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ABSTRACT. For more than 30 years the quantitative method of evaluating stability
(e.g. Roch, 1966; Fohn, 1987;Jamieson, 1995;Jamieson andJohnston, 1998a) has been
focused on calculation ora strength-to-load ratio (or stability index): when the shear stress
applied to the weak layer reaches the shcar strength, failure is imminent. Howcver, field
observations combined with experience and measurements indicate that snow-slab tem-
peratures and slab hardness can have a strong inLluenceon dry-snow slab stability. In this
paper, we present a simple static analysis of the stability index, and discuss the importance
of slab temperatures and hardness and macroscopic size effects (factors not contained in
the stability index) on snow-slab stability. Our conclusion is that the traditional mcthod
lacks some elements which arc very important in snow-slab stability, particularly when
skier triggering is involved.

INTRODUCTION

Nlost avalanches in western Europe and North America
that result in deaths and injury occur during skiing (or
snowmobiling or snowboarding), with people themselves
serving as the triggering agent. Therefore, understanding
the problem of skier triggering of dry-snow slabs is very
important.

Instead of the traditional view that stability can be des-
cribed by a strength-to-load ratio, McClung (1979,1981,1987,
1996) proposed an alternate view of dry-slab initiation:
namely, that avalanche release depends crucially on both
slab and weak layer, their interaction as a dependent me-
chanical system and the mechanical properties of both.
The result is that deformation (and the energy needed to
form cracks) is the key to understanding avalanche release.
Slab avalanches initiate by propagation of shear fractures in
a weak layer under a slab and there are macroscopic size
effects associated with such fracture initiation (Palmer and
Rice, 1973;McClung, 1979,1981,1987,1996;Bazant and Pla-
nas, 1998).BaZant and Planas (1998)show that when failures
are described according to a strength or yield criterion
alone (as with the traditional method), no such size effect is
implied. The analysis in this paper includes for the first time
a discussion of size effects in relation to skier triggering.

This paper is based on our experiences and field obser-
vations of snow temperatures and their effects on mechani-
cal properties (including the slab) and skier triggering of
avalanches. The inLluence of slab mechanical properties is
overlooked in the traditional method of stability evaluation.
As well as snow temperatures, we examine the stability in-
dex more generally with a simple stress analysis for skier
loading on a snow slab. This analysis shows that if alpine
snow is assumed to be a pressure-sensitive, Coulomb-l\10hr
material (the traditional assl)mption), the stability index
may either increase or decrease under static skier loading,
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which conflicts with experience. The discrepancy is ex-
plained by showing that the static stability index does not
account for deformation and macroscopic imperfections.
\\le also emphasize the importance of dynamic effects for
analysis of skier triggering by a comparison with the meas-
urements of Schvveizerand others (1995a,b).

The fundamental argument in this paper is that macro-
scopic size effectsand slab properties combined with dynamic
effects are crucial in skier/human triggering, and that there
are great variations in their combined effects.The result is to
cast back-country avalanche forecasting as a risk analysis
rather than a deterministic one based on an engineering sta-
bility index. vVebegin with a discussion of temperature effects
on slab and failure properties in order LO provide the link to
slab properties, and conclude with a discussion of the stability
index and size effectsfor skier triggering.

EFFECTS OF SNOW TEMPERATURE ON HARD-
NESS, FAILURE TOUGHNESS AND STRENGTH

The effects of snow temperature on hardness, failure tough-
ness and shear strength have been described previously
(McClung, 1993,1996). Expericnce, field observations and
measurements show that there arc two important groups of
competing effects: (1) metamorphism (depending on tem-
perature, temperature gradient and other snow properties)
and creep; (2) mechanical properties (excluding metamor-
phism eHects),including snow hardness (initial tangent mod-
ulus in shear which we term stiffness), fracture propagation
potential (fracture toughness which depends on stiffness)
and strength. In this paper, we consider only the mechanical
properties in group 2 for short time-scale changes in relation
to skier triggering. Creep and metamorphism take more time
to affect the temperature-dependent mechanical properties
than the eHectsin group 2; the latter can be aHectedon time-
scales of seconds or less.
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(b) ALPINE SNOW

(a) GENERAL CONCEPT

tougher material

\

SKIER TRIGGERING AND SNOW TEMPERATURES

strength on temperature is a characteristic of most high-
temperature materials (Pisarenko, 1969). The conven-
tional explanation of temperature effects on stability is
based only on the decrease in strength with increasing
temperature. Our measurements aI!d theoretical argu-
ments lead to the eonelusion that strength decrease is
not the major effect, particularly for skier triggering.

(3) Failure toughness (work input needed to reach a peak on
the stress-strain curve) increases slightly with increas-
ing temperature. It is equivalent to the area under the
stress strain curve until a peak is reached. The failure
toughness is related to the failure strain and failure
strength. Data (Schweizer, 1998) show that failure strain
decreases, resulting in afailure toughness which decreases
as the temperature decreases by about 30% over the
range -5° to 15"C.

Results by Schweizer (1998) indicate that when tempera-
ture and strain rate are studied together in a multivariate
sense, temperature eflects are more significant than rate
effects on initial tangent modulus. For peak strength and
toughness, however, rate effects predominate over tempera-
ture effects. These results strengthen the argument that tem-
perature effects are most significant with respect to their
effect on effective stiffness (or initial tangent modulus)
(McClung, 1996).

Since the hardness (or initial shear modulus) is strongly
temperature-dependent, it is likely that Facture toughness for
the snow-slab problem increases as temperature decreases,
since fracture toughness is proportional to the square root
of the shear modulus (e.g. :\IlcClung, 1996). Since peak
strength increases as temperature decreases, and failure dis-
placement decreases as temperature decreases, it is likely
that the shear modulus controls the temperature depen-
dence offracture toughness. This expectation matches that for
other high-temperature materials. Broek (1986) argues that
alloy steels and other materials show an increase inJi-acture
toughness as the temperature decreases similar to what we ex-
pect for alpine snow.

Field data (Perla, 1977; sec also McClung and Schacrer,
1993) show that avalanche frequency is less when weak-layer
failure temperatures are cold. \Ve believe the decrease in h'e-
quency could be due in part to an increase in slab stiffness
with decreasing temperature, because colder weak layers
also imply colder slab temperatures. However, there arc
other complicating factors which prevent a direct correla-
tion (McClung, 1996).

