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Long-range two-dimensional hydrodynamic
interaction between a pair of mutually repellent
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While the problem governing Stokes flow about a single particle that is subject to an
external force is ill posed in two dimensions (the ‘Stokes paradox’), the related problem of
two mutually repellent particles is well posed. Motivated by self-assembly phenomena in
thin viscous membranes, we consider this problem in the limit of remote particles. Such
limits are typically handled in the literature using reflection techniques, which provide
successive approximations to the mutual hydrodynamic interactions. Since their starting
point is a single particle in an unbounded fluid domain, these techniques are futile in the
present two-dimensional problem. We show how this apparent contradiction is resolved
via use of singular perturbations. We obtain a two-term approximation for the velocity
acquired by circular disks, considering both rigid and free particle surfaces. We also
illustrate our perturbation scheme for elliptic disks, deriving a renormalised single-particle
velocity. The utility of our asymptotic scheme is illustrated in the general problem of
hydrodynamic interaction between a cluster of remote disks.
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1. Introduction

In analysing the motion of molecular probes in liquid membranes (Saffman & Delbrück
1975), it is convenient (Goodrich 1969; Evans & Sackmann 1988) to treat the membrane
as a zero-thickness surface with a Boussinesq–Scriven rheology (Scriven 1960). The
hydrodynamic problem governing the translation of a single probe was addressed
by Saffman (1976), who modelled the probe as a membrane-trapped circular disk.
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Saffman focused upon the limit of small probes (e.g. proteins), where viscous forces in the
liquid substrate bounded by the membrane are presumably negligible (large Boussinesq
numbers). While this may appear to result in a convenient two-dimensional (2-D) set-up,
the hydrodynamic problem does not admit a solution: all possible flow fields that are
compatible with the no-slip condition diverge logarithmically at large distances from the
particle. This is the well-known Stokes paradox.

Saffman (1976) showed that in the case of a membrane-bound probe, the Stokes paradox
is resolved by the incorporation of the substrate stresses, which enter the leading-order
balance at large distances. (This regularisation mechanism typically ‘overrides’ the
familiar resolution via fluid inertia which takes place at even larger distances.) The
resulting two-scale problem was solved using matched asymptotic expansions, eventually
leading to Saffman’s celebrated mobility formula.

There are several related problems that are well posed even when the dynamic effect of
the liquid substrate is completely neglected. One obvious such case, considered briefly by
Saffman (1976), is that of a bounded membrane; another case involves curved membranes
(e.g. spherical and cylindrical) that close on themselves (Henle & Levine 2010). Other
related configurations, motivated by heat and mass transport problems, involve periodic
(Hasimoto 1959; Sangani & Acrivos 1982) and random (Sangani & Yao 1988) arrays of
cylindrical obstacles.

As the aforementioned examples illustrate genuine 2-D Stokes flow problems under
force fields, they are of fundamental interest beyond their practical importance. We here
address another such fundamental scenario, namely that of two identical membrane-bound
disks that repel each other via equal and opposite central forces. The quantity of interest
is the velocity attained by the disks. As in Saffman (1976), we focus at the limit of large
Boussinesq numbers, Since there is no external force, the resulting 2-D hydrodynamic
problem is well posed.

This problem of mutual interaction is pertinent to the understanding of the manner
by which electrostatic repulsion between interface-bounded colloidal particles results in
the formation of ordered phases (Bresme & Oettel 2007). The literature abounds with
both experimental measurements (Aveyard et al. 2002; Wirth, Furst & Vermant 2014)
and theoretical models (Hurd 1985; Frydel, Dietrich & Oettel 2007) of the repulsive
forces, but it appears that a proper description of the hydrodynamic response for a
given interaction is still lacking. With the Stokes equations depending only upon the
instantaneous configuration of the particle pair, the hydrodynamic description is actually
indifferent to the particular form of the repulsive force. This allows us to address a generic
interaction that satisfies Newton’s third law. For convenience, we assume here the standard
case of a central force.

Since colloid repulsion on interfaces is long-ranged, we seek an approximation
for well-separated particles. Beyond practical interest, this limit entails an apparent
contradiction. In the standard transport literature (Leal 2007), remote hydrodynamic
interactions are typically handled using reflection methods where, starting with a solution
for a single particle, successive approximations are constructed for the impact of one
particle on its neighbour. These methods are inapplicable in the present problem: first,
because the single-particle solution is not unique, and second, because the logarithmic
divergence results in a scheme where successive terms only become larger in magnitude.

We here solve this singular problem using the method of matched asymptotic expansions
(Hinch 1991). Thus we separately analyse the flow in an ‘inner’ region, on the particle
scale, and an ‘outer’ region, on the separation scale. Since the condition of velocity
attenuation does not apply at the inner scale, no Stokes paradox emerges. The velocity
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Figure 1. Geometry and coordinate systems.

field, however, is not unique, the freedom being associated with the unknown particle
speed. On the outer scale, the two particles appear as singular point forces in opposite
directions, ensuring the trivial satisfaction of the attenuation condition. Asymptotic
matching between the inner and outer solutions provides the requisite particle speed.

