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The vortex dynamics and the structural load in a step cylinder (consisting of a small,
d, and a large, D, cylinder) flow are investigated numerically at Reynolds number (ReD)
150 for diameter ratios D/d = 2.0, 2.4 and 2.8. First, the formation mechanism of a
non-uniform oblique vortex shedding (the vortex shedding frequency remains unchanged
as the oblique shedding angle varies) behind the small cylinder is explained: an increase in
the production rate of the vortex strength and a farther downstream movement of the vortex
formation position occur simultaneously as the vicinity of the step is approached along
the small cylinder. Second, the structural load (the drag and lift) along the step cylinder
is investigated, where four local extremes (two local minima and two local maxima) are
observed. An in-depth investigation of the vortex dislocation effects on the structural load
is provided, showing that the decreased circulation in the near wake and the weakened
staggered Kármán vortex shedding pattern cause a major reduction (90 %) of the sectional
lift amplitude and a relatively modest reduction (5.7 %) of the sectional drag amplitude,
compared with the corresponding sectional force when no vortex dislocation occurs. This
new knowledge combined with the three-dimensional effect of the step cylinder wake
(caused by the blending of the small and larger cylinder wakes around the step) explain
the formation of the four local extremes and the distribution of the structural load between
them. Finally, it is found that the increasing D/d amplifies the structural load variation
along the step cylinder.
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1. Introduction

The flow past a step cylinder sketched in figure 1(a) has attracted attention recently
due to its many applications, such as the outer wall of TV towers and signal towers in
airports, heat exchangers (Jayavel & Tiwari 2009), steel lazy wave risers (Yin, Lie & Wu
2020) and bridge cables (Matsumoto, Shiraishi & Shirato 1992). The abruptly changed
diameter of a step cylinder causes the wake flow to behave differently compared with that
behind a uniform circular cylinder. Complex flow interactions, such as vortex dislocations
and non-parallel vortex shedding, are observed in the step cylinder wakes even at low
Reynolds numbers, where a regular two-dimensional Kármán vortex street dominates the
uniform cylinder wakes (Williamson 1996). The flow around a step cylinder depends on
the diameter ratio (D/d) between the large and small cylinders and the Reynolds numbers
(ReD = UD/ν and Red = Ud/ν, where U is the free-stream velocity and ν is the kinematic
viscosity of the fluid).

In 1992, Lewis & Gharib (1992) investigated the flow over step cylinders by conducting
experiments for 1.14 < D/d < 1.76 at 67 < ReD < 200. They mainly discussed two
vortex interaction modes: a direct mode for D/d < 1.25 and an indirect mode for D/d >

1.55. For the direct mode, the vortices behind the small and large cylinders exhibit two
dominating shedding frequencies fS (small cylinder) and fL (large cylinder), with a direct
interaction between them. In the indirect mode, one more frequency f3 (also referred to
as fN in Dunn & Tavoularis 2006) was observed between the flow regions dominated by
the shedding frequencies fS and fL. No direct interaction was observed between vortices
with frequencies fS and fL. Most of the following research has focused on the indirect
mode. Based on an experimental investigation of the wake behind a step cylinder with
D/d ≈ 2 at 63 < ReD < 1100, Dunn & Tavoularis (2006) identified three spanwise (i.e.
parallel to the central axis of the cylinder) vortex cells for the indirect mode: (i) the
S-cell vortex behind the small cylinder with the highest shedding frequency fS, (ii) the
L-cell vortex shed from the large cylinder with the shedding frequency fL and (iii) the
N-cell vortex located between the S- and L-cell regions shed at the lowest frequency
fN . Figure 1(b) shows these three vortex cells. The characteristics of these three vortex
cells were thereafter investigated by Morton & Yarusevych (2010, 2020) and Tian et al.
(2017, 2020b, 2021), where most of the vortex interactions are closely related to vortex
dislocations. The detailed descriptions are as follows.

The phrase ‘vortex dislocation’ was first introduced by Williamson (1989) to describe
the phenomenon, the contorted ‘tangle’ of vortices, observed in an experiment of the
wake behind a circular cylinder with two end plates. Williamson (1989) found that the
vortex dislocation periodically forms when neighbouring vortices move out of phase due
to their different shedding frequencies. In the indirect mode of a step cylinder wake,
vortex dislocations occur at the boundary between the S- and N-cell vortices and at the
boundary between the N- and L-cell vortices. Lewis & Gharib (1992) found that the
vortex dislocation between the S- and N-cell vortices occurs within a narrow region,
which is time invariant and slightly deflects spanwise into the large cylinder region just
behind the step. During the S-N vortex dislocations, it was argued by Lewis & Gharib
(1992), Dunn & Tavoularis (2006), Morton & Yarusevych (2010) and McClure, Morton
& Yarusevych (2015) that the S-cell vortex, except for connecting to the N-cell vortices,
connects to the subsequent S-cell vortex shed from the opposite side of the small cylinder
and forms SS-half-loop vortices (the red curves in figure 1b). The interactions between the
N- and L-cell vortices, however, occur in a relatively wide region (the N–L cell boundary)
which varies periodically. Based on the numerical investigations on the flow around a step
cylinder with D/d = 2 at ReD = 150 and 300, Morton, Yarusevych & Carvajal-Mariscal
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Figure 1. (a) A sketch of the step cylinder geometry. The diameters of the small and large cylinders are d and
D, respectively. Here, l is the length of the small cylinder, and L is the length of the large cylinder. The origin is
located at the centre of the interface between the small and large cylinders. The uniform incoming flow U is in
the positive x-direction. The three directions are named streamwise (x-direction), cross-flow (y-direction) and
spanwise (z-direction). (b) Instantaneous wake behind a step cylinder with D/d = 2 at ReD = 150, taken at the
moment when vortex dislocations occur. The wake structures are shown by the isosurfaces of λ2 = −0.1 (Jeong
& Hussain 1995) from the present simulation. The vortex structures (the SS-half-loop, NL-loop, NN-loop and
LL-half-loop) that form when the vortex dislocation occurs between the neighbouring vortex cells (the S- and
N-cell vortices; the N- and L-cell vortices) are denoted by the coloured curves on the isosurface.

(2009) observed that the shape and spanwise length of the N-cell vortices, as well as
the position of the N–L cell boundary, change periodically at the frequency, fL − fN , in
accordance with the occurrence of vortex dislocations between the N- and L-cell vortices.
They referred to this cyclic variation as the ‘N-cell cycle’. Tian et al. (2020b) further
investigated the vortex dislocation and accumulation of phase differences between the
N- and L-cell vortices within the N-cell cycles, by conducting numerical simulations
of the flow past a step cylinder with D/d = 2 at ReD = 150. They identified NN-loop
and NL-loop structures in N-cell cycles, as shown by the green dotted and black curves
in figure 1(b). The phrases ‘antisymmetric vortex interaction’ and ‘symmetric vortex
interaction’ were introduced to describe the phenomenon that the NL-loop structures form
on different sides and at the same side of the step cylinder in the neighbouring N-cell
cycles, respectively. Moreover, by monitoring the phase information (Φ) of each N- and
L-cell vortex over time, Tian et al. (2020b) described the phase difference accumulation
mechanism behind the vortex dislocation process as

Φ = Φf + Φc, (1.1)

where Φ, Φf and Φc represent the total phase difference, the phase difference caused
by different vortex shedding frequencies and the phase difference induced by different
convective vortex velocities, respectively. This equation implies that the different shedding
frequencies and vortex convection velocities are the two qualitatively different physical
mechanisms contributing to the accumulation of the phase difference between two
neighbouring vortices. The phrases ‘trigger value’ and ‘threshold value’ were applied to
describe the values of Φ and Φf required for the inception of vortex dislocations. These
results were further confirmed in a subsequent investigation (Tian et al. 2020a) where the
effect of the diameter ratio on the vortex dislocation was investigated numerically in the
wake of step cylinders with D/d = 2.0, 2.2, 2.4, 2.6, 2.8 and 3.0 at ReD = 150. The authors
found that as the threshold value of vortex dislocation decreases when D/d increases from
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2 to 3, the number of dislocated NL vortex pairs and the correspondingly formed NL-loop
structures in one N-cell cycle increases from 2 to 4. Although the step cylinder wakes
gradually become more complex when ReD increases, the three main spanwise vortices
(S-, N- and L-cell vortices) and the vortex dislocation between them were observed at
ReD = 300 (Morton et al. 2009) and at ReD = 1050 (Morton & Yarusevych 2014). In an
experimental investigation of flow around a step cylinder with D/d = 2 at ReD = 1050,
Morton & Yarusevych (2014) found that the varying duration of the N-cell cycle in the
turbulent wake fits a Gaussian distribution. The characteristics of the streamwise vortices
around the step were investigated by Dunn & Tavoularis (2006), Morton et al. (2009), Tian
et al. (2021) and Massaro, Peplinski & Schlatter (2022), where horseshoe-like junction
vortices and tip vortices were identified.

