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Asymptotic behaviour at the wall in compressible
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The asymptotic behaviour of Reynolds stresses close to walls is well established in
incompressible flows owing to the constraint imposed by the solenoidal nature of the
velocity field. For compressible flows, thus, one may expect a different asymptotic
behaviour, which has indeed been noted in the literature. However, the transition from
incompressible to compressible scaling, as well as the limiting behaviour for the latter,
is largely unknown. Thus, we investigate the effects of compressibility on the near-wall,
asymptotic behaviour of turbulent fluxes using a large direct numerical simulation (DNS)
database of turbulent channel flow at higher than usual wall-normal resolutions. We vary
the Mach number at a constant friction Reynolds number to directly assess compressibility
effects. We observe that the near-wall asymptotic behaviour for compressible turbulent
flow is different from the corresponding incompressible flow even if the mean density
variations are taken into account and semi-local scalings are used. For Mach numbers near
the incompressible regimes, the near-wall asymptotic behaviour follows the well-known
theoretical behaviour. When the Mach number is increased, turbulent fluxes containing
wall-normal components show a decrease in the slope owing to increased dilatation effects.
We observe that Rvv approaches its high-Mach-number asymptote at a lower Mach number
than that required for the other fluxes. We also introduce a transition distance from the
wall at which turbulent fluxes exhibit a change in scaling exponents. Implications for wall
models are briefly presented.

Key words: compressible turbulence, turbulence simulation, turbulent boundary layers

1. Introduction

The understanding of wall-bounded flows is of paramount importance in the design of
high-speed vehicles. The estimation of thermal and viscous loads on aircraft requires
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robust turbulence models which can predict accurately turbulent statistics close to the
wall. While extremely complicated, significant advances have been made to understand
the details of these flows, in part, owing to the availability of large computational
resources that generate massive datasets for examination. This has been particularly so for
incompressible flows. Because of the additional complexity, larger parameter space and
much greater computational cost, less is known about their compressible counterparts.

The incompressible limit is commonly considered as a reference point around which
changes in turbulence statistics are quantified as compressibility levels are increased. This
is, in part, owing to the large body of literature on the behaviour of, for example, Reynolds
stresses and heat flux close to the wall in incompressible flows that has developed over
many decades (e.g. Hinze 1975; Lai & So 1990; So et al. 1991a; So, Zhang & Speziale
1991b; Durbin 1993 and subsequent work). Work examining the similarities with the
near-wall behaviour in compressible flows followed (e.g. Zhang et al. 1992; Sommer, So &
Zhang 1993; So, Gatski & Sommer 1998). It is a common practice, for example, to extend
incompressible turbulence models to compressible situations by noting that the governing
equations, when Favre averaged, share some commonalities with the incompressible
Navier–Stokes equations. A number of classical compressibility corrections are based
on Morkovin’s hypothesis, which states that compressibility effects mainly influence
turbulence statistics through variations in mean density. In this approximation, density
fluctuations have a negligible effect. A number of studies in the past have focused on
compressibility effects and assessing the validity of Morkovin’s hypothesis using data
from direct numerical simulations (DNSs) in different configurations (e.g. Coleman, Kim
& Moser 1995; Duan, Beekman & Martin 2011; Smits & Dussauge 2006 and references
therein). There is also the complexity associated with different possible normalizations,
among which we can mention wall, semi-local and outer scaling. In general, studies have
found a much better collapse of the Reynolds stresses with semi-local normalization (Patel
et al. 2015; Modesti & Pirozzoli 2016; Trettel & Larsson 2016). However, Morinishi,
Tamano & Nakabayashi (2004) noted, using their own data as well as those from Coleman
et al. (1995), that Reynolds stresses exhibit a change in slope close to the wall with Mach
number. This observation does not seem to conform to Morkovin’s proposal. Perhaps
more importantly, this asymptotic behaviour, which is distinct from the well-known
incompressible laws close to the wall, has only been noted but has not been studied
systematically. For example, it is not known how Reynolds stresses or turbulent heat fluxes
scale in general close to the wall in compressible flows, or how the scaling changes with
compressibility, or the way in which they transition from incompressible to compressible
conditions. Knowing the correct asymptotic behaviour close to the wall is important not
only for fundamental understanding but also for turbulence modelling as one expects
accurate models to satisfy the exact analytical behaviour close to the wall (Bowersox
2009). This is the thrust of the present work. We investigate compressibility effects
on turbulent fluxes close to the wall by carrying out highly resolved direct numerical
numerical simulations of turbulent channels with bulk Mach numbers from 0.2 to 3.1. This
range allows us to identify near-wall asymptotic scaling laws for several turbulent fluxes,
Mach number effects and transitions from incompressible to compressible conditions.

