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Abstract

We prove that any surjective isometry between unit spheres of the `∞-sum of strictly convex normed
spaces can be extended to a linear isometry on the whole space, and we solve the isometric extension
problem affirmatively in this case.
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1. Introduction and preliminaries

In 1987, Tingley [8] proposed the following problem.

P 1.1. Let E and F be real normed spaces. Suppose that V is a surjective
isometry between the unit spheres S (E) and S (F). Is V necessarily the restriction
of a linear isometry on the whole space?

We only consider this problem in real normed spaces, since it is clearly negative in the
complex case. For example, consider V : C→ C which maps x to x̄.

The isometric extension problem arises from the famous Mazur–Ulam theorem.
This problem is interesting and easy to understand. Moreover, it is very important.
If this problem has a positive answer, then the local geometric property of a mapping
on the unit sphere will determine the property of the mapping on the whole space.
However, it is very difficult to solve. In [8], Tingley only proved that any isometry
V between the unit spheres of real finite-dimensional normed spaces X(n) and Y(m)

necessarily maps the antipodal points to antipodal points, that is, V(−x) = −V(x) for
any x ∈ S (X(n)).

In the past decade, the isometric extension problem has been considered in various
classical Banach spaces and many good results have been obtained, through studying
the concrete form of the norm (see [2]). The isometric extension problem has been
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solved affirmatively if X is a classical normed space and Y is a general normed space.
However, there has been little progress between two general normed spaces, even in
the two-dimensional case. Recently, this problem was solved affirmatively between
finite-dimensional polyhedral Banach spaces (see [6]). There is still much to be done
regarding this challenging problem.

In particular, this problem was solved affirmatively between the unit spheres of
the `1-sum of strictly convex normed spaces (see [9]), through the representation
of the surjective isometry. The isometries on the unit spheres of the space `∞(Γ)
(see [3–5, 7]) were also considered. In this paper, we consider the isometric extension
problem between the `∞-sum of a family of strictly convex normed spaces, and solve
the isometric extension problem affirmatively in this case. Furthermore, we can obtain
the main results of [4] as a corollary.

Before we start, we introduce some notation. Let Γ be an index set with at least two
elements. Let {Eγ : γ ∈ Γ} be a collection of strictly convex normed spaces, and let the
linear space ⊕Eγ be the direct sum of these normed spaces (see [1]). Suppose that⊕

`∞

Eγ := {u = (uγ)γ∈Γ ∈ ⊕Eγ : ‖u‖ = sup{‖uγ‖ : γ ∈ Γ} <∞}

is a subspace of ⊕Eγ with the `∞-norm. For any γ0 ∈ Γ and x ∈ Eγ0 , we denote
x̂ ∈ ⊕`∞Eγ by

x̂γ =

x if γ = γ0,

0 if γ , γ0.

Note that S (E) := {u ∈ E : ‖u‖ = 1} and B1(E) := {u ∈ E : ‖u‖ ≤ 1}. For any u ∈
S (⊕`∞Eγ) and 0 < ε < 1, we write

supp u = {γ ∈ Γ : uγ , 0},

and denote uε ∈ S (⊕`∞Eγ) by

uεγ =

uγ if ‖uγ‖ > 1 − ε,

0 if ‖uγ‖ ≤ 1 − ε.

2. Isometries between S(⊕`∞Eγ) and S(⊕`∞Fδ)

Let ∆ be an index set with at least two elements. In this section, we similarly write
⊕`∞Fδ for the `∞-sum of a collection of strictly convex normed spaces {Fδ : δ ∈ ∆}. We
begin by considering the isometry between S (⊕`∞Eγ) and S (⊕`∞Fδ). In the following
result, we prove that any surjective isometry between them necessarily maps antipodal
points to antipodal points.

P 2.1. Let V : S (⊕`∞Eγ)→ S (⊕`∞Fδ) be a surjective isometry. Then
V(−u) = −V(u) for any u ∈ S (⊕`∞Eγ).
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P. We first prove that V(−x̂) = −V(x̂) for any γ0 ∈ Γ and x ∈ S (Eγ0 ). Note that V
is surjective. There exists u ∈ S (⊕`∞Eγ) such that V(u) = −V(x̂). Then

‖u − x̂‖ = ‖V(u) − V(x̂)‖ = ‖ −2V(x̂)‖ = 2,

and thus ‖uγ0 − x‖ = 2. Note that

2 = ‖uγ0 − x‖ ≤ ‖uγ0‖ + ‖x‖ ≤ 2,

and E1 is strictly convex. We get that uγ0 = −x. For any y ∈ S (Eγ1 ) with γ1 , γ0, there
exists v ∈ S (⊕`∞Eγ) such that V(v) = −V(ŷ). Note that

‖vγ0 − uγ0‖ ≤ ‖v − u‖ = ‖ −V(ŷ) − (−V(x̂))‖

= ‖V(ŷ) − V(x̂)‖ = ‖x̂ − ŷ‖ = 1.