Based on an experimental investigation of flow around a step cylinder with D/d = 2
at ReD = 80 000 (Ko & Chan 1984) and a numerical investigation of flow past a step
cylinder with D/d = 2 at ReD = 2000 (Morton et al. 2009), it was found that the drag
force coefficient gradually increases along the large cylinder while decreasing along the
small cylinder as the step is approached. However, a detailed description and a physical
explanation of the spanwise variation of the structural loads on step cylinders is still
lacking.

Previous studies on the single step cylinder have focused on the wake flow development
and vortex interactions, but whether and how the wake dynamics affects the structural
load along the step cylinder has not yet been thoroughly investigated. The primary goal of
the present numerical study is to investigate how the vortex dynamics, especially vortex
dislocations, affects the structural load on the step cylinder in detail. To achieve this, we
analyse the results obtained from direct numerical simulations (DNS) of the flow past
three different step cylinders with diameter ratios D/d = 2.0, 2.4 and 2.8 at ReD = 150.
The largest diameter ratio is limited to 2.8 because we want to ensure the appearance
of the Kármán vortex street behind the small cylinder. A larger diameter ratio would
cause the Reynolds number for the small cylinder to be lower than 50, which is too
close to the Re range of the closed wake regime (4 � Re � 48). To avoid interference
of three-dimensional wake instabilities, such as natural vortex dislocation, the Reynolds
number for the large cylinder (ReD) is set to 150, which is lower than Re ≈ 180 where the
uniform cylinder wake starts becoming three-dimensional.

The paper is organized as follows: in § 2, the flow problem and the numerical settings
are addressed. Section 3 first revisits the three main vortex cells in the wake, i.e. the
S-, N- and L-cell vortices. Then, the non-parallel shedding of the S- and L-cell vortices
are discussed in all three cases, where the mechanism behind the non-parallel shedding
of the S-cell vortices is provided. In § 4, based on the D/d = 2.0 case, the effects of
the wake flow on the structural load over the step cylinder, especially the effects of
vortex dislocations on structural loads, are analysed. In § 5, we discuss the robustness
of discussions and conclusions in § 4 as well as the diameter ratio effects on the structural
loads by investigating the D/d = 2.4 and 2.8 cases.

2. Governing equations, boundary conditions and convergence study

The incoming flow U is uniform in the positive x-direction. The diameter ratio of the step
cylinder is given as 2.0, 2.4 and 2.8. The Reynolds number is ReD = 150, based on the
diameter of the large cylinder. The origin of the coordinate system is at the step as shown
in figures 1 and 3. The incompressible flow is governed by the continuity equation and the
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time-dependent three-dimensional incompressible Navier–Stokes equation

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = ν∇2u − 1
ρ

∇p, (2.2)

where ρ is the constant fluid density, while u, p and t denote the velocity vector, pressure
and time, respectively.

Direct numerical simulations were conducted by using a finite-volume numerical code
MGLET (Manhart 2004). This code has been thoroughly validated in previous works for
various applications, for example, the flow around step cylinders (Tian et al. 2020b, 2021),
the flow around a prolate spheroid (Jiang et al. 2018), the flow around a cylinder–wall
junction (Schanderl et al. 2017) and the oscillatory flow through a hexagonal sphere pack
(Unglehrt & Manhart 2022). The numerical grid is staggered such that the velocities are
located in the middle of the grid face, and the pressure is evaluated in the middle of the grid
cell. The midpoint rule is used to approximate the surface integral, leading to second-order
accuracy. A third-order Runge–Kutta scheme (Williamson 1980) is applied for the time
integration. A constant time step �t is used to ensure a CFL (Courant–Friedrichs–Lewy)
number smaller than 0.5. Stone’s implicit procedure (Stone 1968) is applied to solve
the elliptic pressure correction equation. The step cylinder geometry is handled by an
immersed boundary method (Peller et al. 2006; Peller 2010).

By implementing the zonally embedded grid method (Manhart 2004), the computational
domain is first equally divided into cubic grid boxes, called the level-1 box. There are
N × N × N equally sized cubic grid cells in each grid box. The local grid refinement
in the region where complex flow phenomena occur (e.g. the regions close to the step
cylinder and the region where vortices form) is achieved by continuously dividing the grid
box (the level-1 box) into eight smaller grid boxes, denoted the level-2 box. In each level-2
box, there are also N × N × N equally sized cubic grid cells. This grid-refinement process
continues until the finest specified grid level is reached (all simulations in this study have
six grid levels). Figure 2 schematically illustrates the grid structure in the symmetry plane
(the xz-plane at y/D = 0) in the Fine-28A case shown in the third row of table 1.

Figure 3 shows the side and top-down views of the flow domain. The streamwise length
of the flow domain is Lx, where Lx1 and Lx2 are the distance from the inlet and outlet
planes to the centre of the step cylinder, respectively. In the cross-flow direction, the length
of the flow domain is Ly, where the step cylinder is located in the middle. The spanwise
height of the domain is Lz, where the length of the small and large cylinders is l and L,
respectively. A constant velocity profile (u = U and v = w = 0) is applied at the inlet. At
the outlet, a Neumann condition (∂u/∂x = ∂v/∂x = ∂w/∂x = 0) is applied. A free-slip
boundary condition is applied for the other four sides of the computational domain (for
the two vertical sides v = 0, ∂u/∂y = ∂w/∂y = 0; for the two horizontal sides: w = 0,
∂u/∂z = ∂v/∂z = 0). A no-slip condition (u = v = w = 0) is imposed at the step cylinder
surface. Neumann conditions are applied for the pressure, except at the outlet where the
pressure is set equal to zero.

One grid convergence and one spanwise length convergence study have been conducted
and reported in Appendix A. The three cases denoted Coarse, Medium and Fine-28A
are selected for the grid convergence study. The computational domain applied in the
present study is larger than that used by Morton & Yarusevych (2010) and Tian et al.
(2020b,a) for the same step cylinder and ReD. Therefore, only the spanwise convergence
study has been conducted (based on the Fine-28A, Fine-28B and Fine-28C cases) to ensure
that the free-slip boundary condition used at the top and bottom boundaries has a minor
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Figure 2. An illustration of the multi-level grids in the xz-plane at y/D = 0. Each square represents a slice of
the corresponding cubic Cartesian grid box that contains N × N × N grid cells. Here, there are six levels of
grid boxes as indicated by numbers.

D/d Case Min. cell size Δc/D
Domain size

(Lx × Ly × Lz)/D l/D L/D Grids (×108)

2.8 Coarse 0.015 34.56 × 23.04 × 46.08 15.36 30.72 1.60
2.8 Medium 0.012 34.56 × 23.04 × 46.08 15.36 30.72 3.13
2.8 Fine-28A 0.01 34.56 × 23.04 × 46.08 15.36 30.72 5.40
2.8 Fine-28B 0.01 34.56 × 23.04 × 34.56 10.60 23.96 4.05
2.8 Fine-28C 0.01 34.56 × 23.04 × 57.60 21.12 36.48 6.75
2.4 Fine-24 0.01 34.56 × 23.04 × 46.08 15.36 30.72 5.40
2.0 Fine-20 0.01 34.56 × 23.04 × 46.08 15.36 30.72 5.40

Table 1. Mesh and computational domain information of all simulations in the present study. The case Coarse
has five levels of grids, and the other cases all have six levels of grids. The cases Coarse, Medium and Fine-28A
are used for the grid study. The cases Fine-28A, Fine-28B and Fine-28C are used for the spanwise length study.
As shown in figure 2, the minimum grid cells (Δc/D) cover the region around the step cylinder.

effect on the discussion and conclusion of this study. Table 1 shows an overview of all
the simulations conducted in this work. Based on the convergence study, it is concluded
that the configuration and mesh for the Fine-28A case are adequate for reliable DNS
simulations in the present study.
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Figure 3. Computational domain and coordinate system are illustrated from (a) side view and (b) top-down
view.