)

relatively warmer,
slightly tougher,

weaker
relatively colder

slightly less tough,
stronger

\

stronger material

\

Figure 1 shows a schematic of the effects and definitions
of the terms based on our experimcntal rcsults (.MeClung,
1996, and unpublished data from more than 200 tests by
McClung; Schweizer, 1998) from simple shear tests on
alpine snow (for data description and experimental proce-
dures see :\IlcClung, 1977; Schweizer, 1998). The shear strain
rates range from 10 :l to 10 6 S I and the temperatures range
from -2° to -15°C. The important effects sketched in Figure
1from Schweizer (1998) are:

(1) Initial tangent modulus in shear is highly temperature-
dependent. The increase in initial tangent modulus is
> 100% as the temperature decreases from _5° to -15°C.
This is the most important temperature-dependent
property of alpine snow. Tn this paper, we use the terms
initial tangent modulus in shear test, hardness and stiff-
ness as synonymous. Tn engineering mechanics, hard-
ness is usually related to tensile strength, but in
practical work with the snow slab the relationship to re-
sistance to shear deformation is much more important.
When the hand hardness test is used in field applica-
tions, people seek information about the relative rela-
tionship of shear properties oflayers and the relation to
shear strength.

(2) Failure strength (defined as peak on the stress-strain
curve) can increase by >20% as temperature decreases
over the range -5" to -15cC. \Veak dependence offailure

£

Fig. 1. Failure toughness and strength. (a) General concept
with respect to stress (a) and strain (E). (b) Schematic for
alpine snow in shear in relation to temperature and strength:
toughness increasesslightfy with temperature increase whereas
strength decreases. Figure 1b is drawn mainry from data in
Schweizer (1998).

Consider now the case of skier triggering with the immedi-
ate effects of snow temperatures on stiffness and failure
toughness. \Vhen a skier moves over a snowpack a dynamic
load is applied to the snow cover and the stresses penetrate
through the entire depth of the snow cover (sec, e.g., Fohn,
1987, for a static analysis). In order to generate propagating
shear fractures in a weak layer, a skier will have to impart
significant deformation energy to the layer. While crack in-
itiation will depend on stresses, the formation and propaga-
tion of cracks requires deformation energy (BaZant and
Planas, 1998). It is not possible to generate propagating frac-
tures, even if stresses are very high, unless the required de-
formation energy is applied. ~leasurements of snow
deformation imparted by skis (Schweizer and others,
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1995a, b) show that the most important variable with re-
spect to the penetration of significant deformation is the
snow hardness. Harder layers permit less deformation at
depth than softer layers, thereby reducing the chance offail-
me. Furthermore, by the argument above, snow hardness
increases rapidly with decreasing temperature.

Combining the above results, increasing snow tempera-
hIres can rapidly decrease snow-slab stability in two ways.
(I) By decreasing the delayed elastic (or viscoelastic) stiff-
ness of surface (slab) layers, significant deformation may
penetrate deeper in the snow cover to increase weak-layer
deformation and allow easier failure (more deformation)
and propagation. (See McClung (1996) for a discussion of
delayed elasticity and its relation to temperature depen-
dence. The analysis shows that slab temperature effects
reside in delayed elastic (viscoelastic) response rather than
the time-independent elastic modulus.) (2) If warming tem-
peratures also reach the weak layer, failure toughness is
increased slightly (Schweizer, 1998), but peak strength is re-
duced to produce only small changes in the ease with which
failure takes place. Of these two processes, we consider the
first to be the more important, from our extensive failure
data on snow.

A person on skis is directly in contact with the surface
layers, and deformation energy to the weak layer must be
communicated through the slab. Furthermore, surface
layers are subject to great variations in temperature, and
snow hardness is afleeted rapidly. Therefore, one can expect
the stability to vary greatly when conditions are right, de-
pending on the hardness of the surface layers and their fluc-
tuating temperatures. For example, on a cold morning or
northerly aspect (Northern Hemisphere) when surface
layers are cold and hard, deformation under skis will not
penetrate as far and as effectively as later on or at other
places where surface layers are warmer. Furthermore, the
efTect on stability can be rapid when surface layers warm:
metamorphism or significant creep (settlement) effects are
not required since the viscoelastic (delayed elastic) proper-
ties are affected almost immediately on loading. Figure 2
shows a schematic of the expected snowpack deformation
patterns for a person on skis. Further information on skier
deformation is provided in the Appendix.

STABILITY TESTS

(1)Rutschblock test

The suggestions above have important implications for in-
terpretations of common stability tests used by skiers, par-
ticularly the Rutschblock test. (See McClung and Schaerer
(1993) for descriptions of the common stability tests.) The
interpretation of the Rutschblock test is complicated since
the results are highly dependent on the hardness of the sur-
face layers. Since hardness of surface layers can vary con-
siderably, not only spatially across a slope but also rapidly
in the vertical directions with time as layer temperatures
change, it may be expected that Rutschblock test results
can vary significantly with snow-slab temperatures. At a
location, it is possible to go from a condition indicating sta-
bility to one of instability as surface layers warm to allow
deeper penetration of deformation energy. Therefore, the
Rutschblock may sometimes only test the surface layer hard-
ness and its propensity for def~:Jrmation penetration rather
than indicate instability at a location. The Rutschblock test
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(a) SOFT, WARMER SURFACE LAYER

•

(b) HARD, COLDER SURFACE LAYER

•

Fig. 2. Schematic qldeformation patternsfor a skier.

measures primarily surface layer deformation, but if defor-
mation penetrates deep enough with enough deformation
energy to fail snow in a weak layer it indicates local instabil-
ity. A great advantage of the test is that it includes provision
for application of dynamic loads which can partially repli-
cate skier loading. Thus, interpretation of the Rutschblock
is not simple, and results may vary according to hardness
variations of the surface layers Uamieson and Johnston,
1995). Such highly variable results have been amply demon-
strated (Fohn, 1989). At a given location, the Rutschblock is
a very good test, but extrapolation to other locations is com-
plex if surface hardness conditions change, for example due
to temperature or wind-packing variations.

(2)Shovel shear test

The shovel shear test also has limitations (McClung and
Schaerer,1993) but it is simpler to interpret than the Rutsch-
block test, and variations in test results arc due primarily to
strength variations in the layer tested rather than a combi-
nation of surface hardness changes and weak-layer strength
variations as in the Rutschblock test. Once the weak layer is
found, the shovel shear test gives a qualitative estimate of
weak-layer strength (based on the applied force necessary
to reveal a shear fa.ilure), as well as an indication of the qual-
ity of any shear-failure plane formed.