2. Direct numerical simulations

The governing equations expressing conservation of mass, momentum and energy for a
compressible flow are given by

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0, (2.1)
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∂(ρui)

∂t
+ ∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ ∂σij

∂xj
+ ρfiδi1, (2.2)

∂(ρe)
∂t

+ ∂(ρeuj)

∂xj
= −p

∂uj

∂xj
+ ∂

∂xj

(
κ

∂T
∂xj

)
+ σijsij, (2.3)

where ρ is the fluid density, ui the ith component of the velocity, p the pressure, e
the internal energy per unit mass and T the temperature. The viscous stress is given
by σij = μ(∂ui/∂xj + ∂uj/∂xi − 2

3δij(∂uk/∂xk)) and the strain rate tensor is given by
sij = 1

2 (∂ui/∂xj + ∂uj/∂xi). The molecular viscosity, μ, obeys a power law of the form
of Ta where a = 0.5. The thermal conductivity, κ , is related to μ through κ = μCp/Pr
with Pr = 0.7. To close the system of equations, the ideal-gas equation of state p = ρRT
is assumed. A body force ρf1 is added in the streamwise momentum equation thus ensuring
a constant mass flow rate. Bulk density is also kept constant at every time step. This
approach, which has been extensively used in the literature (e.g. Coleman et al. 1995;
Huang, Coleman & Bradshaw 1995; Foysi, Sarkar & Friedrich 2004; Morinishi et al. 2004;
Gerolymos & Vallet 2014; Sciacovelli, Cinnella & Gloerfelt 2017) allows us to accurately
determine simulation conditions a priori. The equations are discretized on a mesh that is
uniform in the streamwise (x) and spanwise (z) directions. The grid in the wall-normal (y)
direction follows a hyperbolic tangent stretching function. The spatial derivatives in the
x and z directions are computed using sixth-order compact schemes. For the wall-normal
direction, we also use a sixth-order compact scheme in interior points which is reduced to
fourth- and third-order accurate compact schemes at the last two grid points in the domain.
The variables are marched in time using a third-order low-storage Runge–Kutta scheme.
Periodic boundary conditions are applied in both streamwise and spanwise directions. At
the walls, we apply no-slip, isothermal boundary conditions. The boundary condition for
pressure is obtained by evaluating the y-momentum equation at the wall:

∂p
∂y

= ∂σyxj

∂xj
(2.4)

which, in addition to represent the proper Navier–Stokes physics at the physical
boundary, was found to be much more stable numerically than the commonly used
zero-pressure-gradient condition at the wall. A Courant–Friedrichs–Lewy (CFL) condition
was used to determine the time step size which, for all situations in the database, was
between 0.2 and 0.4. This is smaller than values commonly used in the literature and
ensured stable simulations free of spurious fluctuations.