Our robust scheme can handle various interfacial conditions. This is important
due to uncertainties regarding the proper boundary condition that is applicable in
interface-trapped colloids (Saffman & Delbrück 1975). Considering the simplest geometry
of circular particles, the scheme is applied to both rigid boundaries, where the velocity
satisfies a no-slip condition, and free boundaries, where it satisfies a shear-free condition.
In both cases, we go beyond leading-order calculation and obtain the asymptotic correction
to the particle speed. We further illustrate the applicability of the asymptotic method
to particles of non-circular cross-section, analysing the interaction between disks of
elliptic cross-section. Finally, we generalise our asymptotic scheme to illuminate the
hydrodynamic interaction between remote particles.

The paper is arranged as follows. In the next section we formulate the problem
governing the hydrodynamic interaction between two circular disks. In § 3, we describe the
asymptotic structure in the singular limit of remote particles. The leading-order analysis
is carried out in § 4, with asymptotic corrections being derived subsequently in § 5. The
corresponding analysis for shear-free disks is given in § 6. The handling of non-circular
shapes is illustrated in § 7 for the case of elliptic disks. Generalisations to a cluster of
non-identical disks are presented in § 8, which may also serve as a useful recapitulation.
We conclude in § 9.

2. Problem formulation

Two circular disks (radius �) are suspended in a viscous film (surface viscosity μ).
The instantaneous distance between their centres is 2�/λ (λ < 1). The disks experience
a mutual repulsion, represented by a central force of magnitude F (with F < 0
corresponding to mutual attraction). Our interest is in the velocity acquired by the disks.

We employ a dimensionless formulation, where length, force and velocity variables are
normalised by �, F and F/μ, respectively. We use the Cartesian coordinates (x′, y′) with
the respective unit vectors denoted by (ı̂, ĵ). The x′-axis passes through the particles’
line of centres, with the origin midway between them (see figure 1). For concreteness,
we denote the disks centred at x′ = ±1/λ as the ‘±’ disks. The forces on the ± disks
are ±ı̂. Due to the problem symmetry, the velocities acquired by the ‘±’ disks are in the
x′-direction; they are denoted by ±U ı̂, respectively. The velocity U , a function of λ, is the
quantity of interest.
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The velocity field u′ is governed by the continuity and Stokes equations, the no-slip
condition

u′ = ±U ı̂ at the boundaries of the ‘±’ disks, (2.1)

and the decay condition
lim

x′2+y′2→∞
u′ = 0. (2.2)

The velocity U , appearing in (2.1), is determined by the requirement that

the hydrodynamic forces on the ‘±’ disks are ∓ı̂, respectively. (2.3)

It is evident that ı̂ · u′ is an odd function of x′ and an even function of y′, while ĵ · u′ is
an even function of x′ and an odd function of y′. In particular,

ı̂ · u′ = 0

ĵ · ∂u′

∂x′ = 0

⎫⎬
⎭ at x′ = 0. (2.4)

In what follows, we directly exploit the aforementioned symmetry about the y′-axis. Thus
we solve the problem only for x′ > 0, using (2.4) as a symmetry condition and abandoning
the no-slip condition on the ‘−’ disk. We note that the symmetry about the x′-axis is
trivially satisfied in the problem formulation, and need not be imposed.

3. Matched asymptotic expansions

Our interest is in the remote limit,
λ� 1. (3.1)

As already explained, this limit cannot be resolved by perturbing about the problem of a
single disk, as the latter is ill posed. Instead, we employ the method of matched asymptotic
expansions (Hinch 1991). Thus we utilise separate asymptotic expansions at the inner
region, on the scale of the ‘+’ disk, and the outer region, on the scale of the disks’
separation.

The inner Cartesian coordinates are defined by

x = x′ − 1/λ, y = y′. (3.2a,b)

The inner position vector ı̂x + ĵy is denoted by x. We also employ polar coordinates
(ρ, φ), defined by (see figure 1)

x = ρ cosφ, y = ρ sinφ. (3.3a,b)

The associated unit vectors are denoted by (êρ, êφ), respectively. Note that ρ = |x|. The
velocity in the inner region, u = êρu + êφv, is governed by the continuity and Stokes
equations, the no-slip condition (cf. (2.1))

u = U cosφ
v = −U sinφ

}
at ρ = 1, (3.4)

and the force requirement (cf. (2.3))

hydrodynamic force on the ‘+’ disk = −ı̂. (3.5)

We note that neither the decay condition (2.2) nor the symmetry constraint (2.4) applies
at the inner region. Rather, the inner solution is required to match the outer one. On the
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other hand, the symmetry about the x-axis, inherited from the exact problem, must now be
enforced explicitly. In terms of the polar components, it reads

u(ρ,−φ) = u(ρ, φ), v(ρ,−φ) = −v(ρ, φ). (3.6a,b)