(3)Shear frame test

The shear frame test is similar to the shovel shear test in that
it tests true variations in weak-layer strength. It gives a more
quantitative index of weak-layer strength. As with the sho-
vel shear test, the weak layer has to be found first. The
method involves special techniques appropriate for special
investigations and professional services. It is useful to follow
the evolution of weak-layer strength in a relative sense, and
combined with experience it can also be used to assess sta-
bility. Potential limitations of this method have been studied
by Perla (1980), Fohn (1987) andJamieson (1995).

Field experience shows that near-surface layer proper-
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ties are very important for skier triggering, and the results
of Schweizer and others (I995a, b) confirm that deformation
and stresses are sensitive to surface laycr properties. For
example, field practitioners apply the term "bridging" when
slab material is hard (or stiff) and deformation energy at
depth is reduced to lessen the chance of avalanche initiation
by a skier. Our work provides experimental and theoretical
evaluation of this important effect which practitioners have
developed from experience. In order to be effective, stabi IitY
tests must be supplanted with information about slab
mechanical properties.

STABILITY INDEX AND SKIER TRIGGERING

Fig. 3. Geometryjar line-source loading ola skier where P is
load (kg) per unit length.

dS'
d!:!.O" > 0,

stability index, So, prior to new snow load or skier loading is
given by:

Consider now the additional loading by snowfall with mean
density p, slope angle wand incremental depth !:!'H; then
the incremental shear and normal load added are:

(2)

(4)

So = 7s/T.

NEW SNOWFALL LOADING

!:!.T = pg sin IjJ!:!.H
!:!.O"= pg eos IjJ!:!.H.

The new stability index,S', then becomes:

5' = C+tL(O"+!:!.O").
7 + (tan 1jJ)!:!.a

From Equation (4),the stability index increases under load-
ing if

and the stability index decreases under loading if

dS'
d!:!.O" < O.

From Equation (4) these conditions are (under snowfall
loading):

The stability index (also called a strength-to-load ratio) is
normally defined as the ratio of shear strength in the weak
layer to applied shear stress for describing the possibility of
slab-avalanche initiation. The shear strength is normally
defined by an index of weak-layer strength using the shear
frame. The shear stress is defined from density measure-
ments in the slab as the downslope component of body force
per unit area applied to the weak layer. In practice, stabi-
lity-index calculations are sometimes performed in places
such as level study plots, and instead of shear stress in the
calculations the summcd product of density and snow depth
isused for the load. Perla (1980)reviewed the difficulties and
problcms with the use of the shear frame, but he concluded,
and it is still true, that there is nothing better to replace it for
quantitative field estimates. Besides a multitude of disadvan-
tages with the shear frame there are two additional draw-
backs of the stability index for use on the skier-triggering
problem: (I) the stability index does not include important
slab properties such as hardness and the effectsof snO\Ntem-
peratures on slab hardness; (2) measurements of shear
strength using the shear frame do not encompass informa-
tion about the effectsof imperfections and macroscopic size
effects, whereas such information likely plays a crucial role
in avalanche initiation under skier triggering. Other com-
mon stability tests do not contain such information either.
Below,we illustrate (mathematically) properties of the sta-
bility index (ratio) to further clarify its role in evaluating
snow-slab stability and describing skier triggering with em-
phasis on size effects.

STABILITY-INDEX STRESS ANALYSIS

In this section, we investigate the properties of the stability
index mathematically under two types of applied loading
increments: loading increments from new snowfall and from
a skier approximated as a line-source load (Fohn, 1987).Fig-
ure 3 is a schematic of the geometry and applied load. Fol-
lowing the conventional approach (Perla, 1980;Fohn, 1987;
Jamieson and Johnston, 1998a), we approximate the shear
strength, Ts, most simply as a linear, pressure-dependent
(frictional) Coulomb Mohr material with strength compo-
nents: cohesion (C) and friction expressed as the product of
a friction coefficient, tL, and applied normal stress, 0", with
both Ii and C taken constant:

Ts=C+tLO". (1)
In order to simplify the notation, we write 0" = O"xx(H), the
mean normal stress applied to the weak layer (in Cartesian
coordinates) for a planar slab of depth H; and similarly
T = Txy(H) is the mean shear stress. From Equation (I), the

tL > (tan w)So : stability increases
p, = (tanljJ)So : stability unchanged (5)

tL < (tan IjJ)So : stability decreases

However, given the definition of So from Equation (2), it is
easily shown that the stability always decreases when the co-
hesion C is greater than zero: a condition we take to be
always fulfilled by alpine snow in buried weak layers. ~lath-
ematically, therefore, stability is implied to decrease for new
snowfall loading assuming Equation (I). However, data for
tL and So might imply otherwise as we show below.

Consider typical values for the parameters in Expres-
sions (5) from the perspective of data. Perla (1977)analyzed
data from 23 avalanche fracture lines combined with shear
frame measurements and obtained a mean value of So =
1.66.Fohn (1987)obtained an average value of2.3 for 18nat-
ural slabs.Jamieson (1995)determined higher values during
natural avalanche release with the values taken from a study
plot instead of at fracture lines, with most avalanche occur-
rences when So was < 3.
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\Ve take the effective friction coefficient 11 = tan dJ
(where dJ is peak friction angle for the material at the weak
layer). l\:Ieasurements for homogeneous samples by
McClung (1987)give friction angles in the range 40-70" for
direct simple shear: the expected strain and stress condi-
tions prevailing in a thin, homogeneous weak layer. Roch's
(1966)static friction angles varied from 37" to values exceed-
ing 60'. 'laking the simple shear values for JL = 0.75-2.75for
the left side of Expressions (.1),in comparison with \{! = 3Sc

,

the right side has the value 1.16for Perla's (1977)average. We
conclude that, from the perspective of data, any of the con-
ditions of Expressions (5)might be fulfilled. This seems con-
tradictory and we believe the explanation lies with the
values of the friction angles. If we use Jamieson's (1995,
p.38) values for Su, stability would be implied to increase
with loading.

The same problem occurs in eXplaining landslide re-
leases (Bjerrum, 1967): peak friction angles from small-
sample-size testing machines are routinely higher than
slope angles measured for the landslide occurrences. Our
analysis above extends ~jerrum's constant-load observation
to that for new snowfall loading. The contradiction for the
landslide problem was a major factor which led Palmer and
Rice (1973)to introduce strain-softening properties and size
effects into the landslide literature, and McClung (1979,
1981)proceeded by analogy to apply similar theory for
snow-slab failure. Our analysis provides further evidence
that the shear fi'ame provides an index property but does
not account for macroscopic sizc effects. Bclow wc providc
an analysis of macroscopic size effects on fracture initiation
to emphasize this point.