3. Vortex formation and flow structures

Figure 4 shows an overview over the vortex structures in the wake behind the D/d = 2.0,
2.4 and 2.8 cases, where the extensions of the S-, N- and L-cell vortices are marked.
Besides the clear vortex dislocations between the neighbouring vortex cells which have
been systematically investigated in previous papers (Dunn & Tavoularis 2006; Morton
et al. 2009; Tian et al. 2017, 2020b), another interesting phenomenon is the non-parallel
vortex shedding (relative to the spanwise direction) occurring in the S-cell region as
well as in the L-cell region. It should be noted that, away from the NL-cell boundary,
the non-parallel shedding in the L-cell region with a constant shedding angle is the
conventional oblique shedding (Williamson 1989) and has been discussed previously in
Tian et al. (2017). But the non-parallel shedding in the S-cell region is an uncommon
non-uniform oblique shedding, with a shedding angle varying in the spanwise direction.
This phenomenon has not been thoroughly explained before and will be further discussed
below.

The local angle of the S-cell vortex tubes relative to the cylinder axis, αS, is shown
in figure 4(a). Since αS varies from one shedding cycle to another in the vicinity of the
SN-cell boundary, as shown in figure 4(a), we measure the spanwise distribution of αS
by tracking and averaging the angle of ten fully developed S-cell vortices for z/D > 2.5.
The result is shown in figure 5(a). It appears that αS drastically increases in the vicinity
of the step (z/D = 0), and the increase rate is larger for the larger D/d case. Table 2
shows the Strouhal number of the S-cell vortex StS from the present simulations and
the corresponding empirical Strouhal number St′S from Norberg (2003). There is a good
agreement between StS and St′S without application of the well-known recasting relation
of the oblique shedding proposed by Williamson (1989): St = Stα/ cos(α), where α is
the oblique shedding angle; Stα and St represent the oblique shedding and the parallel
shedding frequencies, respectively. The largest discrepancy is around 2 %, indicating that
the non-uniform oblique shedding of the S-cell vortex is different from the conventional
oblique shedding (Williamson 1989). By experimental investigations of the flow around
a step cylinder with D/d ≈ 2.0 at 62 < ReD < 110, Dunn & Tavoularis (2006) observed
this S-cell shedding phenomenon: all the S-cell vortices are inclined such that the part
of the vortex away from the step is always farther upstream than the part of the vortex
closer to the step. Dunn & Tavoularis suggested that the underpinning mechanism might
be due to the step-induced spanwise flow triggering the early shedding of the S-cell vortex
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Figure 4. Instantaneous isosurface of λ2 = −0.05 at ReD = 150: (a) the D/d = 2.0 case, (b) the D/d = 2.4
case and (c) the D/d = 2.8 case. The approximate extensions of the three vortex cells (S-, N- and L-cell
vortices) and the local shedding angle αL of the L-cell vortices and αS of the S-cell vortices are indicated.
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Figure 5. Spanwise distribution of (a) the angle of the vortex tubes in the S-cell region (z/D > 2.5);
(b) the time-averaged base pressure coefficient Cpb on the small cylinder part; (c) the vortex formation length
Lf /d on the small cylinder part. In (b), the circle represents the corresponding base pressure obtained from
Rajani, Kandasamy & Majumdar (2009). Here, Cpb is given by Cpb = (Pb − P0)/(0.5ρU2), where P0 is the
pressure at the outlet boundary and Pb is the time-averaged pressure along a sampling line 0.02D behind
the cylinder wall in the xz-plane at y/D = 0. The distance h = 0.02D is selected because it is slightly larger
than the smallest cell’s diagonal (

√
2Δ < h = 0.02D < 1.5

√
2Δ where Δ = 0.01D) such that we safely avoid

the wiggles possibly caused by cells directly cut by the cylinder surface and still stay as close as possible to
the surface.

close to the step surface. After a thorough investigation based on the present numerical
study, we confirm their suggestion and further find that the appearance of non-uniform
oblique shedding is mainly caused by the simultaneous increase of base suction and vortex
formation length in the S-cell region in the vicinity of the step.

Figure 5(b) shows the time-averaged base pressure coefficient Cpb along a spanwise
sampling line located 0.02D downstream of the small cylinder wall at y/D = 0. The
corresponding Cpb for a uniform circular cylinder is also given. Figure 5(c) shows the
spanwise distribution of the averaged vortex formation length (Lf ), obtained by tracking
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D/d StS St′S
2.0 0.293 0.297
2.4 0.324 0.329
2.8 0.350 0.355

Table 2. The Strouhal number of the S-cell vortex (StS = fSD/U) is obtained from a discrete Fourier transform
of the time series of the streamwise velocity u along a vertical sampling line positioned at (x/D, y/D) =
(0.6, 0.2) over at least 1000 time units (D/U) for three cases. In the third column, the empirical Strouhal
number of the small cylinder (St′S) is calculated by using equation St′S = (0.2663 − 1.019/Re0.5

d ) × D/d from
Norberg (2003).

and averaging the development of ten S-cell vortices (an example will be shown in figure 7
later). It appears that the base suction behind the small cylinder far from the step coincides
with those for the corresponding uniform cylinder. As the step is approached, figure 5(c,d)
shows that the base suction and the vortex formation length simultaneously increase.
It should be noted that a decrease in the base suction is usually accompanied by an
increased vortex formation length and a decrease in the vortex shedding frequency, e.g.
in the wake behind a free-end cylinder (Ayoub & Karamcheti 1982) and in the wake
behind a concave curved cylinder (Jiang et al. 2018). Contrary to the case described
above, the simultaneously increased base suction and vortex formation length leads to
the part of the S-cell vortex in the vicinity of the step to shed farther downstream than
the part of the S-cell vortex farther away from the step in the cylinder axis, with the same
shedding frequency. This results in the non-uniform oblique shedding of the S-cell vortex
shown in figure 4. The underpinning mechanism will be explained as follows. First, the
mixing of wakes behind the small and large cylinders causes the suction pressure and the
recirculation length to increase behind the small cylinder. In figure 6, the time-averaged
pressure contour and streamlines are plotted in the xz-plane at y/D = 0 in the D/d = 2.0
and 2.8 cases. The red curve denotes the position where the time-averaged streamwise
velocity is zero, indicating the recirculation region. It appears that, far from the step, the
small suction pressure region (the yellow region) is closer to the small cylinder than the
larger cylinder due to the different diameters. Close to the step, the wakes behind the
small and large cylinders are mixed and smoothly connected. Consequently, the suction
pressure in the vicinity of the step increases behind the small cylinder and decreases
behind the large cylinder as shown in figures 5(b) and 6(a,b). A similar transition process
also appears for the recirculation length behind the small and large cylinders. The small
and large cylinder wakes are mixed around the step (z/D = 0), causing the recirculation
region to move farther away from the small cylinder wall but closer to the large cylinder
wall when the step is approached, as shown in figure 6(c,d).

Then, the above-described pressure variation behind the step cylinder induces a
downwash flow directed from the small cylinder to the large cylinder, which accelerates the
production rate of circulation of the S-cell vortex strength and finally causes non-uniform
oblique shedding in the S-cell region. Figure 6(c) shows that the induced downwash flow
causes the streamlines pointing to the small cylinder wall to change from horizontal
to inclined as the step is approached along the small cylinder. This downwash flow
mainly splits into two parts: one joins and accelerates the production rate of the vortex
circulation behind the small cylinder, and the other one moves down into the large cylinder
wake. To show the acceleration of the circulation production rate, the instantaneous flow
characteristics are checked in the small cylinder wake for D/d = 2. According to Green &
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Figure 6. The time-averaged pressure contour in the xz-plane at y/D = 0 (a) in the D/d = 2.0 case, (b) in the
D/d = 2.8 case. The time-averaged streamlines in the region marked by the red rectangle in (a) are plotted in
(c) in the D/d = 2.0 case, (d) in the D/d = 2.8 case. The location where the recirculation region ends is
outlined by the red curve in (c,d); the coordinates of three representative locations are also denoted.