We have
‖vγ0 + uγ0‖ ≥ ‖2 · uγ0‖ − ‖vγ0 − uγ0‖ ≥ 1, (2.1)

and thus

‖u − ŷ‖ = ‖V(ŷ) + V(x̂)‖ = ‖x̂ − v‖

≥ ‖x − vγ0‖ = ‖uγ0 + vγ0‖ ≥ 1.

If ‖u − ŷ‖ = 1, we get that ‖uγ0 + vγ0‖ = 1, and thus ‖uγ0 − vγ0‖ = 1 by (2.1). Note that
Eγ0 is strictly convex and

‖vγ0 + uγ0‖ + ‖vγ0 − uγ0‖ = 2‖uγ0‖.

Then vγ0 = 0 or uγ0 = 0, which is a contradiction. Therefore, ‖u − ŷ‖ > 1, and thus
‖uγ1 − y‖ > 1. Note that y ∈ S (Eγ1 ) is arbitrary. We get that uγ1 = 0 and thus u = −x̂.

Now we prove that V(−u) = −V(u) for any u ∈ S (⊕`∞Eγ). Note that V is surjective.
There exists v ∈ S (⊕`∞Eγ) such that V(v) = −V(u). For any γ0 ∈ Γ with uγ0 , 0,

1 + ‖uγ0‖ =

∥∥∥∥∥ ûγ0

‖uγ0‖
+ u

∥∥∥∥∥ =

∥∥∥∥∥V
( ûγ0

‖uγ0‖

)
− (−V(u))

∥∥∥∥∥ =

∥∥∥∥∥ ûγ0

‖uγ0‖
− v

∥∥∥∥∥,
and thus

1 + ‖uγ0‖ =

∥∥∥∥∥ uγ0

‖uγ0‖
− vγ0

∥∥∥∥∥ ≤ 1 + ‖vγ0‖. (2.2)

Therefore, vγ0 , 0 and thus

1 + ‖vγ0‖ =

∥∥∥∥∥ v̂γ0

‖vγ0‖
+ v

∥∥∥∥∥ =

∥∥∥∥∥V
( v̂γ0

‖vγ0‖

)
− (−V(v))

∥∥∥∥∥
=

∥∥∥∥∥ v̂γ0

‖vγ0‖
− u

∥∥∥∥∥ =

∥∥∥∥∥ vγ0

‖vγ0‖
− uγ0

∥∥∥∥∥ ≤ 1 + ‖uγ0‖.

Then ‖vγ0‖ = ‖uγ0‖. Note that Eγ0 is strictly convex and see (2.2). We get uγ0 = −vγ0 .
For any γ0 ∈ Γ with vγ0 , 0, we can get a similar result by the methods above, and
complete the proof. �
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P 2.2. Let V : S (⊕`∞Eγ)→ S (⊕`∞Fδ) be a surjective isometry. For any
u ∈ S (⊕`∞Eγ), supp u is a single point if and only if supp V(u) is a single point.

P. Assume that there exist γ0 ∈ Γ and x ∈ S (Eγ0 ) such that u = x̂. Let h = V(u).
We first prove that hε = h for any 0 < ε < 1. In other words, ‖hδ‖ = 0 or ‖hδ‖ = 1 for
any δ ∈ ∆. Otherwise, there exists ε0 > 0 such that hε0 , h. Note that V is surjective.
There exist v, w ∈ S (⊕`∞Eγ) such that

V(v) = hε0 , V(w) =
h − hε0

‖h − hε0‖
.

Note that Eγ0 is strictly convex and

‖vγ0 + x‖ = ‖v + x̂‖ = ‖h + hε0‖ = 2,

by Proposition 2.1.
We have

2 = ‖vγ0 + x‖ ≤ ‖vγ0‖ + ‖x‖ ≤ 2,

and thus vγ0 = x. It is now the case that

‖wγ0 + x‖ = ‖w + x̂‖ = 1 + ‖h − hε0‖

and

‖wγ0 + vγ0‖ ≤ ‖w + v‖ =

∥∥∥∥∥hε0 +
h − hε0

‖h − hε0‖

∥∥∥∥∥ = 1,

by Proposition 2.1. This is a contradiction.
We now prove that supp h is a single point. Suppose that there exist δ1, δ2 ∈ ∆ such

that ‖hδ1‖ = ‖hδ2‖ = 1. Note that V is surjective. There exist v, w ∈ S (⊕`∞Eγ) such that

V(v) = ĥδ1 , V(w) = ĥδ2 .