If fi'iction angles are derived from shear frame measure-
ments for very weak, anisotropic layers, different conclu-
sions result. According to Jamieson and Johnston (1998a),
shear frame measurements show some persistent snow
laycrs (c.g. surfacc hoar) to bc ncarly pressurc-inscnsitive,
and thercforc 11 ::::::0 and from Exprcssions (5) ncw snow
loading (or skier loading as shown below) always increases
instability. \Ve believe there is high uncertainty about the
true values offriction angles for such layers and the analysis
applying them. The shear frame has large stress concentra-
tions around the fins that act as cross-members (e.g.Jamie-
son, 199.1)to divide the frame. It seems likely that crystals
like surface hoar or facets may display preferential deforma-
tion when sheared rapidly in the presence of stress concen-
trations. If the shear frame forces preferential deformation
in shear near the fins, an underestimate of pressure sensitiv-
ity can result. Therefore, the imprecision in stress and strain
conditions for shear frame might limit its usefulness in
studying the effects of normal stresses on shear strength.
Measurements (McClung, 1987)with the Norwegian Geo-
technical Institute simple shear apparatus (with much bet-
ter stress and strain conditions) consistcntly show higher
friction angles than those estimated from shear frames, and
such measurements include faceted snow which is an impor-
tant avalanche-failure layer.

STATIC SKIER LOADING

In this section, we investigate the properties of the stability
index for skier loading similar to Fcihn's(1987)analysis (the
original treatment of this problem is due to Boussinesq in
1392).Fohn (1987)considered the stresses for this problem
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but did not include an analysis of the stability index. Jamie-
son and Johnston (l998a) considered refinements to the
static stability index, but neither Fi:ihn nor Jamieson and
Johnston considcrcd thc mathcmatical analysis we prescnt
here. \Veneglect inertial effects and macroscopic weak-layer
imperfections and approximate the load a skier applies to a
snowpack as a line source over an clastic half-space. Even
though our analysis is static, as a first approximation the dy-
namic problem might be examined by studying steady-state
response to a moving line load at constant speed over an
clastic half-space, but this is beyond the scope of the present
paper. From Figure 3, we consider the load to be applied in
the direction toward the centre of the Earth with magnitude
r (kg m-I). It is convenient to write the applied stress in
polar coordinates (r, e) since then the only stress is in the
radial direction (Timoshenko and Goodier, 1970):

6.O"r = 2Pg( cos \{! cos e + sin \{! sin e) . (6)
Jrr

From Equation (6),we may write:

6.0" = 6.0" [ eos2 e
6.T = 6.0"[ sin e cos e.

From Equation (7),the loading ratio is:
6.T
-;\ = tan e. (8)uO"

From Equation (8),repeating the analysis leading to Expres-
sions (.1)gives:

JL > tan esu : stability increased
JL = tan eso : stability unchanged (9)

JL < tan eso : stability decreased

For typical parameters, the last condition is fulfilled if C > 0
and \{! < e: stability always decreases under skier loading.
However, as with Expressions (.1),we show below that this
condition may appear to be violated if So is evaluated from
shear frame measurements combined with information
known about peak friction angles to imply that stability
increases under skier loading.

For a weak layer at a given depth, H, in polar coordi-
nates, the depth may be expressed as H = r( H) cos e. The
exprcssion for the perturbation shear stress load is:

6.T(H) = 2Pgeos(\{!- e) sinecos2 e.
JrH (10)

From Equation (10),the angle e at which the maximum shear
stress loading is about 35° for \{! is in the range 25-45° (the
range of most slab-avalanche slope failure angles). There-
fore, it may be justifiable to simplify Expressions (9) byap-
proximating tan e:::::: 0.7.From Perla's (1977)average (Su =
1.66)and from Expressions (9) it is implied that stability is
increased by skier loading if JL = tan dJ > 1.16or for friction
angles of >49°. Such a condition is often fulfilled if meas-
urements of homogeneous, isotropic snow are used (40-
70") from the data ofRoeh (1966)or McClung (1987).Since
Pcrla's data are from natural releases, the mean value of So
may be higher for actual skier triggering, which reinforces
the prediction of increased stability.

The number of accidents associated with skier triggering
(e.g.Jamieson and Geldsetzer, 1996)shows that skiing has a
negative influence on stability. \Ve believe that the static
analysis above neglects two important effects: (I) the dy-
namic effects in skiing (see Appendix and the results of
Schweizer and others, 1995a,b) arc neglected, and (2) the
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Fig. 4. Stress ratio as afunction qfdepthfor a skier approxi-
mated as a line-source loading. Also shown is a comparisonfor
a ski rfwidth 0.1 m (see Appendix). The geomet~y is shown in
Figure 6.
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Fig. 5. Shear stress as afunction ofdepthfor a skier ajlProxi-
mated as a line-source loading. Also shown is a comparisonfor
a ski rf width 0./ m (see Appendix). The geomet~y is shown in
Figure 6.

effects) byJamieson andJohnston (1998a) with 1-[ assumed to
be zero, as they recommend, shows that the unperturbed
stabilit y index given by Equation (2) predicts stability
(So> 1) for snow depths greater than 1.24m (cohesion
1.5kPa) and 2.90m (cohesion 3.5kPa). When the stability
index includes static skier loading as calculated in Figure 4
these values are reduced to 1.18and 2.86m, nearly negligible
differences.

The actual stress values compared with typical strength
values arc also of interest. \Vith the above values, Equation
(10)gives ~T = 99/ H (Pa) where H is in meters (see Fig. 5).
If H = I m then the stress added is about 100Pa (200 Pa for
0.5m) which, [rom field measurements, is close to the mini-
mum for shear strength estimated from fracture lines for
failure density 100kg m3 (see McClung and Schacrer,
1993, p.71).Virtually all o[ Jamieson's (1995) strength esti-

It is interesting to compare the approximate load generated
by a skier (Equation (10)) with the value of T from the
weight of the slab. From Equation (10),the non-dimensional
ratio is:

measurements (shear frame or simple shear) do not take
into account that macroscopic imperfections in weak layers
and at their boundaries are the most likely genesis of ava-
lanche formation. ]\;lost shear frame analyses yicld results
for 80> I when the snowpack can be highly unstable (e.g.
Perla, 1977).Clearly, if shear frame measurements contained
the important information about imperfections, the meas-
urements would show 80 :::; 1when there is instability in the
snow cover. Perla's (1977)[racture-line data are easily ex-
plainable from the view that the initial fracturcs propagated
from weak fracture zones underneath the snow slabs with
termination in stronger snow at the fracture lines.