For convenience we employ the stream function ψ , defined by

u = 1
ρ

∂ψ

∂φ
, v = −∂ψ

∂ρ
, (3.7a,b)

whereby the continuity equation is trivially satisfied. The stream function is biharmonic.
It must satisfy the symmetry condition (cf. (3.6))

ψ(ρ,−φ) = −ψ(ρ, φ), (3.8)

where, with no loss of generality, ψ is taken as zero at y = 0 (φ = 0,π). The no-slip
condition (3.4) then gives

ψ = U sinφ
∂ψ

∂ρ
= U sinφ

⎫⎬
⎭ at ρ = 1. (3.9)

The Cartesian coordinates (X, Y) in the outer region are defined by

X = λx′, Y = λy′, (3.10a,b)

corresponding to length normalisation by �/λ. The position vector is X = ı̂X + ĵY . Note
that X = λx′ and X − ı̂ = λx. The velocity field in the outer region is denoted by U . It
is governed by the continuity and Stokes equations; in addition, it satisfies the symmetry
condition (cf. (2.4))

ı̂ · U = 0

ĵ · ∂U
∂X

= 0

⎫⎬
⎭ at X = 0, (3.11)

and the decay condition (cf. (2.2))

lim
X2+Y2→∞

U = 0. (3.12)

Neither the no-slip condition (recall (2.1)) nor the force condition (3.5) applies directly in
the outer region.

We employ the following asymptotic expansion for the inner velocity field,

u(x; λ) ∼ u0(x; λ)+ λu1(x; λ)+ λ2 u2(x; λ)+ · · · ; (3.13)

it induces a comparable expansion of ψ . Following Fraenkel’s warning (Fraenkel 1969),
we do not separate asymptotic orders by logarithms of the expansion parameter. Thus
we allow the respective coefficients to depend ‘weakly’ on λ through its logarithm. This
enables the use of the Van Dyke matching rule (Van Dyke 1964). Given condition (3.4),
the disk velocity must possess the expansion

U(λ) ∼ U0(λ)+ λU1(λ)+ λ2 U2(λ)+ · · · , (3.14)

where, again, we allow for a weak dependence upon λ (see indeed (4.7)).
The counterpart of (3.13) in the outer region is

U(X ; λ) ∼ U0(X ; λ)+ λU1(X ; λ)+ λ2 U2(X ; λ)+ · · · . (3.15)
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4. Leading-order solutions

The force condition (3.5) implies a fluid-velocity term that diverges as ln ρ at large ρ (a
2-D Stokeslet); this is the well-known Stokes paradox. The leading-order solution in the
inner region is obtained by requiring that the divergence rate at infinity is not worse. (That
is not the case in higher asymptotic orders, of course.) The symmetry constraint (3.6a,b)
then implies a superposition of a Stokeslet, a uniform stream, and an irrotational doublet
(Pozrikidis 1992)

u0 = 1
4π

(−I ln ρ + êρ êρ) · ı̂ + c0 ı̂ + d0

2πρ2 (−I + 2êρ êρ) · ı̂, (4.1)

where the magnitude of the Stokeslet has been set by requirement (3.5). The no-slip
condition (2.1) gives d0 = −1/4 and c0 = U0 − 1/8π, whereby

u0 = U0 ı̂ + 1
4π

(
−I ln ρ + êρ êρ − 1

2
I

)
· ı̂ − 1

8πρ2 (−I + 2êρ êρ) · ı̂. (4.2)

The associated stream function is therefore given by

ψ0 = 1
4π

[(
4πU0 − 1

2

)
ρ − ρ(ln ρ − 1)− 1

2ρ

]
sinφ. (4.3)

The velocity U0 cannot be determined from the inner analysis. To find it, we note that

u0 ∼ − 1
4π

ı̂ ln ρ + U0 ı̂ + 1
4π

(
êρ êρ − 1

2
I

)
· ı̂ + O(ρ−2) as ρ → ∞, (4.4)

and follow by considering the outer region.
The leading-order outer flow is set uniquely by constraints (3.11) and (3.12) together

with the need to match (4.4). It therefore consists of a Stokeslet at X = ı̂, with a mirror
image at X = −ı̂:

U0 = 1
4π

[
−I ln |X − ı̂| + (X − ı̂)(X − ı̂)

|X − ı̂|2
]

· ı̂

− 1
4π

[
−I ln |X + ı̂| + (X + ı̂)(X + ı̂)

|X + ı̂|2
]

· ı̂. (4.5)

Rewriting in terms of the inner coordinates and expanding for small λ gives

U0 ∼ 1
4π

[−ı̂ ln(λρ)+ êρ cosφ + ı̂(ln 2 − 1)]