Using standard notation, the bulk, wall and centreline values of a variable f are denoted
by fb, fw and fc, respectively. Reynolds and Favre decompositions are denoted by q̄ + q′
and q̃ + q′′, respectively. The averages in these decompositions are taken along the
homogeneous directions (i.e. x–z planes) and time. We found that the longest variations
for statistics of interest here are of order h/ub, where h is the channel half-width. As
expected, this time scale is commensurate with the eddy-turnover time of the turbulence
in the centre of the channel and thus representative of the largest structures. To ensure
statistical independence, our temporal averages are done for snapshots separated by
intervals of 5h/ub. Good statistical convergence was achieved with 20–30 time snapshots.
Our temporal averages involved 50 snapshots for velocity, density and temperature fields.

The bulk and friction Reynolds numbers are Reb ≡ ρb ubh/μw and Reτ = ρwuτ h/μw,
respectively, with uτ ≡ √

τw/ρw being the friction velocity. The bulk and centreline
Mach numbers are Mb ≡ ub/

√
γ RTw and Mc ≡ uc/

√
γ RTc, respectively. The friction
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Mb Reb Mc Rec Reτ Re∗
τ �y+

min �y+
max �x+ �z+ �x

η

∣∣∣∣
max

�z
η

∣∣∣∣
max

Line style

0.2 4966 0.23 5692 295 293 0.08 2.9 14.5 4.8 9.7 3.2
0.3 4928 0.35 5638 294 289 0.08 2.9 14.4 4.8 9.7 3.2
0.4 4902 0.46 5582 294 286 0.08 2.9 14.4 4.8 9.6 3.2
0.5 4854 0.57 5476 293 281 0.05 3.2 14.4 4.8 9.6 3.2
0.6 4934 0.68 5498 301 283 0.05 3.3 14.8 4.9 9.9 3.3
0.8 4937 0.89 5371 307 276 0.05 3.4 15.1 5.0 10.0 3.3
1.2 4927 1.26 5022 325 259 0.05 3.6 15.9 5.3 10.5 3.5
1.5 5752 1.50 5489 393 277 0.10 4.0 19.3 6.4 12.7 4.2
2.4 7149 1.98 5631 572 279 0.10 6.2 14.0 4.7 9.2 3.1
3.1 8301 2.22 5666 745 273 0.09 8.8 14.8 6.1 9.7 4.0

Table 1. Details of DNS flow conditions and grid resolutions.

Reynolds number, based on centreline viscosity and density, Re∗
τ ≡ ρc(τw/ρc)

1/2h/μc,
is kept approximately constant across all of the cases to directly assess compressibility
effects (Trettel & Larsson 2016). Table 1 summarizes the important parameters for the
DNS database used here. We note that the near-wall resolution is very high with the first
grid point located at y+ as low as 0.05, which is much better than that commonly used
in the literature. As we show below, these very high resolutions are needed to capture the
correct asymptotic behaviour at the wall.

Because of the periodic boundary conditions in the streamwise and spanwise directions,
one needs to make sure that the length of the domain is enough to capture structures
in that direction. Thus, our domain has dimensions 4πh × 2h × 4π/3h, which is larger
than that widely used in the literature (e.g. Trettel & Larsson 2016; Yu, Xu & Pirozzoli
2019). Furthermore, we have verified that two-point streamwise and spanwise correlation
functions decay to small values inside the domain in a manner completely consistent with
the literature (e.g. Wu & Martin 2007; Li et al. 2019). Finally, as a direct assessment
of boundary condition effects on the quantities studied here, we have run additional
simulations with a domain which is 20 % shorter and confirmed that the near-wall
asymptotic results are unaffected.