Many attempts have been made to explain the dis-
crepancy between the strength-to-load ratio (80) 1) and
observed instability by attributing size eHects in a statistical
sense to the shear frame using \Veibull or Daniels statistics of
micro-scale flaws (e.g. Sommerfeld, 1980;Fohn, 1987;Jamie-
son andJohnston, 1998a). Bazant and Planas (1998;see also
Freudenthal, 1968,p.615)present a comprehensive summary
of size effects for quasi-brittle (strain-softening) materials,
and conclude that Weibull statistics arc not applicable to this
class o[ materials [or eXplaining size effects of large-scale
failures such as the snow slab. They show that statistical
approaches such as the Weibull theory apply only to failures
in which the material just before failure contains only mi-
croscopic cracks or other flaws such as for brittle materials.
~[aterials which fail after macroscopic imperfection growth
(the quasi-brittlc or strain-softcning materials) arc gov-
erned by such macroscopic effects, and the emphasis is on
stress redistributions which mitigate the effect of micro-
scopic flaws.

The alternate view is that micro-scale statistical aspects
of fracture (e.g. Daniels (or the bundle model) or Weibull
statistics as discussed by Sommerfeld (1980))can be used to
reduce the strength measurements from shear frames to
yield 80 values that are :::;I for most avalanche events
(including skier triggering). With respect to application of
a bundle model, Freudenthal (1968,p. (09) states that such
a model applies only to a description of fracture processes
in materials for which bundles such as long-chain molecular
filaments physically exist such as linear high polymers or
elastomers which [ail after chain orientation after large
strain. \'Vebelieve there are size eHects associated with the
shear frame, and, as such, the shear frame is only an index,
but the size eHects in avalanche fractures are macroscopic
not micro-scale in size.

STATIC STRESS ANALYSIS OF SKIER LOADING

tn( H) 2P cos(\]f - B) sin B cos2 B
T 7rPs H2 sin \]f

For a skier o[ mass 70kg, and length o[ ski 1.70m, the value of
P in the above equation representing the line source is P =
701 (1.70)= 41.2kg m-I. For typical values B = 35u, \]f = 35"
and average slab density Ps= 200 kg m-3, the ratio above is
given by O.OSSI H2 and it ranges from 0.35 at H = 0.5m to
0.09at H = 1.0m and 0.02at H = 2.0m, as shown in Figure 4.

Application of values for cohesion of surface hoar
(values range from 1.5to 3.5kPa corrected for statistical size
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mates exceed these values by more than a factor of 3. The
conclusion is that skier loading hy such analysis (excluding
imperfections and dynamic effects) is nearly insignificant
below Im depth.

Even though the analysis shows nearly negligible stresses
in comparison with slab values below about I m in the snow-
pack, it is known that skiers can rarely trigger avalanches as
dcep as 1m (see Jamieson and Johnston, 1998b, for data).
Jamieson and Geldsetzer !l996\i showed that about 11%. ,
(sample of 261) of recreational accidents (ineluding snow-
mobile accidents) in Canada during 1984 96 involved aver-
age slab thicknesses of > I m. .Jamieson and Johnston
(1998b) compiled start-zone data on 1193 skier-triggered
avalanchcs obscrvcd hy helicopter skiing guides. These data
showed that depth exceeded 40 cm in 25% of cases and
65 cm in 10% of cases, but maximum depth was 2 m. There
is uncertainty in such data hecause all are related to fracture
lines, not the actual position where fracture initiated. Ficld
observations (personal communication from n Fesler,1998)
often show that fractures propagate into deeper areas fol-
lowing skier triggering, so that fracture-line depths are of-
ten greater than slab depths at the initiation triggering
point.

STATIC ANALYSIS WITH EFFECT OF FINITE SKI
WIDTH

The analysis above is for a line-source loading of infinites i-
mal width. Fohn (1987) considered a similar analysis to
approximate snowcat loading, but he did not consider a ski
of finite width. In the Appendix, we give an analysis for
which skier loading is approximated near the centre of a
ski of finite width on a slope as a plane-strain analysis. Fig-
ure 6 shows the loading situation. In order to compare with
the line-source analysis above, we calculated the stress dis-
tribution for the same parameters as in Figures 4 and 5: \}J =
35", e = 35n, for a ski of width 10cm. Figures 4 and 5 show
these calculations in comparison to calculations for the line
source. The results show very little difference between this
and our previous analysis.

H tane+ w
tane,= H

Fig. 6. Geometry fir loading hy a skier with finite-width ski
(w).

SIMPLE ANALYSIS WITH IMPERFECTION IN A
WEAK LAYER

\Vith an imperfection present in a weak layer, application of
a load will result in amplification of stress and deformation
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conditions in the stress and strain concentrations associated
with the imperfections analogous to the stress-intensity fac-
tor of fracture mechanics: the stress intensity at the tip of the
imperfection is proportional to the intensity of stress applied
remotely at the top of the snowpack. Rice (1968)gave an ex-
pression for the stress-intensity factor for slip band (or crack)
oflength 20, loaded in shear uniformly at the top ofa slab. If
Too is a uniform shcar strcss applied at the top of the slab and
111 is the friction stress (e.g. residual shear strength) along the
imperfection, thc strcss-intensity factor for shcar fracture
(mode II) propagation is given by: Kll = (Too - To)(r.o,)05.
Such a solution, from small-scale yielding linear elastic frac-
ture mechanics, is too simple for use in the problem here, but
illustrates in principle how a remotely applied shear stress
(at thc slab surface) affects propagation of an imperfection;
the stress-intensity factor is, then, a convenient measure of
load applied to the crack (imperfection) tip region. For
example, if a line-source solution is applied, the implied
shear stress intensity added at the top of the slab to Too may
be approximated as (Pg sin \}J) /w w'here w is the width of a
ski. Ifw = O.lm, P = 41.2kgm 1 and \}J = 35°, Too has the
approximate value 2.3kPa which reprcsents an increase in
"intensit y" applied to a weak zone from the skier-loading re-
motely applied shear stress at the top of the slab; its value is
more than ten times the values calculated from skier loading
by Equations (10)and (II) at depths exceeding I Ill.