− λρ
8π

(êρ − 2ı̂ cosφ)− λ
2ρ2

32π
(3ı̂ cos 2φ − 2êρ cosφ)+ · · · . (4.6)

Imposing ord(1)–ord(1) Van Dyke matching using (4.1) and (4.6) readily gives

U0 = 1
4π

(
ln

2
λ

− 1
2

)
. (4.7)

Given (3.1), U0 is positive, as expected.
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5. Asymptotic corrections

The only term of u0 that is not accounted for in (4.5) is the doublet, which decays as
ρ−2. Moreover, the ord(λ) term in expansion (4.6) does not incorporate a uniform flow.
These observations suggest that U1 ≡ 0 and then U1 = 0. To determine u1, we note that
ord(λ)–ord(λ) Van Dyke matching using (4.6) implies

u1 ∼ ρ

8π
(êρ − 2ı̂ cosφ) as ρ → ∞, (5.1)

or equivalently,

ψ1 ∼ ρ2

16π
sin 2φ as ρ → ∞. (5.2)

The correction ψ1 is governed by that condition, together with the symmetry constraint
(3.8), the force-free requirement (recall (3.5)) and the condition (recall (3.9))

ψ1 = ∂ψ1

∂ρ
= 0 at ρ = 1. (5.3)

The unique biharmonic function that satisfies these conditions is

ψ1 = ρ2 − 2 + ρ−2

16π
sin 2φ. (5.4)

Performing ord(λ)–ord(λ2) Van Dyke matching implies that as |X − ı̂| → 0,

U2 ∼ − 1
8π

[
− I

|X − ı̂|2 + 2
(X − ı̂)(X − ı̂)

|X − ı̂|4
]

· ı̂

− 1
4π

(ı̂ ı̂ − ĵ ĵ) :
(X − ı̂)(X − ı̂)(X − ı̂)

|X − ı̂|4 , (5.5)

where the first term is associated with the doublet in (4.1), and the second term (wherein
: denotes tensor contraction) is associated with the stresslet in (5.4). The Stokes flow U2
that satisfies (5.5) together with (3.11)–(3.12) is simply a superposition of (5.5) with its
mirror image:

U2 = 1
8π

[
I

|X − ı̂|2 − 2
(X − ı̂)(X − ı̂)

|X − ı̂|4 − I

|X + ı̂|2 + 2
(X + ı̂)(X + ı̂)

|X + ı̂|4
]

· ı̂

− 1
4π

(ı̂ ı̂ − ĵ ĵ) :
[
(X − ı̂)(X − ı̂)(X − ı̂)

|X − ı̂|4 + (X + ı̂)(X + ı̂)(X + ı̂)
|X + ı̂|4

]
. (5.6)

Note that expansion of (5.6) about X = ı̂ produces, inter alia, an ord(1) uniform flow
term. This suggests that U2 is non-zero.

We can now calculate u2 and U2. Performing ord(λ2)–ord(λ2) Van Dyke matching, we
obtain

u2 ∼ − ρ2

32π
(3ı̂ cos 2φ − 2êρ cosφ)− 3

32π
ı̂ as ρ → ∞, (5.7)

where the first term follows from the last term in (4.6), and the second term is the
aforementioned uniform flow. In terms of ψ2, (5.7) reads

ψ2 ∼ ρ3

64π
(sinφ − sin 3φ)− 3ρ

32π
sinφ as ρ → ∞. (5.8)

The most general biharmonic function that satisfies (5.8) together with the symmetry
constraint (3.8) and the force-free requirement (which excludes terms proportional to
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ρ ln ρ) is

ψ2 =
(
ρ3

64π
− 3ρ

32π
+ d2

2πρ

)
sinφ − 1

64π

(
ρ3 + g2

ρ
+ h2

ρ3

)
sin 3φ. (5.9)

Applying the conditions (cf. (3.9))

ψ2 = U2 sinφ
∂ψ2

∂ρ
= U2 sinφ

⎫⎬
⎭ at ρ = 1 (5.10)

gives U2 = −1/16π (as well as d2 = 1/32, g2 = −3 and h2 = 2).
We conclude that

U ∼ 1
4π

(
ln

2
λ

− 1
2

)
− λ2

16π
+ O(λ3) for λ� 1. (5.11)

6. Shear-free interface

As another illustration of the present methodology, we consider now the case where the
particle boundaries are shear-free surfaces – an alternative model of membrane-trapped
colloids (Saffman & Delbrück 1975). The no-slip condition (3.4) is then replaced by the
shear-free condition

u = U cosφ
∂v

∂ρ
− v = U sinφ

⎫⎬
⎭ at ρ = 1, (6.1)

or equivalently (cf. (3.9)),

ψ = U sinφ
∂2ψ

∂ρ2 − ∂ψ

∂ρ
= −U sinφ

⎫⎬
⎭ at ρ = 1. (6.2)