Gerrard (1993) and Griffin (1995), the end of the vortex formation region coincides with
the location where the vortex strength becomes maximum. The circulation strength of the
S-cell vortex in the present work is defined as the integration of the spanwise vorticity ωz
in the area (A) enclosed by the corresponding isoline λ2 = −1.7 (Jeong & Hussain 1995)
based on (3.1)

Γ =
∮

|ωz| · dA, (3.1)

The moment when the S-cell vortex just forms can be obtained by tracking the variation
of its vortex strength. The time evolution of the vortex strength of two consecutive S-cell
vortices in the xy-plane close to the step at z/D = 3 as well as in the xy-plane far from the
step at z/D = 10 are calculated and shown in figures 7(a) and 7(c), respectively. The time
of occurrence and vortex strength for the peak values P1, P2, P3 and P4 are also given.
Figure 7(b,d) shows the contour of instantaneous spanwise vorticity (ωz) at the peaks P1
and P3 in figure 7(a,c). By detecting the centre of the region surrounded by the white (λ2 =
−1.7) and black (λ2 = −3) iso-lines, the formation position of the monitored S-cell vortex
is marked by the green line. The time duration between the peaks P1 and P2 in figure 7(a)
and P3 and P4 in figure 7(c) are the same, indicating that the time duration between two
consecutive S-cell vortices is the same whether the monitoring plane is close to the step
or not. It can be seen that the S-cell vortex in the xy-plane at z/D = 3 is stronger and is
located farther downstream compared with the S-cell vortex in the xy-plane at z/D = 10
when these vortices just form. This means that, as the step is approached from the small
cylinder, the induced spanwise flow increases the production rate of the vortex strength,
which makes the S-cell in this region able to keep the shedding frequency unchanged but it
forms farther downstream. A similar process also appears in the D/d = 2.4 and 2.8 cases.
Moreover, the increased diameter ratio strengthens the increase of the base suction and
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Figure 7. (a) Time evolution of the vortex strength Γ/DU of two consecutive S-cell vortices in the xy-plane at
z/D = 10. The vortex strength is integrated within the white isoline λ2 = −1.7. (b) The instantaneous spanwise
vorticity ωz in the xy-plane at z/D = 10 at tU/D = 1003.45 (the peak P1 in panel a). (c) Same as panel (a)
but in the xy-plane at z/D = 3. (d) Same as panel (b) but in the xy-plane at z/D = 3 at tU/D = 1001.71 (the
peak P3 in panel c). The time of occurrence and vortex strength for four peaks (P1, P2, P3 and P4) are marked
in (a,c). The formation position of the monitored S-cell vortex is obtained by detecting the centre of the white
(λ2 = −1.7) and black (λ2 = −3.0) isolines.

the vortex formation length as shown in figure 5(b,c), leading to a large increase rate of
the oblique shedding angle as the step is approached along the small cylinder, as shown in
figure 5(a).

In general, the simultaneous increase of the base suction and the vortex formation length
in the S-cell region as the step is approached cause an increase of the production rate of
vortex strength, moving the vortex formation position farther downstream. Consequently,
the non-uniform oblique shedding of the S-cell vortex appears.

4. Structural loads on the step cylinder with D/d = 2

The present section is divided into three parts. In the first part, the mechanism
underpinning the effect of the vortex dislocations on the structural load is discussed. In
the last two parts, the structural load on the small and large cylinders is discussed. All
discussions in the present section are based on the D/d = 2.0 case.

In the following context, the definitions of the time-averaged drag coefficient CD and
the root-mean-square of the lift coefficient C′

L are

CD = 1
N

N∑
i=1

2FD,i(t)
ρU2DpLc

, (4.1)

C′
L =

√√√√ 2
N

N∑
i=1

(CL,i − CL)2, (4.2)
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CL = 2FL(t)
ρU2DpLc

, (4.3)

CL = 1
N

N∑
i=1

CL,i, (4.4)

where N is the number of values in the sample, FD(t) and FL(t) are the sampled drag and
lift forces acting on the structure, respectively. Here, Dp = D for the large cylinder and
Dp = d for the small cylinder; Lc is the spanwise length of the part of the step cylinder
where the forces are sampled (Lc is set as 0.2D for the simulation with Δmin = 0.01). The
laminar vortex shedding in the wake causes the structural load of the step cylinder to be
primarily induced by the pressure on the cylinder wall. Therefore, when the variation of
the structural load is discussed in the forthcoming section, the focus will be on the vortex
interactions in the near wake.

4.1. Vortex dislocation effects on structural load
As a fundamental physical phenomenon, the effect of vortex dislocation on the structural
load has been reported for various flows, e.g. the flow around a circular cylinder (Qu et al.
2013; Behara & Mittal 2020) and the flow around a circular cylinder with a downstream
sphere (Zhao 2021). In these studies, the authors observed that both the drag and lift
decrease at the position where the vortex dislocation occurs. Zhao (2021) explained this
as a consequence of the spanwise vortices being weakened by the corresponding vortex
dislocations. However, this mechanism does not fully explain the complex force variations
over the step cylinder during vortex dislocations. A more detailed discussion about the
effect of vortex dislocation on the structure load is given as follows.

The contour of cross-flow velocity v is plotted along a spanwise sampling line at
(x/D, y/D) = (0.6, 0) in figure 8(a), where the contours of positive and negative values
are induced by the vortex shed from the +Y and −Y sides of the step cylinder, respectively.
From tU/D = 670 to 730, the one-to-one relationship between N- and L-cell vortices
gradually breaks up, i.e. a vortex dislocation occurs, as marked by the black thick line
in figure 8(a); the mean dislocation position (illustrated by the red line at z/D = −5.5 in
figure 8a) is defined as the centre of the black line. For the same time window, figure 8(b,c)
shows the time history of CD and CL at the mean dislocation position. From the blue
line to the green line (where vortex dislocation occurs) in figure 8(b,c), the fluctuation
amplitude of CD decreases 5.7 % (from 1.278 to 1.207), while the fluctuation amplitude of
CL almost decreases 90 % (from 0.456 to 0.05). The distinct rates of decrease of CD and
CL during this time interval are caused by a combined effect of the decreased spanwise
vortex strength and the temporarily weakened staggered Kármán vortex shedding during
the dislocation process.

Figures 9(a–e) and 10(a–e) show the shedding process of the N- and L-cell vortices
without and with vortex dislocations, respectively. The N- and L-cell vortices are labelled
by a combination of capital letters and numbers: ‘N’ and ‘L’ represent N- and L-cell
vortices, respectively, while the number indicates the shedding order. The primes are used
to denote the vortices shed from the +Y side. The red solid line sketches the boundary
between the N- and L-cell vortices. Figures 9( f –j) and 10( f –j) show the corresponding
contours of vorticity ωz in the xy-plane at the mean dislocation position (z/D = −5.5).
Figures 9(k) and 10(k) show the time variation of CL over one period. The one-to-one
relation between N- and L-cell vortices (e.g. N’1–L’1, N2–L2) is clearly shown in
figure 9(a–e). After seven N–L vortex pairs, the accumulated phase difference (Tian et al.
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Figure 8. (a) Cross-flow velocity component v as a function of the non-dimensional time, along the spanwise
sampling line at (x/D, y/D) = (0.6, 0) in the D/d = 2.0 case. The black line sketches the position where vortex
dislocations occur between the N- and L-cell vortices. The averaged dislocation position is defined as the centre
of the black line and illustrated by the red line. (b,c) Time history of CD and CL at z/D = −5.5 (the horizontal
red line in panel a) in the D/d = 2.0 case.

2020b) caused by the different shedding frequencies, fN and fL, makes L8 dislocate from
its counterpart N8 on the −Y side and connect to N’7 located on the +Y side, as shown in
figure 10(a–d). Further details of vortex dislocation processes can be found in Tian et al.
(2017, 2020b). The decreased spanwise coherence of the N- and L-cell vortices together
with the formation of the cross-border connection between the N- and L-cell vortices
(e.g. N’7–L8 in figure 10d) during the vortex dislocation process severely suppressed the
staggered Kármán vortex shedding, as shown in figure 10(g–j), compared with the vortex
shedding shown in figure 9( f –j) during a time interval without vortex dislocation. In
figure 10(g–j), the spanwise vorticity ωz is distributed much more symmetrically between
the +Y and −Y sides than that during the interval without vortex dislocation, as shown in
figure 9(g–j). This is further visualized in figure 11(a,b), showing close ups of figure 9(g)
and figure 10(g), adding black isolines of ωz = ±3 to visualize the shape of the strong
spanwise vorticity regions. Moreover, the magnitude of the circulation in the near wake
of the cylinder is calculated within the black solid and dotted rectangles, as shown in
figure 11(a,b). Figure 11(c) shows the circumferential distribution of the pressure on the
section of the step cylinder shown in figure 11(a,b). The amount of circulation within the
near wake region (marked by the black sold and dashed rectangles in figure 11) slightly
decreases from 2.9 (1.7 + 1.2 = 2.9) at t2 in figure 11(a) to 2.7 (1.4 + 1.3 = 2.7) at t7 in
figure 11(b). However, the circulation difference between the black solid rectangle (behind
the upper side of the cylinder) and the black dotted rectangle (behind the lower side
of the cylinder) sharply decreases from 0.5 (1.7 − 1.2 = 0.5) to 0.1 (1.4 − 1.3 = 0.1).
As a result, when vortex dislocation occurs from t2 to t7, the difference between the
circumferential pressure along the +Y and −Y sides of the cylinder decreases, as shown
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Figure 9. Isosurface of λ2 = −0.05 showing shedding of N- and L-cell vortices when there is no vortex
dislocation in the D/d = 2.0 case: (a) tU/D = t1, (b) tU/D = t2, (c) tU/D = t3, (d) tU/D = t4, (e) tU/D =
t5. ( f –j) The corresponding instantaneous vorticity ωz contour in the xy-plane at z/D = −5.5 (the red line
marked in panels a–e). (k) Time history of the lift force coefficient CL. Five typical time instants t1–t5 are
marked.

in figure 11(c). The slightly decreased total circulation and the base suction induce a
small reduction in CD, while the less asymmetric circulation and base suction between
the +Y and −Y sides of the large cylinder wake cause a large reduction in CL, as shown
in figure 8(c).