Rice (1968) emphasizes that such an analysis (linear
elastic) does not take into account the response of the
material to the applied load but it does illustrate the stress-
concentrating effect once imperfections are introduced. The
stress and deformation state induced by skier loading is not
uniform as required by Kn given above (such would be
approximately the case for new snowfall loading). Further-
more, the driving energy for propagation of an imperfection
from fracture mcchanics is proportional to the stress-intcn-
sity factor squared, and inversely proportional to the modu-
lus E' = 2G / (1 - v) where G is shear modulus and v is
Poisson ratio of the slab. Rice (1973)and Bazant and Planas
(1998)show that for the assumption of linear viscoelasticity
in the slab and small-scale yielding in the weak layer, the
rcciprocal of modulus may be replaced by the time-depen-
dent corn:>liancewhich contains the 3:';~:::':;:;-.: :L;"i=-L;'tl~'''C

dependence of alpine snow (McClung, 1996).This simple
analysis shows how one is implicitly forced toward consid-
eration of slab mechanical properties oncc imperfections
an~introduced.

Virtually all modern work on thc snow slab (McClung,
1979,1981,1987;Conway and Abrahamson, 1988;Bader and
Salm, 1990; Conway, 1998) postulates that the size effects
controlling avalanche release are macroscopic, with a size
effcct independent of statistical properties in agreement
with the arguments of Bazant and Planas. The sizc effects
associated with sample-size dependence as in the (brittle)
shcar frame test are microscopic and dependent on statis-
tical properties. ~ficroscopic flaws are present in abundance
everywhere in alpine snow and there is evidence that such
flaws are important for interpreting shear frame results.
However, it is unlikely that such small flaws control ava-
lanche release. If such small dcfects truly controlled ava-
lanche release, avalanches would be present continuously.
However, experience shows that avalanches are actually
rare occurrences. In fact, the strength of snow would be vir-
tually zero if micro-scale flaw$ controlled (see]. F. Nye in
IAHS, 1975).In the light of new experimental information
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on shear strength by Schweizer (1998)and information sum-
marized hy Bazant and Planas (1998)it is imperative to re-
visit the question of size effects, which we do in the next
section.

TWO ESTIMATES OF IMPERFECTION SIZE
EFFECTS

(I) Simple brittle size effect from scaling

If alpine snow behaved as a elassieal brittle material (as
might occur under rapid loading such as for explosives), a
simple method to estimate order-of-magnitude size effects
could be as discussed by Hader and Salm (1990).For a com-
pletely brittle material, the ratio of fracture strength to the-
oretical ultimate (uncracked) strength is given by

1/2a[latlt ~ (bla,) , (e.g. Kanninen and Popelar, 1985)where
b is atomic bond size and a, is critical crack length. Bader
and Salm (1990)pointed out that for brittle materials such
as glass, typical atom bond sizes are 2-5 x 10-7 mm asso-
ciated with minimum critical lengths of order 10-3mm
(Lardner, 19n). For snow grains, typical bond sizes are on
the order of 0.1-1 mm. Simple proportions yield critical size
effects of 0.2-5 m for snow. From Griffith's experiments on
glass (Kanninen and Popelar, 1985) the ratio ad atlt is 1/64
using the bulk strength of glass (large samples) for (Tf, which
(with b = O.l-lmm for snow) gives critical-size estimates
0.4-4 m. The strength ratio for glass is of the same order as
the ratio of typical avalanche failure strengths (about 1kPa:
McClung and Schaerer, 1993,p.71;Jamieson and Johnston,
1998b) to the yield stress of single ice crystals in shear (about
100kPa: Higashi and others, 1964; Fletcher, 1970; Hobbs,
1974) which approximates the fracturc stress (Lardner,
1971).This analysis is very crude but it is a starting-point for
estimating size effects.The implication is that imperfections
much smaller than the order-of-magnitude range 0.1-1 m
would not be energetically favourable for reaching a self~
propagation condition.

(2) Estimate of size effects for constant gravita-
tionalloads

Snow cannot be approximated as a brittle material unless it
is deformed very rapidly. The other limit, when snow dis-
plays strain-softening under constant load, was addressed
by Palmer and Rice (1973).They gave a formalism to enable
caleulation of the size of the end zone (or plastic zone) at the
end of a slip surface generated by strain-softening initiated
at an imperfection in a weak layer with the slab assumed to
be elastic.The estimate of the cohesive (or end) zone size, w,
in terms of peak shear stress, Tp, residual shear stress, Tn

shear modulus, G, Poisson ratio, v, and average shear dis-
placement, 0, in the strain-softening regime from a simple
shear experiment is:

97rGo
0,) == ----------

16(1 - v)Tp(1 - Tr/Tp)'

Bazant and Planas (1998)provide an analogous expression
for strain-softening materials in tension, and point out that
the non-linear end-zone size may be many times the esti-
mates for metals as estimated by Irwin (1958).

From our simple shear experiments (data from Schwei-
zer, 1998, and unpublished collection of more than 200 ex-
periments by McClung) the ratio of peak to residual shear
stress can be taken as 1.5.The GIT]> ratio increases as the
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temperature decreases, due to the temperature dependence
ofG, and increases with strain rate, again possibly due to the
dominance of stiffness. The ratio is about 100for slow rates
(10-1s-I), increasing to 300 for higher rates (10 :J s I;. The
average values of displacement in the strain-softening por-
tion of the stress-strain curve range from 5 mm (slow rates)
to Imm (fast rates). From these estimates the end-zone size is
estimated to be about 1.5m (fast rates) to 3 m (slow rates) in
field situations from Equation (12).Since the critical length
must be a multiple of the end-zone size, our estimate is
somewhat higher than the one above based on scaling from
bond sizes for brittle materials.

For reference, Bazant and Planas (1998)estimate for con-
crete in tension a fully developed fracture-process-zone size
range of 0.3-2 m for large concrete structures. Our two esti-
mates have a certain consistency with respect to rate: smal-
ler sizes arc implied for more rapid loading and this is
consistent with results for concrete described by Bazant
and Planas (1998).These two limit estimates (brittle and
strain-softening) are reasonably consistent and our best esti-
mate for the important minimum critical-size effect for skier
triggering is on the order of a significant fi-action of a meter.