Simulations with Reτ � 393 have grid resolutions 256 × 512 × 256, while simulations
with Reτ = 572 and 745 have resolutions 512 × 512 × 512 and 640 × 512 × 512,
respectively. Some basic first- and second-order statistics at Reb = 3000 and Mb = 1.5
are shown in figure 1, where we see excellent agreement between our results and those
of Coleman et al. (1995) at the same conditions. Detailed grid-convergence studies have
been performed. In figure 2, we show results for the largest Reτ and Mc case in our
database, which corresponds to the most challenging condition. The related details are
provided in table 2. All quantities of interest collapse for cases C, D and E close to the wall.
It is interesting to note that the wall-normal turbulent stress converges at a higher resolution
than that required for the mean velocity and other turbulent fluxes and thus imposes a
stricter resolution criterion. As noted in table 1, our database consists of simulations with
resolutions in x, y and z comparable to the resolutions corresponding to case D of our
convergence study and are, therefore, converged for this study. The resolutions in x and z
are also commensurate with the DNS resolutions used in the literature while wall-normal
grid resolutions are larger than the usual.
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Figure 1. Validation for the channel at Reb = 3000 and Mb = 1.5. Solid lines, present DNS results; symbols,
data from Coleman et al. (1995).

Case Nx Ny Nz �y+
min �y+

max �x+ �z+ �x
η

∣∣∣∣
max

�z
η

∣∣∣∣
max

Marker

A 256 256 256 0.24 16.6 36.5 12.2 23.9 7.9
B 256 512 256 0.09 8.8 36.7 12.2 24.0 8.0 ©
C 512 512 512 0.09 8.8 18.3 6.1 12.0 4.0
D 640 512 512 0.09 8.8 14.8 6.1 9.7 4.0
E 1024 512 512 0.087 8.73 9.1 6.1 5.9 3.94

Table 2. Simulation details for convergence study of a case with Reτ = 745 and Mc = 2.22.

3. Second-order statistics

A number of studies (Huang et al. 1995; Foysi et al. 2004; Morinishi et al. 2004;
Trettel & Larsson 2016) noted that the use of the semi-local transformed coordinate,
y∗ ≡ ρ̄

√
τw/ρ̄h/μ̄, as well as Morkovin’s hypothesis leads to better collapse of Reynolds

stresses in compressible flows with their incompressible counterparts. Morkovin-scaled
Reynolds stresses are given by R∗

ij ≡ ρ̄ũ′′
i u′′

j /τw. Similarly, the temperature flux can be

scaled as R∗
vT = ρ̄˜v′′T ′′/(ρwuτ Tτ ), where Tτ ≡ −λ(∂T̄/∂y)w/(ρ̄wcpuτ ) is the friction

temperature. In figure 3(a–e), we show R∗
ij and R∗

vT against y∗ for all the cases in our
database. An excellent collapse is observed for R∗

uu for all Mach numbers close to the wall.
This degree of universality, however, is not observed for other fluxes in the immediate
vicinity of the wall. In figure 3(b–d), we can see three important features. First, we see
that, close to the wall, the slope of the different fluxes changes systematically with Mach
number. Second, this slope seems to transition to another scaling range with much weaker
Mach number effects. This transition was also observed by Morinishi et al. (2004). And
third, the transition between these two ranges appears to move further away from the wall
at higher Mach numbers. Thus, it is clear that compressibility effects play a role in the
asymptotic behaviour of turbulent fluxes as one approaches the wall. This is the main
thrust of the rest of this work.

Consider a Taylor series of the fluctuating component of the velocity field at the wall:

u′ = au + buy + cuy2 + . . . , v′ = av + bvy + cvy2 + . . . , w′ = aw + bwy + cwy2 + . . .

(3.1a–c)

933 A28-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
87

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1087


A. Baranwal, D.A. Donzis and R.D.W. Bowersox

100 102
0

5

10

15

20

25

30

35

ū/
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Figure 2. Grid convergence study for Reb = 8301 and Mb = 3.1. In panel (a), dotted grey lines correspond to
viscous and log-layer scalings, for reference. Symbols as in table 2.