The vortex dislocation process described above agrees well with the findings in previous
publications (Morton et al. 2009; Tian et al. 2020b); the detailed investigations reveal
that, although the vortex dislocation between the N- and L-cell vortices form somewhat
away from the step cylinder (consistent with Tian et al. 2020b), the vortex dislocation
drastically affects the sectional drag and lift. Overall, during the vortex dislocation process,
a larger rate of decrease for CL than for CD is caused by a combined effect of the decreased
circulation and the weakened staggered Kármán vortex shedding, where the latter plays the
major role.

4.2. Drag force characteristics
Figure 12(a) shows the time-averaged drag coefficient CD along the step cylinder. The
contributions from the pressure (CDp) and skin friction (CDf ) on CD shown in figure 12(b)
indicate that the variation of CD is attributed primarily to the pressure.

Along the small cylinder, it appears that CD increases from z/D = 15 to the local
maximum point EXDS (z/D = 0.78), and then decreases sharply towards the step. The
increase of CD as the step is approached is caused by the strengthened suction pressure
in the vicinity of step behind the small cylinder, as shown in figure 6(a) and discussed in
§ 3. This is further visualized by the time-averaged circumferential pressure distributions
on the small cylinder at z/D = 0.8 (red), and z/D = 10 (black) in figure 13(c). The
sharply decreased CD from EXDS towards the step is caused by a combined effect of the
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Figure 10. Isosurface of λ2 = −0.05 showing shedding of N- and L-cell vortices when vortex dislocations
occur in the D/d = 2.0 case: (a) tU/D = t6, (b) tU/D = t7, (c) tU/D = t8, (d) tU/D = t9, (e) tU/D = t10.
( f –j) The corresponding instantaneous vorticity ωz contour in the xy-plane at z/D = −5.5 (the red line marked
in panels a–e). (k) Time history of the lift force coefficient CL. Five typical time instants t6–t10 are marked.

decreased stagnation pressure at θ = 0 and the weakened suction pressure from θ = 70 to
θ = 180, as shown by the red and green curves in figure 13(c). The decreased stagnation
pressure is induced by the formation of the junction vortex visualized by the time-averaged
streamlines and pressure contour in the xz-plane at y/D = 0 in figure 13(a,b), respectively.
Similar to the findings by Morton et al. (2009), McClure et al. (2015), Tian et al. (2021)
and Massaro et al. (2022), a junction vortex is located near the step region in figure 13(a).
The corresponding low-pressure zone (highlighted by the black rectangle in figure 13b)
causes the stagnation pressure on the small cylinder wall (marked by the black dotted
rectangle) to become lower than that observed farther away from the step. The weakened
suction pressure in the vicinity of the step behind the small cylinder is mainly induced
by the suppressed velocity over the step surface. The velocity distribution from z/D = 0
to z/D = 1 at θ = 90 is plotted along a spanwise sampling line located 0.1d away from
the small cylinder wall in figure 13(d). It is clear that the velocity over the small cylinder
surface continuously decreases as the step is approached, especially from z/D = 0.3 to
z/D = 0. Overall, the formation of the junction vortex in front of the small cylinder
together with the suppressed velocity over the step surface cause a decrease of both the
stagnation pressure and the suction pressure on the small cylinder near the step. This leads
to the sharply decreased CD (from EXDS) towards the step.

Along the large cylinder, figure 12(a) shows that CD increases from z/D = −20 to the
local minimum point EXDL (z/D = −1.7), and then increases sharply towards the step.
The time-averaged pressure distributions over the large cylinder at z/D = −20 (green),
z/D = −1.7 (red) and z/D = −0.2 (black) are plotted in figure 14(d). The distributions of
CDp and CDf shown in figure 12(b) together with the green and red curves in figure 14(d)
indicate that the decrease of CD from z/D = −20 to z/D = −1.6 (shown in figure 12a)
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Figure 11. Contour of instantaneous vorticity ωz in the xy-plane at z/D = −5.5: (a) at t2 shown in figure 9(g);
(b) at t7 shown in figure 10(g); (c) the circumferential distribution of instantaneous pressure along the cylinder
slices in (a,b). The position angle θ is measured from the front stagnation point, i.e. θ = 180 represents the rear
stagnation point. The shape of the concentrated ωz region is shown by the black isoline of ωz = ± 2. Based on
(3.1), the circulation in the region marked by the black and dotted rectangles in (a,b) is calculated and shown.
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Figure 12. In the D/d = 2.0 case: (a) the spanwise distribution of the total drag coefficient (CD); (b) the
spanwise distribution of the viscous (CDf ) and pressure (CDp) drag coefficients. In (a), two local extremes of
the total drag coefficient (EXDS and EXDL) are denoted. Several noteworthy variations of CD are sketched.

is mainly caused by the weakened base suction behind the large cylinder as the step is
approached. The identification of the underpinning mechanism of this weakened base
suction is challenging, as will be further discussed below. Figures 4(a) and 8(a) show that
(for D/d = 2.0) vortex dislocations occur in the region −6.5 < z/D < −4.5, which is only
2.8D away from the local minimum EXDL (z/D = −1.7). Thus, one may suspect that the
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Figure 13. (a) Streamline around the step area in the xz-plane at y/D = 0 in the D/d = 2 case.
(b) Time-averaged pressure contour plotted in the plane used in (a). (c) The distribution of time-averaged
pressure on the surface of the small cylinder at z/D = 14.5, 0.8 and 0.2. The position angle θ is measured from
the front stagnation point, i.e. θ = 180 represents the rear stagnation point. (d) Streamwise velocity distribution
at θ = 90 and 0.1d away from the small cylinder wall in the D/d = 2.0, 2.4 and 2.8 cases.

weakened suction pressure is mainly caused by the appearance of vortex dislocations. This
is, however, not the case. Figure 16(a) shows the time histories of the instantaneous drag
coefficient CD at z/D = −7.5, z/D = −5.5 (i.e. the averaged dislocation position shown
in figure 8a) and z/D = −1.8 (position of EXDL) in red, black and green, respectively. The
cross-flow velocity contours along the spanwise sampling line at (x/D, y/D) = (0.6, 0)

are shown in figure 16(b). The red thick lines in figure 16(b) and on the time axis of
figure 16(a) highlight the time and position when vortex dislocations occur. Figure 16(a)
shows that, for z/D = −5.5, the amplitude of CD decreases from a maximum value of
1.33 to a minimum value of 1.2 (i.e. a decay of 9.8 %) at the instant coinciding with the
instant vortex dislocations marked by the thick red lines in figure 16(b). For z/D = −1.8,
however, the corresponding decay of CD is only 2.5 % (i.e. from CD = 1.18 to CD = 1.15).
This implies that vortex dislocations only make a limited contribution to the appearance
of EXDL. The major contribution stems from by the fact that the pressure in the near
wake behind the small cylinder is higher than that behind the large cylinder. As discussed
in § 3, under the effect of the high-pressure region (the yellow region) behind the small
cylinder, the pressure behind the large cylinder increases as the vicinity of the step is
approached. Consequently, the drag force CD decreases along the large cylinder to the
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Figure 14. The time-averaged streamlines in the D/d = 2.0 case on the xy-plane: (a) at z/D = −20; (b) at
z/D = −1.7; (c) at z/D = −0.2. (d) The circumferential distribution of time-averaged pressure on the large
cylinder part at z/D = −20 (green dotted curve), −1.7 (red dashed curve) and −0.2 (black curve). The location
of the recirculation centre is marked by the red line in (a–c).

local minimum EXDL. Another phenomenon shown in figure 13(c) and figure 14(d) is that
the circumferential pressure distributions at different spanwise locations show a smaller
difference on the fore part (θ < 60) than on the aft part (θ > 60) of the small and large
cylinders. This phenomenon can also be observed from the pressure contours on the
yz-plane at x/D = −0.2 and x/D = 0.6 in figure 15. The spanwise pressure variation on
the small and large cylinder sides is larger at x/D = 0.6 than at x/D = −0.2. The reason
is that the spanwise variation of the pressure is mainly affected by the formation and
interaction between the different vortex cells, which have not yet formed on the cylinder’s
fore part.