For skier triggering, once size effects for imperfections
approach a significant fraction of a meter, the situation
seems to bc critical as the extra dynamic loading will fced
deformation energy to the tip to cause extension and ca1<l-
strophic fracture propagation. Furthermore, if a critical
condition is not achieved by the first skier, passage of subse-
quent skiers can cause extension to a critical length. This ex-
plains some rare field observations (e.g. LaChapelle, 1985)
in which an avalanche releases after the passage of more
than one skier. Our static analysis without imperfections
implies that the applied loads arc very small at depth,
whereas field data (Schweizer and others, 1995a,b; see
Appendix) show that dynamic loads are higher. The appli-
cation of dynamic loads and the presence of partially
formed (subcritical) imperfections to concentrate deforma-
tion provide a powerful combination to drive propagating
shear fractures from imperfections which are subcritical
before passage.

Our size-efTectestimate is a significant fraction of a ski
length, and from St Venant's principle the slope distance
for the zone of influence of significant strcsses and deforma-
tion energy by passage of a skier will be a few ski lengths. If
small (micro-scale) imperfections were responsible for ava-
lanche release, a person on skis would influence huge num-
bers of them in skiing down a given slope, and skier
triggering would be far more common than it is. Skiers
sometimcs tcrm positions on snow slopes where avalanches
initiate as "sweet spots".\Ve believe "sweet spots" arc prefer-
entially located where subcritical imperfections coincide
with thin- and/or soft-snow slabs so that maximum defor-
mation energy is communicated to the weak layer during
skier passage.

]vlost snow-slab releases (either natural or human-trig-
gered) occur under loading conditions. In fact, avalanche
releases under constant gravitational loads (e.g. releases
after storms without wind loading) are very rare in compar-
ison, probably because bond formation may inhibit imper-
fection expansion if growth is too slow. Therefore, we
believe subcritical imperfections and their growth under
loading are of primary importance in the vast majority of
cases. Furthermore, there is no requirement for a strain-soft-
ening process to have occurred in a weak layer over large
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distances (many meters) as envisioned by Conway and
Abrahamson (1988)to place the slab weak-layer system in a
critical condition with respect to future load application.
Bader and Salm (1990) hypothesized that critical lengths
for imperfections to start propagation are on the order of
several meters, with brittlc fracture starting at distances of
tens of meters, but they did not consider the problem of skier
triggering explicitly. Observations concerned with fracture
propagation during skiing show that Bader and Salm's dis-
tances (10 60 m) are unrealistic for skier triggering: shear
fractures propagate rapidly within a few meters of initia-
tion, implying very high stresses and deformation rates.

Once the minimum conditions for imperfection growth
are approached, further load application can result in shear
fracture (Bazant and Planas, 1998)essentially at peak stress
if loading is progressive (load-controlled), as may be ap-
proximated by new snowfall loading (McClung, 1981)with
no requirement for strain-softening. Bazant and Planas
(1998)show that instability may result from further applica-
tion of load at any time after a peak has been reached for
strain-softening material in the failure zone (weak layer),
given that the critical fracture energy has been delivered
and the size requirement is satisfied.

The fact that strain-softening is not required for fracture
initiation under loading, along with our estimates of size
effects, again points to critical imperfection size eflects of a
fraction of a meter for dynamic loading applied during ski-
ing. The presence of an imperfection will concentrate stres-
ses, deformation and deformation rates to help achieve a
critical condition, with thin, soft slab material being of pri-
mary importance to deliver maximum deformation energy
to the weak layer.

SUMMARY

The immediate or nearly immediate eflects of snow tem-
peratures on snow-slab instability are influences which
promote instability under warming, including reduced
snow stiffness (or hardness), and strength with very
short time delays to affect properties; failure toughness
increases slightly with increasing temperature. How-
ever, we expect overallfracture toughness for snow-slab sta-
bility to decrease with increasing temperature since
weak-layer failure toughness appears weakly tempera-
ture-dependent, while the slab stiffness should decrease
with increasing temperature. Other temperature effects
include metamorphism and long-term creep and they
can affect skier triggering, but such effects are beyond
the scope of this paper.

In order to include the effects of snow temperature in an
analysis of instability, one must seek out information
about slab hardness and think about the problem in re-
gard to deformation energy rather than an analysis of
stresses. Conventional stability evaluation (e.g. calcula-
tion of a strength-to-Ioad ratio) will not contain much of
the important information about slab-temperature de-
pendence (or snow hardness) and instability.

For skier triggering, the most important immediate in-
fluence of snow temperatures is the decrease of hardness
of the surface layers under warming. Secondary effects
include decreased shear strength if the weak layer is
warmed, with failure toughness being (apparently) only
slightly temperature-dependent. Hardness estimates
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(e.g. the hand hardness test) implicitly include snow-
temperature effects.

xlathematically, our static stress analysis indicates that
new snow loading or skier loading should always
decrease stability if snow is modelled as a linear Cou-
lomb- Mohr material (the usual assumption, which we
bclieve is unrealistic). However, when results from shear
frame estimates of the stability index are combined with
measured peak friction angles from simple shear tests for
alpine snow, this mathematical condition may not
always be fulfilled: it might be implied that stability
increases with loading. vVebelieve the discrepancy may
be found in the imprecision of shear frame measure-
ments combined with extrapolation of such results to
the real situation where macroscopic imperfections will
control avalanche initiation. Neither simple shear tests
nor the shear frame will include the effects of macro-
scopic imperfections. Simple shear tests should provide
peak friction angles closer to values for a homogeneous
Coulomb-Mohr material compatible with the analysis
leading to Expressions (5) and (9).The stress concentra-
tions induced by the fins of the shear frame might pro-
duce artificially lower friction angles, but these should
not be equated with the field situation in which macro-
scopic imperfections, perhaps larger in size than the
shear frame, can initiate the failure process.

The Rutschblock test has the advantage that it implicitly
includes dynamic effects, snow temperatures and slab
hardness effects in an analysis of instability, whereas tests
like the shovel shear test or the shear frame test do not.
The drawback is that another source of variation is in-
cluded that must be considered for extrapolation: the
test results depend heavily on the surface layer stiffness.
It is proposed to perform Rutschblock tests at places with
relatively soft rather than hard surface layers for com-
parison and extrapolation. Furthermore, tests will have
a better chance of revealing instability where the slab is
thin.

The advantage of the shovel test and shear frame test is
that they contain direct information about the strength
and quality of weak-layer failures, and therefore their in-
terpretation is less complicated than the Rutschbloek
test. However, they do not contain the most important
information about snow temperatures and hardness,
and therefore supplementary information about the slab
properties must be sought. This same comment applies
to the ealeulated shear frame index. \Ve propose that to
complete a stability test, observations of hardness varia-
tions be made (e.g. with a profile), otherwise the infor-
mation gained by the tests is too limited and cannot
easily be used for extrapolation.