At leading order, we find that (cf. (4.3))

ψ0 = ρ

4π
(4πU0 − ln ρ) sinφ. (6.3)

The associated velocity field is (cf. (4.2))

u0 = U0 ı̂ + 1
4π

(−I ln ρ + êρ êρ − I) · ı̂. (6.4)

Clearly, the leading-order outer solution (4.5) is unaltered; in particular, (4.6) remains
valid. Here, ord(1)–ord(1) Van Dyke matching gives

U0 = 1
4π

ln
2
λ
. (6.5)

Comparing with (4.7), a bubble drifts faster than a rigid particle. This is hardly surprising,
as it would experience a smaller drag for a given velocity.
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In calculating u1, we see that the matching condition (5.2) still holds. The correction ψ1
is governed by that condition, together with the symmetry constraint (3.8), the force-free
requirement (recall (3.5)) and the slip condition (recall (6.2))

ψ1 = 0
∂2ψ1

∂ρ2 − ∂ψ1

∂ρ
= 0

⎫⎬
⎭ at ρ = 1. (6.6)

The unique biharmonic function that satisfies these conditions is (cf. (5.4))

ψ1 = ρ2 − 1
16π

sin 2φ. (6.7)

In the absence of a doublet in (6.3), ord(λ)–ord(λ2) Van Dyke matching implies that
(cf. (5.5))

U2 ∼ − 1
8π

(ı̂ ı̂ − ĵ ĵ) :
(X − ı̂)(X − ı̂)(X − ı̂)

|X − ı̂|4 as |X − ı̂| → 0. (6.8)

Thus U2 consists only of stresslets (cf. (5.6)):

U2 = − 1
8π

(ı̂ ı̂ − ĵ ĵ) :
[
(X − ı̂)(X − ı̂)(X − ı̂)

|X − ı̂|4 + (X + ı̂)(X + ı̂)(X + ı̂)
|X + ı̂|4

]
. (6.9)

We can now calculate u2 and U2. Performing ord(λ2)–ord(λ2) Van Dyke matching (cf.
(5.8)) gives here

ψ2 ∼ ρ3

64π
(sinφ − sin 3φ)− ρ

16π
sinφ as ρ → ∞, (6.10)

where the first term follows from (4.6), and the second term follows from expanding
(6.9). The most general biharmonic function that satisfies (6.10) as well as the symmetry
constraint (3.8) and force-free requirement is (cf. (5.9))

ψ2 =
(
ρ3

64π
− ρ

16π
+ d2

2πρ

)
sinφ − 1

64π

(
ρ3 + g2

ρ
+ h2

ρ3

)
sin 3φ. (6.11)

Applying the conditions (cf. (6.2))

ψ2 = U2 sinφ
∂2ψ2

∂ρ2 − ∂ψ2

∂ρ
= −U2 sinφ

⎫⎬
⎭ at ρ = 1 (6.12)

yields U2 = −1/16π (incidentally, just as in the case of a rigid boundary), d2 = 1/16,
g2 = −3 and h2 = 2. We conclude that

U ∼ 1
4π

ln
2
λ

− λ2

16π
+ O(λ3) for λ� 1. (6.13)
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7. Elliptic disks

In principle, the present asymptotic scheme may be applied to particles of non-circular
cross-section. The leading-order outer problem is unaffected, whereby (4.5) remains valid.
The leading-order inner problem, on the other hand, depends upon the specific disk shape.
(In that sense, the present scenario is somewhat reminiscent of a small-Reynolds-number
analysis of a single elliptic particle, see Kropinski, Ward & Keller 1995.) To simplify the
calculation, we now impose the force constraint (2.3) in that inner problem via the far-field
specification (cf. (4.4))

ψ0 ∼ −ρ ln ρ
4π

sinφ as ρ → ∞. (7.1)

We here illustrate the generalisation to non-circular shapes, considering disks of elliptic
cross-section. We first consider the symmetric case where one of the ellipse axes is aligned
with the line of centres. The associated (dimensional) semi-axis is denoted by a; the other
semi-axis is denoted by b. We choose the length scale � as (a + b)/2. For simplicity, we
consider here only rigid disks, where the no-slip condition applies.

In allowing for all possible ratios a/b, we need to address separately the cases a > b and
a < b.