Figure 12(a) shows that the decreasing rate of CD becomes smaller in the region −7.5 <

z/D < −5 (where the NL vortex dislocations occur as shown in figure 4(a) and figure 8a)
than that in the neighbouring regions (−10 < z/D < −7.5 and −5 < z/D < −2), as
indicated by one black dotted line and the two black dashed lines. This is because, for
the region where vortex dislocations occur, the formation of the contorted N–L vortex
structures (as shown in figures 4 and 10a–e) mix up the wakes and make the pressure
within this region more synchronized. Figure 16(a) shows that the difference between
CD at z/D = −7.5 and z/D = −5.5 decreases almost to zero as a vortex dislocation
occurs. Thus, the appearance of vortex dislocations reduces the difference between the
time-averaged drag (CD) at z/D = −7.5 and at z/D = −5.5, leading to a smaller rate of
decrease in this region.

Due to the higher suction pressure behind the small cylinder compared with that behind
the large cylinder, one may expect CD to decrease as the step is further approached from
EXDL along the large cylinder. In this region, however, figure 12(a) shows a sharp increase
of CD. This is caused by the upstream movement of the circulation centre, which is a result
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Figure 15. Time-averaged pressure contour in the yz-plane: (a) at x/D = −0.2, (b) at x/D = 0.6.

of the decreased recirculation length in the vicinity of the step behind the large cylinder,
as shown in figure 6(c) and discussed in § 3. Figure 14(a–c) shows the time-averaged
streamlines in the xy-planes at z/D = −20, z/D = −1.7 and z/D = −0.2, respectively, for
D/d = 2.0. It is observed that the circulation centre moves towards to the large cylinder
(from 1.35D at z/D = −1.7 to 1.0D at z/D = −0.2). This leads to an increase of the base
suction behind the large cylinder when the step is approached, as shown in figure 14(d).
Thus, CD increases from EXDL towards the step.

4.3. Lift force characteristics

Figure 17(a) shows the root mean square of lift coefficient C′
L along the step cylinder. The

contributions from the pressure (C′
Lp) and skin friction (C′

Lf ) on C′
L shown in figure 17(b)

indicate that the variation of C′
L is attributed primarily to the pressure.

Along the small cylinder, it appears that C′
L remains almost constant from z/D = 15

to z/D ≈ 3, and then decreases sharply towards the step. This decrease is due to the
non-uniform oblique shedding in the S-cell region and the vortex dislocation effect,
previously discussed in §§ 3 and 4.1. Figure 18(a) shows the time history of CL at
z/D = −6.2 (black), z/D = 1.2 (red) and z/D = 0.4 (green). The corresponding spanwise
vorticity contours in the xy-plane at the different time instants P1, P2 and P3 marked in
figure 18(a), are plotted in figures 18(b), 18(c) and 18(d), respectively. Here, the region
with strong ωz is marked by the black isoline of ωz = ±3. Moreover, the circulation of
two vortices at the +Y side of the cylinder is calculated and marked in figure 18(b,c).
By detecting the centre of the high vorticity region surrounded by the white iso-lines, the
positions of these vortices are also marked. From z/D = 6.2 to z/D = 1.2, the decreased
fluctuation amplitude of CL (shown by the red and black curves in figure 18a) is mainly
caused by the non-parallel shedding of the S-cell vortex rather than the vortex dislocation
effects. Since z/D = 1.1 is relatively far from the step where vortex dislocation occurs
between the S- and N-cell vortices (see figure 4a), the staggered Kármán vortex shedding
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Figure 16. (a) The time history of CD in the D/d = 2.0 case at z/D = −7.5 (red), −5.5 (black) and −1.8
(green). (b) Cross-flow velocity component v as a function of the non-dimensional time, along spanwise
sampling line at (x/D, y/D) = (0.6, 0) in the D/d = 2.0 case. (c) The time history of CL in the D/d = 2.0
case is monitored at z/D = −15 (black), −5 (red), −3.2 (green) and −0.7 (blue). The red thick line in
panel (b) highlights the position where vortex dislocations occur. The red thick line in the time axis of (a,c)
marks the time when vortex dislocations occur.

0.4

0.3

0.2

0.1

0
–20 –15 –10 –5 0 5 10 15

0.4

0.3

0.2

0.1

0
–20 –15 –10 –5 0 5 10 15

C′
Lp

C′
Lf

CL
′

z/D

EXLL2

EXLL1

z/D

(b)(a)

Figure 17. In the D/d = 2.0 case: (a) the spanwise distribution of the root mean square of lift coefficient
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L); (b) the spanwise distribution of the viscous (C′
Lf ) and pressure (C′

Lp) drag coefficients. In (a), two local
extremes of the root mean square of lift coefficient (EXLL1 and EXLL2) are denoted.
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Figure 18. (a) The time history of CL is shown at z/D = 6.2 (black), 1.2 (red) and 0.4 (green). (b) The
instantaneous spanwise vorticity ωz in the xy-plane at z/D = 6.2 at the time instant marked by the peak P1 in
panel (a). (c) Same as panel (b) but in the xy-plane at z/D = 1.2 at the time instant marked by the peak P2 in
panel (a). (d) Same as panel (b) but in the xy-plane at z/D = 0.4 at the time instant marked by the peak P3
in panel (a). The shape of the concentrated ωz region is shown by the black isoline of ωz = ±3. The vortex
strength is integrated within the white isoline λ2 = −1.7.

shown in figure 18(b) is not as suppressed as that shown in figure 11(b) where the vortex
dislocation occurs between the N- and L-cell vortices. As described in § 3, the S-cell
vortex in the vicinity of the step sheds farther downstream than the S-cell vortex away
from the step. As a result, a comparison of figure 18(b,c) shows that the vortex that mainly
contributes to the positive lift force at the time instants P1 and P2 in figure 18(a) moves
further downstream and closer to the symmetry plane (y/D = 0) with less circulation as
the step is approached from z/D = 6.2 to 1.2. This contributes to the reduced C′

L. As the
step is further approached (i.e. from z/D = 1.2 to 0.4), the dislocation effect described in
§ 4.1 becomes strong and further contributes to a decrease of C′

L; figure 18(d) shows that
the staggered Kármán vortex shedding is strongly suppressed in the xy-plane at z/D = 0.4.

Along the large cylinder, figure 17(a) shows that C′
L first decreases from z/D = −20 to

the local minimum point EXLL1 (z/D = −5), and increase slightly to the local maximum
point EXLL2; then, C′

L decreases sharply closer to the step. The non-monotonic variation
of C′

L is caused by two different vortex dislocations, i.e. the vortex dislocation between
the S- and N-cell vortices (SN-dislocation) and the vortex dislocation between the N- and
L-cell vortices (NL-dislocation). Figure 16(c) shows the time history of CL at z/D = −15
(black), z/D = −5 (red), z/D = −3.2 (green) and z/D = −0.7 (blue). The red thick line
on the time axis marks the time interval when the NL-dislocation occurs. Due to the effect
of vortex dislocation on CL (as discussed in § 4.1), the black and red curves in figure 16(c)
show that the fluctuation amplitude of CL at z/D = −5 (where the NL-dislocations occur
as shown in figure 8a) is smaller than that at z/D = −15 when vortex dislocation occurs,
but is comparable to that at z/D = −15 when there is no vortex dislocation. Thus, a
decrease of C′

L appears when we move from z/D = −20 to −5.
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As EXLL2 is approached from EXLL1, the NL-dislocation effect decreases while the
SN-dislocation effect becomes important. In the region between EXLL1 and EXLL2, the
increased SN-dislocation effect is not strong enough to compensate for the decreased
NL-dislocation effect, leading to an increase of C′

L, as shown in figure 17(a). The red
and green curves in figure 16(c) show that the oscillation amplitude of CL at z/D = −3.2
(EXLL2) becomes larger than that at z/D = −5 (EXLL1) when the vortex dislocations occur
(indicated by the red thick line on the time axis). As the step is further approached, the
effect of SN-dislocations dominates the flow, causing C′

L to decrease towards the step, as
shown in figure 17(a). Since the S-N vortex dislocation occurs in every shedding period
of the N-cell vortex (as shown in figure 4a), the oscillation amplitude of CL on the large
cylinder in the vicinity of the step will be small and not increase to a large value even
when there is no N-L vortex dislocation (e.g. CL at z/D = −0.7 shown by the blue curve
in figure 16c). This leads to a sharp decrease of C′

L from EXLL2 towards the step.