Field observations show that most skier-triggered ava-
lanches occur during the act of skiing, which implies dy-
namic loading in which stresses and deformation will be
higher than for a static analysis. Dynamic deformation
measurements (Fig. 7; Schweizer and others, 1995a,b)
compared with a static analysis show that a realistic
treatment of the problem would require dynamic effects
to be included.

Any information that helps to evaluate snow-slab in-
stability is useful, and this includes calculation of the sta-
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Fig. 7. Calculated JorceJor a skier standing with 0.2 m com-
bined width ofskis (solid line) compared with static and r£v-
namic measurements (Camponovo and Schweizer, 1996).
~vnamic stresses during skiing would be closest to the data

JorJumping.

bility index from, for example, the shear frame and the
other common stability tests. In this paper, we have ad-
dressed the problem of skier triggering in an attempt to
place it in its true context: a forecasting problem on the
micro-scale for terrain (the scale involving individual
terrain features) in which a general stability index is
only a good first step. Consideration should also be given
to slab mechanical properties, the size effects associated
with fracture propagation, and influences of terrain as
primary factors for avalanche forecasting on individual
terrain features. McClung and Schaerer (1993)argued
that stability tests constitute some of the most important
information available for back-country avalanche fore-
casting. However, in this paper we provide analysis to
show that some key information is often excluded by sta-
bility tests and that some of the key information such as
location of suheritieal imperfections can he virtually im-
possible to gauge. \\That we have done, then, is to indicate
that the snow-stability evaluation problem is analogous
to a probahilistie risk analysis in which the risk (uncer-
tainty) is never zero. The fundamental problem in
back-country avalanche forecasting is a knowledge of
the temporal and spatial distribution of snow instabilit y
which cannot be known exactly. Risk management,
then, becomes another term for back-country travel in
avalanche terrain.
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APPENDIX

STATIC ANALYSIS FOR A SKI OF FINITE WIDTH

tesimal ski width. The stresses implied by any of these calcu-
lations for typicallarge slab depths are extremely small. The
results indicate that dynamic effects coupled with imperfec-
tions and anisotropic deformations in weak layers appear to
be important elements of the skier-triggering problem.

In order to compare with ski deformation experiments,
we set W = 0', then B = 0, to yield (Timoshenko and Good-
ier,1970):

(A3)

which represents a uniform compressive stress.
From Equation (A3) the displacements in plane strain

below the ski are of the form:

1Lr = ~~ (1 - v*)re

4A
VD = --rlnr,

o E* '

with similar expressions following from Equation (AI) by
replacing A with - A, r with r], and e with e] in Equation
(AI). In Equation (A4), E* = E/(1 - v2) and v* =
v/(1 - v) with E and 1./ being Young's modulus and Pois-
son's ratio, respectively. Figure 8 shows the downward defor-
mation component (along the y axis) in the vicinity of the
centre of the ski (near the foot) where -A = Pg/21fw from
the work of Timoshenko and Goodier (1970).Again, tem-
perature and hardness enter through E and v.

D.Try = 2B(sin{}cose - sinel eos{}l) - 2B({} - (}l)

- A [(cos2e - sin2 e) - (cos2{}J - sin2 (}J)] .
(AI)

so that hardness and temperature dependence is introduced
through G. In Equation (AI), eJ is defined by tan e] =

(H tan e + w) / H at any depth H.
For the calculations in Figure 6, we chose the same pa-

rameters as in Figures 4 and 5 (W =350
, P = 41.2kg m \

{}= 35°) and the width of the ski w = 0.1ill. For the slab
density in Figure 7 we took Ps = 200 kg m-:l. The calcula-
tions again show that stresses and strains decrease inversely
proportional to H and the stress ratio: D.T/T is then inver-
sely proportional to H2. Since the calculations depend on
ski width and the value of e, the results for finite ski width
(Figs 4 and 5) are somewhat different than those for infini-

In this Appendix, we relate the analysis accompanying Fig-
ures 4 and;) in the text with the loading and geometry de-
picted in Figure 6. Pure shear loading is applied in the y
direction of magnitude 2B7r, and compressive loading is
applied with magnitude 2A-7r in the x direction. Our
analysis is a slight extension of that given by Timoshenko
and Goodier (1970),so the solution methods we present are
well known in engineering mechanics. The stress intensity
in shear is qs = 2B1f = Pgsin W/w and in the normal direc-
tion is qll = -2A1f = Pgcm, W/w where P is the skier mass
divided by the ski length (kg m -1) and w is the ski width.

The stresses in the problem are then defined by the stan-
dard equafions of elasticity in polar coordinates. From Das
(1983)and Fohn (19R7),it can be shown that:

(A6)

Fig. 8. Plane-strain deformation pattemfir a skier with ski
widlh w between 0 and OJ (adaptedfrom Timoshenko and
Goodier, 1.970).

-2Pg I +2Pg I -2Pgll'wE.(rlnr - r,lnr,) ll'wE.(rlnr + r,lnr,) ll'wE.(r,lnr, - rlnr)

o C 0,

~ Ih(xy

Equations (AS) and (A6) may be used to compare with
skier deformation measurements (Schweizer and others,
1995a,b). Figure 7 shows this comparison for vertical stress
calculated from Equation (A6) for a combined ski width of
0.2m and Pg = 500 N m-1. The loading plate has an area of
0.2.)m2 for conversion of stresses to forces. Note that static
loads are much lower than dynamic loads. Since the experi-
mentally estimated forces on the plate are calculated from
deformation measurements which are communicated
through the snow, they depend on snow hardness which is
not considered in the elastic analysis of Equation (A6).
Therefore, the comparison of calculated forces from Equa-
tion (A6) in Figure 7 is an approximation.

At the midpoint below the ski, {}= -(}l and r = rl to
yield the downward displacement:

1Lx(Y= 0)
4Pg * 4Pg .-- (1 - v )rle] cos el + -- (rlln rl) Sill el

1f?f)E' 1f1JJE*
(A5)

where el = tan-l(w/2H) and rl = [H2 + (W/2)2f15. Simi-
larly, the vertical stress below the miclpoint is:

2Pg [ 2wH ]D.O"x = -- tan-l(w/2H) + 2 2 .
1fW W +4H

(A2)

The engineering shear strain is then:
A. _ D.TJ;y
Urxy---. G
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