7.1. Case a > b
For a > b, the dimensional distance from the origin to the focal points is c = √

a2 − b2.
The associated dimensionless distance is

c̃ = 2

√
a − b
a + b

. (7.2)

It is natural to employ the elliptic coordinates (ξ, η) defined by (Moon & Spencer 1988):

x = c̃ cosh ξ cos η, y = c̃ sinh ξ sin η. (7.3a,b)

The curves ξ = const. are ellipses. In particular, the disk boundary is ξ = ξ∗, where

c̃ = 2 e−ξ∗
. (7.4)

Note that the eccentricity E = c/a is given by

E = sech ξ∗. (7.5)

We also note that at large distances, where ξ is large,

ρ ∼ eξ−ξ
∗
, φ ∼ η. (7.6a,b)

In prescribing the boundary conditions governing the flow problem, we temporarily
consider a co-moving reference frame, where the disk is stationary. The boundary
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conditions on the stream function in that frame, say ψ̃ , are

ψ̃ = ∂ψ̃

∂ξ
= 0 at ξ = ξ∗. (7.7)

The most general biharmonic function that satisfies (7.7) together with the symmetry (3.8)
and does not diverge more rapidly than (7.1) is (Shintani, Umemura & Takano 1983)

ψ̃ = D̃{(ξ − ξ∗) sinh ξ − sinh ξ∗ cosh ξ∗ sinh ξ + sinh2 ξ∗ cosh ξ} sin η. (7.8)

The appropriate stream function in the laboratory reference frame is

ψ0 = ψ̃ + U0y. (7.9)

Imposing the force constraint (7.1) using (7.4)–(7.6), we find that

D̃ = −e−ξ∗

4π
, (7.10)

whereby

ψ0 ∼ − ρ

4π
(ln ρ − e−ξ∗

sinh ξ∗ − 4πU0) sinφ as ρ → ∞. (7.11)

This refinement of (7.1) constitutes the large-ρ leading-order behaviour of ψ0, in the
aforementioned convention that abides by Fraenkel’s warning.

7.2. Case a < b
For a < b, we define c = √

b2 − a2. The associated dimensionless distance is

c̃ = 2

√
b − a
b + a

. (7.12)

The elliptic coordinates are now defined by (cf. (7.3))

y = c̃ cosh ξ cos η, −x = c̃ sinh ξ sin η. (7.13a,b)

Relation (7.4) remains valid. The eccentricity, now defined as E = c/b, is again given by
(7.5). Here, at large distances (cf. (7.6)),

ρ ∼ eξ−ξ
∗
, φ ∼ π/2 + η. (7.14a,b)

We note that conditions (7.7) still hold. The most general biharmonic function that
satisfies (7.7) together with symmetry (3.8) and does not diverge more rapidly than a
Stokeslet is (cf. (7.8))

ψ̃ = D̃{(ξ − ξ∗) cosh ξ + sinh ξ∗ cosh ξ∗ cosh ξ − cosh2 ξ∗ sinh ξ} cos η. (7.15)

The laboratory-frame stream functionψ0 is still given by (7.9). Considering large distances
using (7.14), we find that (7.10) remains valid, whereby (cf. (7.11))

ψ0 ∼ − ρ

4π
(ln ρ − e−ξ∗

cosh ξ∗ − 4πU0) sinφ as ρ → ∞. (7.16)
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Figure 2. Renormalised velocity as a function of eccentricity, obtained from (7.18) using (7.5), for both a > b
and a < b.

7.3. Particle velocity
With the leading-order inner flow available (up to the particle velocity), we can now
employ asymptotic matching to obtain that velocity. Thus, making use of (7.11) and (7.16)
as well as expansion (4.6) of the outer flow, we obtain, using Van Dyke matching,

4πU0 = ln
1
λ

+ W, (7.17)

where

W = ln 2 −
{

e−ξ∗
sinh ξ∗, a > b,

e−ξ∗
cosh ξ∗, a < b.

(7.18)

The case of a circle (a = b), where E = 0, is represented by the limit ξ∗ → ∞; see (7.5). In
that limit, we find W = ln 2 − 1/2, in agreement with (4.7). In the limit of a line segment
(E = 1), where ξ∗ = 0, we obtain

W =
{

ln 2, b = 0,
ln 2 − 1, a = 0.

(7.19)

Unsurprisingly, the velocity of a segment that is aligned with the line of centres is larger
than that of a segment perpendicular to it.

Result (7.17) represents the particle velocity as a superposition of an ‘interaction
velocity’, which depends only upon the normalised separation 1/λ, and a ‘renormalised’
velocity, which depends only upon the eccentricity E via (7.5). The singularity of the
interaction velocity in the limit λ→ 0 is a manifestation of the Stokes paradox: the
single-particle problem is ill posed. In figure 2, we present the renormalised velocity as a
function of eccentricity for both a > b and a < b (cf. Kropinski et al. 1995). Recall that
E =

√
|a2 − b2|/max(a, b).
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7.4. Uniform mobility expression and extension to non-aligned ellipses

Making use of (7.2) and (7.4), we find that for a > b, e−ξ∗
sinh ξ∗ is simply given by

b/(a + b). Similarly, using (7.12) and (7.4), we find that for a < b, e−ξ∗
cosh ξ∗ is also

given by b/(a + b). We conclude that (7.17)–(7.18) may be combined to the simple formula

4πU0 = ln
2
λ

− b
a + b

, (7.20)

valid for all a and b. For future reference, we note that the large-ρ approximations (7.11)
and (7.16) may be combined to

