models. Fig. 2a shows a sequence of models with diff-
erent values of the core mass (Roth, 1973). I have plotted the 
core radius against the core mass. You can see that for a certain 
range of the core mass there are three different solutions, in 
contradiction to the uniqueness theorem. In the HR diagram (Fig. 2b) 
this sequence of equilibrium models appears as a curve which is 
similar to the evolutionary path, and indeed there is a simple 
connection. The equilibrium models on the solid part of the curve 
have an isothermal He-core and simulate stars in the slow phase 
just after leaving the main sequence. During evolution the core 
mass is growing. Correspondingly, in Fig. 2a the stars move to the 
right until, at the point SC, the Schönberg-Chandrasekhar limit for 
isothermal cores is reached. Now the star can no longer stay in 
thermal equilibrium but has to move on a thermal time scale, until 
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Fig. 2a and b. Equilibrium models of two solar masses (see text), 
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it finds a new equilibrium state on the dashed part of the sequence. 
This dashed part indeed simulates evolutionary models in the slow 
phase near the Hayashi line. The rapid crossing of the Hertzsprung 
gap can therefore be interpreted as a transition between two differ-
ent equilibrium configurations for the same mass and composition. 
This example shows therefore not only the existence of multiple 
solutions, but also their relevance for the interpretation of 
evolutionary calculations. 

We have therefore seen in explicit examples that both the 
existence and uniqueness parts of the so-called Vogt-Russell theorem 
are violated. On the other hand proofs of the theorem have been 
published. What can we say about these proofs? In fact there has 
been no proof but in essence only the following plausibility 
argument: We have a system of four differential equations for 
stellar structure together with four boundary conditions (two at 
the stellar center and two at the surface). Since the number of 
differential equations is equal to the number of boundary conditions, 
the solution should be completely determined. This classical arqu-
ment however applies only to linear equations, and even then it may 
fail as we shall see. 

In order to make this point quite clear, let us comprise the 
parameters (i.e. mass and composition) in the symbol p, and a 
particular stellar model (i.e. a particular solution of the struc-
ture equations) in the symbol S. So far we have asked for the 
global existence and uniqueness of a solution: Is there always, 
for given p, one and only one stellar model S? 

global existence and uniqueness: ρ S? 

The answer is no, the classical argument cannot say anything because 
the corresponding equations are highly nonlinear. If however we 
confine ourselves to a small neighborhood of a given solution, we 
may work with linearized equations, and then the classical argument 
will usually be applicable. So we are led to the problem of the 
local existence and uniqueness of a given solution: Do small 
changes of the parameters lead uniquely to small changes of the 
model? 

local existence and uniqueness : Δρ AS? 

The answer will usually be yes because this is a linear problem. 

At this point let us stop for a moment and recall what Russell 
actually claimed about the manifold of stellar models. He wrote in 
his book "that a star of given mass and composition will usually be 
in equilibrium for only one value of the radius..." (as an example 
he considered main sequence stars), but he admitted that "in more 
complicated cases there might be two or more different configur-
ations11. Accordingly Russell did not claim the global uniqueness 

https://doi.org/10.1017/S007418090014570X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090014570X


306 HELMUTH KÀHLER 

as a strict theorem. He admitted exceptions in complicated cases; 
today we would add that most cases are complicated indeed. Sum-
marizing, Russell's original conjecture is cautious, but the modi-
fied version which was later formulated in lectures and textbooks 
as a so-called theorem is definitely wrong and did Russell no 
service. 

Next let me report about recent work which has given an exact 
local formulation of the Vogt-Russell theorem (Kahler, 1972; 
Kahler and Weigert, 1973). The problem is to give precise condi-
tions for the local existence and uniqueness of stellar models, in 
the vicinty of a given model. First let me illustrate the problem 
with an example. Consider again a star with a burnt-out He-core 
(Fig. 2a). We have already observed that within a certain range 
of the core mass there are three different solutions. With growing 
core mass two of them approach each other, and finally they merge. 
At this point (where the Schönberg-Chandrasekhar limit has been 
reached) the local existence and uniqueness is violated. For a 
somewhat larger core mass there is no neighboring solution at all, 
and for a somewhat smaller core mass there are two different 
neighboring solutions. It will become clear later that the solution 
at the turning point itself should be considered as a double 
solution. 