5. The effect of diameter ratio on the structural load

Numerical simulations for D/d = 2.4 and 2.8 with ReD = 150 are conducted to investigate
the effect of D/d on the structural load along the step cylinder. Figure 19(a,c) shows CD

and C′
L along the cylinder axis, while figure 19(b,d) shows the contribution from the

pressure and skin friction to CD and C′
L. For all D/d, the variations of CD and C′

L are
attributed primarily to the pressure. As for D/d = 2.0, four local extremes (EXDS, EXDL,
EXLL1 and EXLL2) are observed for all cases, as denoted in figure 19(a,c). It appears that an
increase of D/d does not fundamentally change the qualitative distribution of CD and C′

L
along the step cylinder but only gradually amplifies the variations of CD and C′

L. Since an
increase of D/d does not cause any abrupt changes in flow characteristics, the amplification
mechanism will be discussed based on comparisons between D/d = 2.0 and D/d = 2.8
cases, knowing that the wake at D/d = 2.4 falls in between.

Along the small cylinder, the overall increase of CD shown in figure 19(a) and the overall
decrease of C′

L shown in figure 19(c) are mainly caused by the decreased Red as D/d
increases. The increasing pressure difference between the small and large cylinder wakes
(due to the larger difference in the Reynolds number between the small and large cylinders)
induces a higher increasing rate of CD as EXDS is approached for the larger D/d case, as
shown in figure 19(a).

Along the large cylinder, figure 19(a) shows that the increased pressure difference
(as described in the previous paragraph) causes the value of EXDL to decrease as D/d
increases. As the step is approached from EXDL on the large cylinder, a sharper increase
of CD is observed for larger D/d than for smaller D/d. This is related to an upstream
movement of the circulation centre, as discussed previously in § 4.1 and shown in figure 14.
Figure 20 shows the streamlines around the large cylinder in the xy-plane at z/D = −20,
z/D = −1.7 and z/D = −0.2 for D/d = 2.8. It is observed that the circulation centre
moves 55 % upstream towards the large cylinder (i.e. from x/D = 1.86 at z/D = −1.7 to
x/D = 0.83 at z/D = −0.2), which is larger than the 29 % upstream movement observed
for D/d = 2.0 in figure 14(b,c). This is because the recirculation length behind the small
cylinder decreases as D/d increases, while the recirculation length behind the large
cylinder remains nearly the same in the region far from the step, since ReD remains
constant while Red varies. Thus, as the wake flows behind the small and large cylinders
are mixed in the vicinity of the step (as discussed in § 3), the recirculation length behind
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Figure 19. The distribution of structural loads in the D/d = 2.0, 2.4 and 2.8 cases are sketched in black, red
and green, respectively. (a) The spanwise distribution of the total drag coefficient (CD); (a i) a close up of
(a) at the black dotted rectangle; (b) the spanwise distribution of the viscous (CDf ) and pressure (CDp) drag
coefficients; (c) the spanwise distribution of the root mean square of drag coefficient (C′

L); (d) the spanwise
distribution of the viscous (C′
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Lp) lift coefficients. In (a,c), the local extremes are marked in

all three cases.
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Figure 20. The time-averaged streamlines for D/d = 2.8 on the xy-plane: (a) at z/D = −20; (b) at
z/D = −1.7; (c) at z/D = −0.2. The location of the circulation centre is marked by the red line.

the large cylinder becomes smaller for D/d = 2.8 than for D/d = 2.0 (as shown in
figure 6c,d), leading to a larger upstream movement of the circulation centre for D/d = 2.8
also.

Figure 19(c) shows that both EXLL1 and EXLL2 decreases as D/d increases. This is
because the effect of the NL vortex dislocation on C′

L (as shown in figure 17(a) and
discussed in § 4.3) is amplified, since the number of vortex dislocations and their duration
for a given time interval increase as D/d increases (this can be observed by comparing
figure 16(a) and figure 21; the corresponding mechanism has been discussed in Tian et al.
2020a). Figure 21 shows the time history of the cross-flow velocity contours for D/d = 2.8
showing nine occurrences of vortex dislocations. During the same time interval, eight
series of vortex dislocations for D/d = 2.0 are shown in figure 16(b). Moreover, the
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Figure 21. Cross-flow velocity component v as a function of the non-dimensional time, along spanwise
sampling line at (x/D, y/D) = (0.6, 0) for D/d = 2.8. The red thick line highlights the position where vortex
dislocations occur.

duration of each vortex dislocation (indicated by the thick red lines in figure 16(b) and
figure 21) increases from 11 D/U for D/d = 2.0 (containing 2 N- and 4 L-cell vortices)
to 17 D/U for D/d = 2.8 (containing 4 N- and 6 L-cell vortices). This further strengthens
the effect of vortex dislocations on CD shown in figure 12(a) as previously discussed in
§ 4.3. As a result, CD decreases less for larger D/d than for smaller D/d in the region
−8 < z/D < −5, as shown in figure 19(a i) (a close-up of figure 19a).

The investigations in this section indicate that our discussions and conclusions in § 4
are likely valid not only for the step cylinder D/d = 2 case but also for other D/d
cases. An increase in diameter ratio strengthens the effect of vortex dislocation and the
three-dimensional effect (induced by the step) in the cylinder wakes, thereby further
amplifying the variation of the structural load over the step cylinder.

6. Conclusion

The flow and the structural load along a step cylinder with diameter ratios D/d = 2.0, 2.4
and 2.8 are investigated at ReD = 150 based on DNS. Our results agree well with previous
studies (Dunn & Tavoularis 2006; Morton & Yarusevych 2010; Tian et al. 2020a,b),
for the three dominating spanwise vortices, i.e. the S-, N- and L-cell vortices, vortex
dislocations occurring at the S-N and N-L cell boundaries as well as the non-parallel
shedding of the S- and L-cell vortices. In addition, the numerical results provide a more
in-depth understanding of the non-parallel shedding of the S-cell vortex, the variation of
the structural load and the vortex dislocation effect on the structural load.

The different formation mechanisms of the non-parallel shedding in the S- and L-cell
regions were discussed. The non-parallel shedding in the L-cell region belongs to
the conventional oblique vortex shedding (Williamson 1989). However, the scenario is
different for the S-cell vortex. As the step is approached along the small cylinder, the S-cell
vortex changes from parallel shedding to non-parallel shedding but keeps the shedding
frequency unchanged. This uncommon non-parallel shedding phenomenon is referred to
as non-uniform oblique shedding in the present work. The underpinning mechanism is that
the downwash flow behind the small cylinder (caused by the pressure difference between
the small cylinder wake and large cylinder wake) and the extended recirculation length
(caused by blending of the wake behind the small and large cylinder) induce an increase
of the production rate of the S-cell vortex strength and a farther downstream movement of
the S-cell vortex formation position as the step is approached along the small cylinder. This
leads the part of the S-cell vortex in the vicinity of the step to form farther downstream
compared with the part of the S-cell vortex away from the step, despite the same shedding
frequency. Thus, the non-uniform oblique shedding appears in the S-cell region.
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Additionally, we analysed the influence of the vortex dynamics on the structural load.
First, the effect of vortex dislocations on the structural load was studied based on the
investigation of the vortex shedding pattern during the vortex dislocation processes and
the time history of the corresponding drag (CD) and lift (CL). We found that a major
reduction (90 %) of the sectional lift amplitude and a relatively modest reduction (5.7 %)
of the sectional drag amplitude are caused by the decreased circulation and the weakened
staggered Kármán vortex shedding pattern when vortex dislocations occur, where the latter
effect plays the major role. This new understanding of the effect of vortex dislocations
on the structural load provides an explanation for the formation of the local minimum
EXLL1 (caused by the NL-dislocation effect) as well as the sharp decrease of C′

L in the
vicinity of the step at the small (caused by the SN-dislocation effect) and the large cylinder
(caused by the NL-dislocation effect). From EXLL1 to the step, since the SN-dislocation
effect is not strong enough to compensate for the decreased NL-dislocation effect, a local
maximum EXLL2 appears. Although the vortex dislocation effect on the structural load has
been observed before, we provide the first in-depth investigation of it.