ψ0 ∼ − ρ

4π

(
ln ρ − b

a + b
− 4πU0

)
sinφ as ρ → ∞. (7.21)

The associated velocity field is (cf. (4.4))

u0 ∼ U0 ı̂ + 1
4π

[
(−I ln ρ + êρ êρ) · ı̂ − a

a + b
ı̂
]

as ρ → ∞. (7.22)

It is now easy to generalise for the case of a non-aligned ellipse, for which the velocity
U0 of the ‘+’ ellipse is not necessarily directed along the x′-axis. Denoting by êa a unit
vector parallel to the 2a-axis, and by êb a unit vector parallel to the 2b-axis, it is evident
from symmetry arguments that the generalisation of (7.22) is

u0 ∼ U0 + 1
4π

(−I ln ρ + êρ êρ − M) · ı̂ as ρ → ∞, (7.23)

wherein

M = a
a + b

êaêa + b
a + b

êbêb. (7.24)

Matching with (4.6) therefore gives

4πU0 =
(

ln
2
λ

− 1
)

ı̂ + M · ı̂. (7.25)

Writing U0 = U0 ı̂ + V0ĵ , we obtain

4πU0 = ln
2
λ

− 1 + a
a + b

cos2 α + b
a + b

sin2 α, 4πV0 = a − b
a + b

cosα sinα,

(7.26a,b)

wherein α is the angle from the x′-axis to the 2a-axis, reckoned positive in the
anticlockwise direction.

8. Generalisation to a collection of interacting particles

At this stage, our work left unanswered some natural questions to ask, such as how the
result would change if the disks are not identical, if the forces are not centrally symmetric,
or indeed if there are multiple disks. It turns out that these questions can be addressed,
at least to leading order, by considering a generalisation to N well-separated particles,
which could be of arbitrary shape, size, orientation and surface properties (i.e. no-slip or
shear-free interface).
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In this general scenario, a dimensionless notation is non-beneficial, so we resort to a
dimensional description using the position vector r. The outer velocity field, driven by
Stokeslets, is simply

N∑
n=1

J(r − r(n)) · F (n), (8.1)

wherein r(n) is the position of the centroid of the nth particle,

J(r) = 1
4πμ

(
−I ln

|r|
R + rr

|r|2
)

(8.2)

is the Oseen–Burgers tensor, where a length scale R (e.g. a characteristic separation
distance) is introduced, and F (n) is the force on the nth particle due to its
(non-hydrodynamic) interaction with its neighbours. Since Newton’s third law necessitates

N∑
n=1

F (n) = 0, (8.3)

approximation (8.1) is actually independent of the arbitrary scale R. Moreover, it follows
from (8.3) that (8.1) approaches zero as |r| → ∞, as required (cf. (2.2)).

To approximate (8.1) near one of the particles, say particle ‘1’, we write r = r(1) + ρ
and expand for small |ρ| to obtain

1
4πμ

(
−I ln

|ρ|
R + êρ êρ

)
· F (1) +

N∑
n=2

J(r(1) − r(n)) · F (n), (8.4)

wherein êρ = ρ/|ρ|, consistently with our earlier notation. To obtain the rectilinear
velocity V (1) of that ‘test particle’, we need a far-field approximation of the leading-order
particle-scale (‘inner’) flow field. This generally necessitates the solution of the inner flow
about a translating particle. (In general, the test particle also acquires an angular velocity to
satisfy the torque-free condition; the flow associated with it, however, decays algebraically
with distance from the particle, and does not affect the requisite approximation.)

For a no-slip circular disk, say of radius �, this approximation is simply (cf. (4.4))

V (1) + 1
4πμ

(
−I ln

|ρ|
�

+ êρ êρ − 1
2

I

)
· F (1). (8.5)

Asymptotic matching with (8.4) yields

V (1) = 1
4πμ

(
ln

R
�

+ 1
2

)
F (1) +

N∑
n=2

J(r(1) − r(n)) · F (n). (8.6)

In the case of a shear-free disk, (8.5) is replaced by (cf. (6.4))

V (1) + 1
4πμ

(
−I ln

|ρ|
�

+ êρ êρ − I

)
· F (1), (8.7)

whereby matching with (8.4) gives

V (1) = 1
4πμ

(
ln

R
�

+ 1
)

F (1) +
N∑

n=2

J(r(1) − r(n)) · F (n). (8.8)

It may appear as though (8.6) and (8.8) represent a superposition of a single-particle
solution and advection by the other particles. This interpretation, however, is somewhat
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misleading given the dependence upon the arbitrary scale R, which cancels out only when
all terms are added together. Nonetheless, it is evident from the above matching procedure
that the consideration of a more complicated test particle would retain the structure of
(8.6) and (8.8), where the ‘single-particle’ velocity is modified but the ‘advection’ term
remains unaltered. It follows that the leading-order velocity of a particle depends (through
the single-particle term) on its own shape, size, orientation and surface properties (no-slip
or shear-free), but not on the details of the other particles beyond their position and the
interaction forces that they experience.