The coefficients aα (where α = u, v or w) are identically zero owing to the no-slip
boundary condition at the wall. The other coefficients are given by bu = ∂u′/∂y and
cu = (1/2)∂2u′/∂y2, and similarly for v and w. If the flow is incompressible (solenoidal),
mass conservation combined with the no-slip condition at the wall leads to an additional
constraint in the wall-normal velocity component, namely, ∂v′/∂y = bv = 0. By taking
the product between the expansions of different components and averaging, one finds
the following well-known quadratic asymptotic laws for the streamwise and spanwise
stresses: u′u′ ≈ σ I

uuy2 and w′w′ ≈ σ I
wwy2, with σ I

uu = bubu and σ I
ww = bwbw (superscript

I denotes incompressible conditions). The wall-normal stress, however, presents a steeper
quadratic growth: v′v′ ≈ σ I

vvy4, with σ I
vv = cvcv . The Reynolds shear stress is similarly

found to scale as u′v′ ≈ σ I
uvy3 with σ I

uv = bucv . For isothermal walls, there is no additional
constraint on the Taylor expansion of fluctuating temperature and, thus, the wall-normal
heat flux is v′T ′ ≈ σ I

vTy3 with σ I
vT = cvbT . When normalized with the friction velocity

uτ , these stresses and fluxes will be denoted by Rαβ (e.g. Ruu = u′u′/u2
τ ).

If, however, the flow is non-solenoidal, then bv does not vanish. Stresses involving
wall-normal fluctuations v′, then, will change their asymptotic behaviour because v′ ∼ y
instead of y2. The resulting scaling laws for both solenoidal and non-solenoidal conditions
are summarized in table 3. Morinishi et al. (2004) also noted this theoretical asymptotic
scaling law, v′v′ ∼ y2 in their compressible channel at Mc = 1.5. As we see in figure 5, our
data also exhibit power law behaviour and, thus, it is natural to investigate the behaviour
of the scaling exponent in the functional form Rαβ ≈ σαβ yγαβ . Here, and in what follows,
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Figure 3. (a–e) Density-scaled turbulent-flux distributions versus semi-local wall-normal coordinate. Colours
as in table 1. Insets show same profiles up to y∗ ≈ 300. ( f ) Fitting power laws to Rvv for Mc = 1.5. See text for
inset description.

Rαβ will denote a general stress where α and β can be velocity components or temperature.
Clearly, the prefactors σαβ involving the v component will also use bv instead of cv

for non-solenoidal fields (e.g. for non-solenoidal conditions σvv = bvbv). Of particular
interest would be the variation of σαβ and γαβ with compressibility levels or Mach number.

Using well-resolved data such as those shown in figure 3(a–e), we have fit power laws
in the two regions mentioned above, which are denoted by R1 and R2. Note that in
simulations with insufficient wall resolution, what appears to be asymptotic behaviour
may be, in fact, R2. Thus, we also obtain fits in this regime for comparison purposes. The
fitting procedure is shown in figure 3( f ). To select the scaling regime, we compensated the
Reynolds stresses by yγαβ and adjusted the limits such that the range over which a plateau
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u′u′ v′v′ w′w′ u′v′ v′T ′

Solenoidal 2 4 2 3 3
Non-solenoidal 2 2 2 2 2

Table 3. Exponents γαβ for near-wall asymptotic behaviour for Rαβ (α and β are u, v, w or T).

is observed (where a power law exists) is maximized. The result is illustrated in the two
insets of figure 3( f ), where the vertical dashed blue line marks the end of the fitting range
for R1 and vertical dashed red lines mark the fitting range for R2. The corresponding fits
are shown as dashed lines, blue and red for R1 and R2, respectively, in the main figure.
This procedure was performed for both Reynolds and Favre-averaged stresses (e.g. u′v′/u2

τ

and ρũ′′v′′/τw, respectively) with similar degrees of accuracy. The results, which quantify
the compressibility effects noted qualitatively in figure 3, are shown in figure 4.