Besides the vortex dislocation effect, the diameter ratio D/d causes the pressure and
wakes behind the small and large cylinders to be distinctly different in the region far away
from the step; and such difference decreases as the step is approached due to the mixing
of the small and large cylinder wakes. Under this process, for the small cylinder, the base
suction and the recirculation length increase as the step is approached. The first one causes
an increase of CD along the small cylinder until the local maximum EXDS is reached. The
second one, together with the vortex dislocation effect, induces a sharp decrease of CD
from EXDS to the step. For the large cylinder, the base suction decreases as the step is
approached. This plays a major role in the decrease of CD as the step is approached, before
reaching the local minimum EXDL. As the step is further approached from EXDL, the
recirculation length decreases and the base suction increases, leading to an increase of CD
from EXDL close to the step.

In § 5, the robustness of our discussions and conclusions is justified by investigating the
wake flow and structural load for D/d = 2.4 and 2.8. Increasing D/d is found to amplify
the variation of the structural load along the step cylinder, since it strengthens not only the
three-dimensional effect of the cylinder wakes caused by D/d but also the effect of vortex
dislocation.

Although all investigations in the present paper are based on step cylinders with
D/d = 2.0, 2.4 and 2.8 at Reynolds number ReD = 150, the three dominating spanwise
vortices (S-, N- and L-cell vortices) and the vortex dislocation between them were also
observed in other step cylinder cases with 1.55 < D/d < 2 at 67 < ReD < 3900 (Norberg
1992; Dunn & Tavoularis 2006; Tian et al. 2021). As long as the above-mentioned two
flow features exist, we believe that the variation of the structural load and the mechanism
underpinning the effect of vortex dislocations on the structural load reported in the present
study could also exist for the step cylinder cases with other diameter ratios and at higher
Reynolds numbers, at least until transition occurs in the shear layer. We believe that
our discussions and conclusions can shed light on other bluff body wakes that contain
several adjacent spanwise vortices and three-dimensional flow effects caused by body
shapes, for example, flow around a free-end cylinder, a curved cylinder and a tapered
cylinder.
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Case StS StN StL

Coarse 0.344 0.148 0.177
Medium 0.348 0.148 0.176
Fine-28A 0.350 0.148 0.176
Williamson & Brown (1998) 0.355 — —

Table 3. The Strouhal number (St) of three dominating vortex cells (StS = fSD/U, StN = fND/U and StL =
fLD/U) for the three cases with D/d = 2.8, i.e. Coarse, Medium and Fine-28A, as shown in table 1. By means
of the empirical StS = (0.2663 − 1.019/Re0.5

d ) × 2.8 from Norberg (2003), the empirical Strouhal number of
the S-cell vortex (StS) is calculated and shown in the fifth row.

Author ORCIDs.
Cai Tian https://orcid.org/0000-0001-7591-5617;
Jianxun Zhu https://orcid.org/0000-0002-5266-6125;
Fengjian Jiang https://orcid.org/0000-0002-5321-3275.

Appendix A. Grid convergence and spanwise length convergence

Since the complex wake flow is mainly caused by the changed diameter at the step of
the cylinder, the most critical case is expected to appear when D/d = 2.8 (i.e. the largest
diameter ratio used in this work). Both the grid convergence and the spanwise length
convergence study are conducted based on a step cylinder with D/d = 2.8. Table 1 shows
an overview over all the numerical simulations conducted in the present work. The three
cases denoted Coarse, Medium and Fine-28A are selected for the grid convergence study.
For the spanwise convergence study, the Fine-28A, Fine-28B and Fine-28C cases are used.

A.1. Grid convergence
Table 3 shows the Strouhal number (St) of the three dominating vortex cells (StS = fSD/U,
StN = fND/U and StL = fLD/U) calculated by discrete Fourier transform of the time series
of the streamwise velocity u along a vertical sampling line at (x/D, y/D) = (0.6, 0.2) in
the Coarse, Medium and Fine-28A cases. Only tiny differences can be observed for StN
and StL in these three cases. For StS, a clear convergent tendency can be seen as the grid
resolution increases; the difference between the finest two cases (Medium and Fine-28A)
is only 0.3 %. It should be noticed that, due to the diameter ratio D/d, StS is more sensitive
to the grid refinement than StN and StL.

Figure 22(a) shows the time-averaged streamwise velocity above the step at
(x/D, y/D) = (−0.4, 0). A close up of the red rectangle in figure 22 is shown in
figure 22(a i). Figure 23(a,b) displays the spanwise distribution of the time-averaged drag
coefficient (CD) and the time-averaged fluctuation of the lift coefficient (C′

L), respectively.
Both figures 22 and 23 clearly show a convergent tendency from the case Coarse to the
case Fine-28A. The difference between Medium and Fine-28A is negligible. According to
the above careful comparisons, it can be concluded that the grid resolution in the Fine-28A
case is sufficiently fine to accurately simulate the flow around the step cylinders discussed
in the present paper.
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Figure 22. Distributions of time-averaged streamwise velocity ū/U along a sampling line AB in the xz-plane
at y/D = 0 in the D/d = 2.8 case. Inset: (a i) a zoomed-in view of the upper part of the curves (red rectangle);
(a ii) a sketch of the position of the sampling line AB of a length 0.8D at x/D = −0.4.
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Figure 23. Distribution of time-averaged force coefficients in the three D/d = 2.8 cases with different grid
resolutions: (a) drag coefficient CD, (b) lift coefficient C′

L. Inset: (a i) a zoomed-in view of the curves marked
by the red rectangle in panel (a). The rectangle and cross are the drag coefficients corresponding to the Reynolds
number 50 and 55, obtained from Rajani et al. (2009).

A.2. Spanwise length convergence
Besides the grid convergence, the spanwise length convergence was also examined by
using the same grid structures as in Fine-28A, and changing the lengths of both the large
(L) and small (l) cylinders (see table 1). Figure 24 shows the spanwise distributions of
CD and C′

L in the region −20 < z/D < 10. The results indicate that the free-slip wall
boundary condition at the top and bottom of the computational domain has relatively
strong effects on the results in the Fine-28B case. Especially at z/D = −20, which is
close to the bottom boundary (z/D = −23.96) for Fine-28B, CD and C′

L in Fine-28A and
Fine-28C are approximately 10 % larger than those in Fine-28B. The difference between
the black (Fine-28C) and red dotted (Fine-28A) curves is minimal. The spanwise variation
of the angle of the S-cell vortex tubes (αS) in the three D/d = 2.8 cases with different
spanwise lengths is shown in figure 25. Due to the free-slip boundary condition at the
top of the computational domain (as described in § 2), αS becomes zero as the top is
approached. The significantly lower αS at 6 < z/D < 11 for Fine-28B than in the other
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Figure 24. Distribution of time-averaged force coefficients in the three D/d = 2.8 cases with different
spanwise lengths: (a) drag coefficient CD, (b) lift coefficient C′

L.
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Figure 25. Spanwise variation of the angle α of the vortex tubes in the S-cell region (z/D > 2.5) in the three
D/d = 2.8 cases with different spanwise lengths.

two cases reflects the strong influence of the upper boundary condition on the distribution
of αS. For Fine-28A and Fine-28C, however, the shedding angles αS almost coincide for
z/D < 10. This suggests that the vortex dynamics in the vicinity of the step is practically
unaffected by the boundary conditions as long as the spanwise domain Lz = L + l > 45D.
From the discussions in this section, we are convinced that the spanwise length in the
Fine-28A and Fine-28C cases converge well in the flow field −20 < z/D < 10 for the
analysis and discussions the present paper focused.

A.3. Comparison with previous studies
It was observed that, although a non-uniform oblique shedding appears in the S-cell region,
the shedding frequency of the S-cell vortex is barely influenced (detailed discussions were
addressed in § 3). This makes it reasonable to use an empirical formula to validate our StS.
Table 3 shows that, as the grid resolution is improved, the difference between StS in the
present simulations and the empirical value (Williamson & Brown 1998) decreases; this
difference is smaller than 1 % for Fine-28A. In addition, we obtained time-averaged drag
coefficients at Re = 50 and 55 from Rajani et al. (2009) and display them in figure 23(a i).
For D/d = 2.8, Red (the Reynolds number for the small cylinder) is 53.5. Therefore, it is
reasonable to observe that CD on the small cylinder part far from the step is between the
drag coefficients for ReD = 50 (the rectangle in figure 23a i) and for ReD = 55 (the cross
in figure 23a i).

In general, based on the results presented in this section, we conclude that the
configuration and mesh used in the Fine-B case (see table 1) are sufficiently good for
reliable DNS simulations in the present study.
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