Let us now obtain a criterion for the local existence and 
uniqueness. For given parameters p, a model is asserted to be 
completely determined by the values of luminosity and effective 
temperature. Starting with trial values for L and Teff, we may 
use the surface conditions for stars which are provided by the 
theory of stellar atmospheres, and may then perform an inward inte-
gration of the differential equations for the stellar interior. In 
this way we obtain a solution of the differential equations which 
satisfies the outer boundary conditions, and which depends on p, 
L and Teff. This solution gives a stellar model if and only if the 
two boundary conditions at the stellar center are also satisfied. 
It can be shown that these two conditions can be written in the 
form gi = 0 and g2 = 0, where the gj_ are functions of p, L and 
Teff· Summarizing, a stellar equilibrium model corresponds to a 
common zero of two functions g]_ and g2 which are defined by the 
differential equations and boundary conditions for stellar structure, 
and which depend on the arguments mass, composition, luminosity 
and effective temperature. 

Let a model now be given, and consider the existence and 
uniqueness of neighboring models. An arbitrary but small variation 
of the mass or the composition should yield one and only one 
neighboring model. This means that an infinitesimal change δ ρ 
should lead to a unique solution 6L, of the equations 
6gj_ = 0. By linearization we find the following vector equation 
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3glA?l 
δρ + 

3gl/3L 9gl/9Teff ÖL 
= 0 

9g2/9P 8g2/9L 3g2/3Teff 6Teff 
in which the first vector stands for the change in the stellar 
parameters, and the last vector shows the reaction of the star in 
the HR diagram. Let the 2x2 matrix be called G. If the determin-
ant of G is non-zero, the reaction of the star is uniquely 
determined : 

IGI = 0: 
6L 

. δΤ 
= -G-l 

eff 

3gl/3p1 

3g2/9p 
δρ 

If on the other hand the determinant vanishes, there may be no 
solution at all, or there may be several solutions; this means that 
the local existence and uniqueness is violated. Thus we have 
arrived at a rigorous criterion: The local existence and unique-
ness of stellar models, in the vicinity of a given model, is equi-
valent to the non-vanishing of the determinant of G. This state-
ment may be considered to be the Vogt-Russell theorem in a local 
sense. 

What is the physical meaning of this criterion? It can be 
shown that the vanishing of the determinant of G is equivalent to 
the occurrence of a zero eigenvalue in the stellar stability pro-
blem. From the viewpoint of stellar evolution, a model can be 
stable only if all eigenvalues have a negative real part, which 
excludes zero eigenvalues. We thus deduce that the existence 
and uniqueness of neighboring models holds automatically for each 
model which is stable. Finally it can be shown that in numerical 
calculations the sign of the determinant of G is closely connected 
with the sign of the Henyey determinant. This provides a simple 
means for testing computed models. 

2. GLOBAL STATEMENTS ON THE MANIFOLD OF STELLAR MODELS 

We have already observed that classical arguments cannot say 
anything about the total number of equilibrium models for the 
given parameters, and that indeed global uniqueness statements are 
out of the question. Accordingly i t seemed to be hopeless to look 
for general statements on the number and the stability of the dif-
ferent models. Surprisingly, recent work has shown that such 
statements are nevertheless possible when appropriate algebraical 
and topological methods are applied (Kahler, 1975). For this 
purpose two new properties of equilibrium models have been defined, 
the multiplicity m and the charge c. 

Consider first the multiplicity. If we ask for the number of 
models, we have to think about cases of mathematical degeneracy in 
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which several solutions coincide. For example, we have seen that 
at the Schönberg-Chandrasekhar limit two solutions have merged, so 
we might speak of a double solution. In order to give a corres-
ponding definition we recall that, for given parameters p, a 
stellar model is completely determined by its location in the HR 
diagram, and that the values of L and Teff satisfy the two equations 
gj_ = 0. Each of these equations defines a curve in the HR diagram, 
and the model corresponds to an intersection of the two curves. 
Let us define the multiplicity m of the model as the corresponding 
intersection number in the sense of algebraic geometry. The 
multiplicity so-defined has a simple physical meaning. A model 
which is locally unique has m = 1. This is the usual case; such 
a model reacts uniquely to parameter changes. If on the other 
hand the local uniqueness is violated, we have m > 1. In this 
case m solutions coincide. This mathematical degeneracy can be 
resolved by a small change of a parameter; up to m different models 
can thereby be obtained. In the HR diagram, the usual case of 
m = 1 corresponds to a simple intersection of the two curves, as 
is shown in Fig. 3a. A higher multiplicity may for example corres-
pond to a contact of the two curves (Fig. 3b), or to the occurrence 
of singular points (Fig. 3c). 