In figure 4(a), we see the exponent γvv for both wall (Rvv versus y+) and semi-local
(R∗

vv versus y∗) normalizations as a function of the centreline Mach number. The blue
curves correspond to R1 for which the wall and semi-local results are indistinguishable
from each other. At low Mc, we see γvv ≈ 4 as expected for solenoidal fields (table 3). As
Mc increases, γvv deceases monotonically to approach values very close to 2. This is the
result of the emergence of dilatational motions which, at the wall, implies bv /= 0. We do
note, though, that relaxing the solenoidal constraint simply implies that ∂v′/∂y (i.e. bv)
is not bound to be zero; it does not imply that it must be non-zero. However, as already
noted, the data do suggest strong compressibility effects even in R1 (y+ � O(1)). This
is interesting given that close to the wall, the velocity is the lowest and compressibility
effects may be, in principle, expected to be weak. The drastic change in behaviour at the
wall, thus, suggest a stronger coupling between turbulence close to and far from the wall.

The transition for γvv starts at Mc ≈ 0.3 and approaches its asymptote at Mc somewhat
below unity. It is interesting that the transition is not sharp and intermediate values (2 <

γvv < 4) are observed at a range of Mc. This suggests complex dynamics very close to the
wall, as a simple Taylor expansion would suggest 2, 3 or 4, with the prefactors determining
which term is the dominant one. In figure 4(b), we compare the normalized prefactors σvv

obtained from the fits against the analytical prefactors b2
vν

2
w/u4

τ = (∂v′/∂y)2
wν2

w/u4
τ and

c2
vν

4
w/4u6

τ = (∂2v′/∂y2)2
wν4

w/4u6
τ using the derivatives from DNS data. Consistent with

the behaviour of the exponents, we see that at low and high Mach numbers, the value
of the prefactor tends to the cv and bv , respectively. Note that b2

vν
2
w/u4

τ , which we will
denote by (θ+

rms)
2, is the variance of dilatation in inner scales and, thus, a proper metric

for compressibility effects at the wall. As seen from the figure, around the transition,
the magnitude of that term increases substantially as Mc is increased. At Mc > 0.5, the
prefactor σvv follows the variance of dilatation at the wall.

The best-fit exponents for Ruv and RvT in R1 are shown in figures 4(c) and 4(d),
respectively, as blue curves. The behaviour is similar to Rvv: at low and high values of Mc,
both exponents tend to 3 and 2, respectively, as expected (table 3). However, the transition
appears to be much smoother with exponents reaching their theoretical compressible
values only at the highest Mach number in the database (Mc > 2).

The exponents γαβ in the second region, R2, are also included in figures 4(a), 4(c)
and 4(d) as red lines. In general, we see that Reynolds stresses in R2 are less susceptible
to Mach number effects as compared to those in R1. At low Mc, the exponents tend to
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Figure 4. (a,c–f ) Power law exponents for fluxes plotted against centreline Mach number. Horizontal lines
for solenoidal (dashed) and non-solenoidal (dash–dotted) asymptotic exponents (table 3). Insets in panels (a,c)
show exponents from Morinishi et al. (2004) (�), Coleman et al. (1995) (�) and Zhang, Duan & Choudhari
(2018) (©). (b) Prefactor σvv and normalized coefficients in Taylor expansion for Rvv against Mc. Markers
in panels (a–d): + indicates wall normalizations (Rαβ = σαβ( y+)γαβ ); ∗ indicates semi-local normalizations
(R∗

αβ = σαβ( y∗)γαβ ). Blue and red markers correspond to R1 and R2 regions, respectively in all panels.

the same values as in R1, which are equal to the theoretical incompressible limit. This
reflects the observation that at low Mach numbers, there is simply one scaling range with
exponents given by table 3. The differences in scaling exponents can be linked to different
physical processes in the two regimes. In R1, the flow is strongly influenced by viscous
effects while in R2, viscous effects are weaker and the flow physics starts being dominated
by the interaction of turbulent production and dissipation characteristic of the buffer layer.
Because Mach number effects are expected to be different on these processes, it may
not be completely surprising that two scaling regimes develop. We also see that scaling
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exponents for wall and semi-local units differ as the Mach number increases. This can
be understood by noting that close to the wall (in R1), there is little difference between
wall and local density and viscosity. In such a case, wall and semi-local variables are
practically indistinguishable. This is not the case in R2, where density and viscosity can
be very different from ρw, especially as Mc increases. This is indeed consistent with the
results observed in figures 4(a), 4(c) and 4(d).