For the case of two particles with separation 2s = r(1) − r(2), Newton’s third law (8.3)

gives F def= F (1) = −F (2). For a no-slip surface, we obtain from (8.6) the rectilinear

velocity V def= V (1) of the test particle as

V = 1
4πμ

[(
ln

2|s|
�

+ 1
2

)
F − ss

|s|2 · F
]
, (8.9)

which for F‖s and F⊥s reduces to

V = F
4πμ

(
ln

2|s|
�

− 1
2

)
, V = F

4πμ

(
ln

2|s|
�

+ 1
2

)
, (8.10a,b)

respectively, with (8.10a) in agreement with (4.7). For shear-free surfaces, we obtain from
(8.8) that

V = 1
4πμ

[(
ln

2|s|
�

+ 1
)

F − ss
|s|2 · F

]
, (8.11)

which for F‖s and F⊥s reduces to

V = F
4πμ

ln
2|s|
�
, V = F

4πμ

(
ln

2|s|
�

+ 1
)
, (8.12a,b)

respectively, with (8.12a) in agreement with (6.5). Note that both (8.9) and (8.11) are
indeed independent of R, that the velocity of a shear-free disk is larger than that of a
no-slip disk, and that the velocity in the transverse case F⊥s is larger than that in the
longitudinal case F‖s.

We may also consider the case where the test particle is an elliptic disk of major axis a
and minor axis b, with corresponding unit vectors êa and êb. Using the analysis of § 7, the
inner flow at large distances from the disk is (cf. (7.23))

V (1) + 1
4πμ

(
−I ln

2|ρ|
a + b

+ êρ êρ − M

)
· F (1) as ρ → ∞. (8.13)

Asymptotic matching with (8.4) yields

V (1) = 1
4πμ

(
I ln

2R
a + b

+ M

)
· F (1) +

N∑
n=2

J(r(1) − r(n)) · F (n). (8.14)

For the case of two disks with separation 2s = r(1) − r(2), we obtain (cf. (8.9))

V = 1
4πμ

(
I ln

4|s|
a + b

+ M − ss
|s|2

)
· F . (8.15)

988 A39-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

24
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.243


E. Yariv and G.G. Peng

9. Concluding remarks

The present calculation has been motivated by the apparent conflict between the Stokes
paradox and the observation that the mutual interaction between two particles in a viscous
film is well-posed in 2-D Stokes flow, however large the separation between them. It is
based upon the observation that standard reflection methods are not directly applicable to
the problem, which requires instead the systematic use of matched asymptotic expansions.
The asymptotic scheme developed herein can handle various interfacial conditions at
the particle boundaries. Since the Stokes equations involve only the instantaneous
configuration, the present scheme is applicable when the repulsive force depends upon
the mutual separation.

In generalising the analysis of circular particles to non-circular shapes, we observe that
the leading-order outer flow is unaffected by the shape. We illustrate the effect of shape
by considering elliptic disks. The particle velocity is a superposition of an interaction
term, which depends only upon the pair separation, and a renormalised term that depends
only upon the ellipse eccentricity. By allowing for arbitrary angle between the ellipse axes
and the line of centres, central forces may result in particle motion perpendicular to that
line; see indeed (7.26b). This net drift in the absence of any net external force resembles
self-propulsion. The indifference of the leading-order outer flow to the particle geometry
and surface properties has been further exploited in extending the asymptotic analysis to a
collection of non-identical disks.

It is important to emphasise the difference between the present analysis and earlier
investigations of particle interaction in membranes (Bussell, Koch & Hammer 1992;
Bussell, Hammer & Koch 1994; Dodd et al. 1995; Singh et al. 2019). These investigations
considered particle motion that is driven by an external force, similarly to Saffman’s
analysis of a single particle. Since the Stokes paradox persists at these problems, they
also require – following Saffman (1976) – the incorporation of small substrate viscosity.

In the case of disks of circular cross-section, it may be possible to obtain an
exact solution of the general problem of arbitrary λ using appropriate Bessel–Fourier
expansions in bipolar coordinates (Wakiya 1975). Such an exact solution, however, does
not necessarily provide qualitative insight regarding the asymptotic behaviour at the
singular limit of remote disks (or, for that matter, in the other extreme of near contact). This
requisite insight is provided by the present asymptotic scheme. For non-circular disks, the
need for an asymptotic approach is even more paramount. Indeed, given the unavailability
of orthogonal coordinate systems that can handle two non-circular disks, the exact analysis
of the interaction between such disks requires numerical simulations (Power 1993). These,
of course, are ill-suited for handling the scale disparity involved in the well-separated
configuration. It is exactly at that limit where matched asymptotic expansions become
indispensable.
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