Next, let us consider the charge of a stellar model. We have 
observed that the vanishing of the determinant of G is accompanied 
by the occurrence of a zero eigenvalue in the stellar stability 
problem. Hence we may expect that the sign of this determinant 
(or equivalently of the Henyey determinant) is important for 
stellar stability. This has indeed been shown by Paczynski (1972). 
The charge of a model is now defined as a property which allows 
for this sign. The definition involves topological properties of 
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Fig. 3. Definition of the multiplicity (see text). The dashed 
and dotted lines represent the curves g^ = 0 and g2 = 0, respect-
ively. 

the functions g^; let me omit details. The charge c is equal to 
the sign of det G if this sign is defined, that means if the deter-
minant is non-zero. Otherwise the charge is usually equal to either 
0 or +1, depending on whether m is even or odd. You may ask why 
this property of a model has been called, in particular, charge. 
The reason is that the total charge of all models in a given region 
in the HR diagram depends only on the boundary of the region and 
can be expressed by a certain line integral. This indicates an 
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analogy to electrostatics where the total electric charge in a 
given volume can be determined from the electric field on the 
surface. 

So far we have defined two properties of a model, multiplicity 
and charge, which are small integers and which might be considered 
to be quantum numbers for the model. Next let us ask for applic-
ations. Consider first the stability of a model with given quantum 
numbers. If m > 1, the model has a zero eigenvalue and is there-
fore unstable from the viewpoint of stellar evolution. Stellar 
stability, therefore, requires m = 1. Furthermore, it can be 
shown that stability requires a definite value of the charge. This 
value turns out to be unity. Summarizing, a model can be stable 
only if m = c = 1. This condition is necessary but not sufficient. 

As a second application of this formalism let us ask for the 
models which can be obtained from a given model by continuous 
changes of the parameters. (in other words, let us consider a 
linear series of stellar models.) Suppose we have, for the para-
meter p, a model of multiplicity m! and charge c!. What are the 
total number and the total charge of the different neighboring 
models obtained by a small change 6p? The general result is that 
the number of models (defined as the sum over the multiplicities) 
is either conserved or it decreases by an even number, and that 
the total charge is always conserved: 

Ρ ρ+όρ 

Zm m1 m! - 2 r (r integer > θ) 
Zc c1 c' 

This result may be considered to be a selection rule for the quantum 
numbers m and c. As an example consider again stars with a burnt-
out helium core and a total mass of two solar masses (Fig. 4a). The 
number of models with given core mass is either 1 or 3; it may 
change by an even number. But the total charge of the different 
models is thereby conserved. A more complicated example is the 
bifurcation point in Fig. I+o which has been reported by Paczynski 
(1972). 

We are now ready to ask for a global statement on the manifold 
of equilibrium models with given mass and composition. These basic 
parameters are again comprised in the symbol p. Let C-j_ denote the 
total charge of all models which do exist for ρ = p^. Similarly, 
let C2 be the total charge of all models which do exist for ρ = Ρ2· 
Take a continuous sequence of parameters which connects ρχ and P2· 
Along this sequence, the total charge of all models is conserved 
provided that no model escapes to 'infinity1, which means to extreme 
values of pressure or temperature for which no local thermodynamic 
equilibrium is possible for the given composition. This assumption 
is strong but physically plausible if we confine ourselves to 
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Fig. 4· Examples of linear series of stellar models (see text). 
Solid and dashed lines denote models with m = c = 1 and m = -c = 
1, respectively. 

compositions consisting mainly of lighter elements (say, up to 
carbon). Let us make the above assumption. The conservation of 
charge implies then C^ = C2. In other words, the total charge C 
of all models does not depend on the mass and the composition. 
The value of C can therefore be obtained from a simple special 
case, the limit of very small stellar mass. In this limit there 
is only one degenerate model (white dwarf or planet) which has 
c = 1. Accordingly the total charge C of all models has the 
universal value +1. 

Consider now the total number Ν of models for given mass and 
composition. We may write Ν as the sum of the contributions N+ and 
N_ which refer to models with positive and negative charge, respect-
ively. The requirement that the total charge be unity implies the 
following equations : 

These equations show that Ν is odd, Accordingly Ν > 1, and we arrive 
at an existence theorem: For given mass and composition there is 
always one equilibrium model, but additional models may appear in 
pairs of opposite charge. Moreover we obtain some information about 
the stability of the models. Since stable models are of positive 
charge, up to (N+l)/2 models can be stable but the remaining ones 
are necessarily unstable. 

Summarizing, we have made a plausible assumption which excludes 
stars consisting of heavy elements. Under this assumption, a gen-
eral statement has been derived which concerns the old problem" 
Russell dealt with. The statement gives some information about the 
number and the stability of the different equilibrium configurations, 
and in particular it guarantees the existence of at least one model. 
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