In the insets of figure 4(a,c), we show, along with our results, the data from the
supersonic channel of Morinishi et al. (2004) (�) and Coleman et al. (1995) (�). We
used the same procedure to find the exponents as that described above. Their exponents
exhibit good agreement with our data, especially for Rvv in R1 for the case Mc = 1.5,
which is expected given that their wall-normal resolution is sufficiently high (y+

w = 0.1)
and comparable to that used in our simulations at similar conditions. We also include
exponents corresponding to supersonic and hypersonic turbulent boundary layers in Zhang
et al. (2018) (�). The resolutions in that study are insufficient to capture R1; instead, we
see their exponents appear to agree with our data in R2 (red symbols). These observations
suggest that care must be exercised if asymptotic behaviour is sought but the resolution
is not sufficient. Still, it is interesting that the exponents in the channels presented here,
seem to agree quantitatively with those in boundary layers, pointing to a potential universal
transitional behaviour of high-speed wall-bounded flows. However, we note that there are
only very few cases for comparison and a definitive answer will require more data from
highly resolved boundary layers.

One can also look at exponents for the ratio of Reynolds stresses (Rαβ/Rvv =
σαβ/vvyγαβ/vv ). This is important as turbulence modelling parameters are often expressed
as a function of these ratios (Bowersox 2009). In figure 4(e–f ), we show the exponents
of these ratios. While the exponents for the ratios of normal stresses (i.e. Ruu/Rvv and
Rww/Rvv) approach their asymptotic behaviour of zero (dashed horizontal line) for Mc
around unity, there is an overshoot in the exponent for the off-diagonal stresses (Ruv/Rvv

and RvT/Rvv) before approaching the theoretical asymptote. This can be explained by
noting the slower trend of Ruv and RvT to the asymptotic behaviour compared with Rvv as
Mc increases.

We introduce a transition distance from the wall, ytr, as the location where the scaling
exponents change, that is, the switching point between R1 to R2. This is easily computed
with the fits obtained from the DNS data. An example is shown in figure 3( f ). The
transition distance for cases with Mc > 0.5 in our database (cases at lower Mc present
incompressible scaling over the entire scaling range and, thus, no transition can be
meaningfully discerned) and for different quantities is seen in figure 5(a) as a function of
Mc. Apparently, ytr moves away from the wall when compressibility levels are increased. It
is interesting that Rvv transitions to the near-wall asymptotic behaviour further away from
the wall than the off-diagonal stresses and heat flux. We also calculated the transition from
the data in Morinishi et al. (2004) and Coleman et al. (1995) and, as seen in figure 5(a),
these are in close agreement with our data. As discussed earlier, the other diagonal
stresses (i.e. R11 and R33) exhibit a single power law throughout the near-wall region
and there is, therefore, no transition. Capturing these different behaviours is important
for both turbulence modelling to exhibit the proper asymptotic behaviour in models
and in simulations or experiments to determine appropriate resolution requirements. At
present, no theoretical result is available to predict ytr. However, we found that the data
can be fitted with stretched exponentials in Mc (included in figure 5(a) and noted in
its caption), which may be useful for turbulence modelling and design of numerical
simulations.
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Figure 5. (a) Transition location of scaling exponents. Data from Morinishi et al. (2004) (�, Rvv) and
Coleman et al. (1995) (�, Rvv ; blue �, Ruv) in wall units for comparison; best fits of y∗

tr with Mc for R∗
vv ,

R∗
uv and R∗

vT respectively y∗
tr,vv ≈ exp(1.8Mc − 2.6) (dashed), y∗

tr,uv ≈ exp(0.29M2
c + 0.093Mc − 1.6) (blue

dashed) and y∗
tr,vT ≈ exp(0.22M2

c + 0.283Mc − 1.7) (red dashed). (b) Distribution of variance of dilatation.
The inset has dilatation at the wall (♦) and scaling, 0.004M1.8

c (dashed).

Finally, we comment on the validity of Morkovin’s hypothesis and semi-local scaling
close to the wall. The lack of collapse in R1 seen in figure 3, except for Ruu, suggests
that Morkovin’s scaling does not incorporate all compressibility effects associated with
increasing the Mach number. Specifically, the hypothesis suggests that compressibility
effects can be accounted for by variations in mean density and effects arising from
dilatation motions are negligible except at hypersonic speeds. However, our results above
show that the fluctuating dilatation at the wall is the main reason for different wall
asymptotics. In figure 5(b), we show the root-mean-square dilatation, θ+

rms as a function
of y+. As noted in the literature (Yu et al. 2019), dilatation fluctuations grow as one
approaches the wall. At the wall, θ+

w,rms increases rapidly with the centreline Mach number.
This is seen in the inset of the figure, where we also show that this growth is well
represented by θ+

w,rms ∼ M1.8
c . This expression is interesting, as it connects directly the

behaviour of compressible motions at the wall with the Mach number very far from the
wall. This long-range coupling may cast doubt on simple rescaling approximations such
as Morkovin’s very close to the wall. However, we also see in figure 4(c) that in R2, γuv is
indeed approximately constant in semi-local units, though not for the other exponents.

4. Conclusions

The asymptotic behaviour of turbulent stresses and heat flux are investigated close to
the wall and compressibility effects are discussed. We present our results with a large
database of DNS, with Mach number ranging from incompressible channel centreline
Mach number, Mc = 0.23 to a high Mach number, Mc = 2.2. All of our simulations are
run with very high near-wall resolution in the wall-normal direction, which we show
is essential to capture correct near-wall asymptotic turbulent behaviour. Power laws are
fit to the fluxes containing wall-normal velocity fluctuations. Our focus was to capture
the variations of the power-law exponents with centreline Mach number changes. Our
data suggest that with increasing Mach number, the near-wall asymptotic power-law
exponents undergo a smooth transition from the incompressible limit dictated by the
solenoidal nature of the velocity field to the power law expected from a general Taylor
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series expansion. This behaviour is explained by the degree of dilatation at the wall,
which increases with centreline Mach number. We conclude that these dilatational effects,
which are generally neglected indeed alter the near-wall flow dynamics and may need
to be accounted for in models. Furthermore, beyond this asymptotic region (which we
call R1), we found a second scaling region (R2) with a steeper exponent which presents
a weaker Mach number effect. However, the transition between R1 and R2 was found to
depend strongly on Mach number, even when the asymptotic exponents in R1 attained their
theoretical limiting behaviour. We have also found that Rvv transitions more quickly and
attains its compressible asymptote at a lower Mach number than the cross-correlations
Ruv and RvT . This is also the case for exponents corresponding to ratio of stresses,
whose near-wall behaviour is needed in some models. However, higher Mach numbers
are needed to assess confidently the approach of some of the fluxes to their corresponding
high-Mach-number asymptotes.

A potentially important extension of this work is related to unsteady effects. In a recent
study (Saavedra, Poggie & Paniagua 2020), it was found that free-stream acceleration does
affect the near-wall region, especially wall fluxes, when the free stream was accelerated
from subsonic to supersonic speeds. It would be interesting to assess the behaviour of
scaling exponents in unsteady situations and other more general conditions including, for
example, pressure gradients. This may also require further studies on appropriate boundary
conditions for these flows.
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