Note that Eγ0 is strictly convex and

‖vγ0 + x‖ = ‖v + x̂‖ = ‖ĥδ1 + h‖ = 2,

by Proposition 2.1. We get that

2 = ‖vγ0 + x‖ ≤ ‖vγ0‖ + ‖x‖ ≤ 2,

and thus vγ0 = x. Similarly, we have wγ0 = x. By Proposition 2.1,

‖vγ0 + wγ0‖ ≤ ‖v + w‖ = ‖ĥδ1 + ĥδ2‖ = 1,

which is a contradiction. This completes the proof. �

P 2.3. Let V : S (⊕`∞Eγ)→ S (⊕`∞Fδ) be a surjective isometry. For any
γ ∈ Γ, there exists δ ∈ ∆ such that V(S (Eγ)) = S (Fδ).
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P. Note that V is surjective and recall Proposition 2.2. We only need to prove
that supp V(x̂) = supp V(x̂′), for any γ0 ∈ Γ and x, x′ ∈ S (Eγ0 ). Otherwise, there exist
y ∈ S (Fδ) and y′ ∈ S (Fδ

′ ) with δ , δ′ such that

V(x̂) = ŷ, V(x̂′) = ŷ′.

Then
‖x − x′‖ = ‖x̂ − x̂′‖ = ‖ŷ − ŷ′‖ = 1

and
‖x + x′‖ = ‖x̂ + x̂′‖ = ‖ŷ + ŷ′‖ = 1,

by Proposition 2.1. Note that Eγ0 is strictly convex and

‖x + x′‖ + ‖x − x′‖ = 2 = ‖(x + x′) + (x − x′)‖.

Then x = 0 or x′ = 0, which is a contradiction. This completes the proof. �

R 2.4. Let V : S (⊕`∞Eγ)→ S (⊕`∞Fδ) be a surjective isometry. By Proposi-
tion 2.3, there exists a bijection σ : Γ→ ∆ such that V(S (Eγ)) = S (Fσ(γ)). We define
Vγ : S (Eγ)→ S (Fσ(γ)) by

Vγ(x) = V(x̂), ∀x ∈ S (Eγ).

Then Vγ(S (Eγ)) = S (Fσ(γ)).

P 2.5. Let V : S (⊕`∞Eγ)→ S (⊕`∞Fδ) be a surjective isometry, and let σ :
Γ→ ∆ be the bijection in Remark 2.4. Suppose that u ∈ S (⊕`∞Eγ) and V(u) = v. Then

vσ(γ) =

‖uγ‖V
( ûγ
‖uγ‖

)
if uγ , 0,

0 if uγ = 0.

P. We first prove that ‖uγ‖ ≤ ‖vσ(γ)‖ for any γ ∈ Γ. If ‖uγ‖ > 0, there exists
y ∈ S (Fσ(γ)) such that V( ̂uγ/‖uγ‖) = ŷ by Proposition 2.3 and Remark 2.4. Then

1 + ‖uγ‖ =

∥∥∥∥∥u +
ûγ
‖uγ‖

∥∥∥∥∥ = ‖v + ŷ‖

= ‖vσ(γ) + y‖ ≤ 1 + ‖vσ(γ)‖,

and thus ‖uγ‖ ≤ ‖vσ(γ)‖.
If ‖vσ(γ)‖ = 0, we have ‖uγ‖ = 0. If ‖vσ(γ)‖ , 0, there exists x ∈ S (Eγ) such that

V(x̂) = ̂vσ(γ)/‖vσ(γ)‖. Therefore,

1 + ‖vσ(γ)‖ =

∥∥∥∥∥ v̂σ(γ)

‖vσ(γ)‖
+ v

∥∥∥∥∥ = ‖x̂ + u‖,
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by Proposition 2.1 and thus

1 + ‖vσ(γ)‖ = ‖x + uγ‖ ≤ 1 + ‖uγ‖.

Then ‖vσ(γ)‖ = ‖uγ‖ and thus

1 + ‖uγ‖ = ‖x + uγ‖.

Note that Eγ is strictly convex. We get that uγ = ‖uγ‖x and thus

v̂σ(γ) = ‖vσ(γ)‖V(x̂) = ‖uγ‖V
( ûγ
‖uγ‖

)
,

which completes the proof. �

T 2.6. Let V : S (⊕`∞Eγ)→ S (⊕`∞Fδ) be a surjective isometry. Then V can be
extended to a linear isometry on the whole space.

P. For any γ ∈ Γ, Vγ : S (Eγ)→ S (Fσ(γ)) defined in Remark 2.4 can be seen as a
surjective isometry between S (Eγ) and S (Fσ(γ)). We then define Ṽγ : Eγ→ Fσ(γ) by

Ṽγ(x) =

0 if x = 0;

‖x‖Vγ

( x
‖x‖

)
if x , 0.

It is clear that Ṽγ is surjective. Now we prove that Ṽγ is an isometry. Note that

Ṽγ(λx) = λṼγ(x), ∀x ∈ Eγ, λ ∈ R,

by Proposition 2.1. We only need to prove that

‖Ṽγ(x) − Ṽγ(x′)‖ = ‖x − x′‖

for any x, x′ ∈ B1(Eγ). In fact, for any γ1 , γ and y ∈ S (Eγ1 ), let u = x̂ + ŷ and v =

x̂′ + ŷ. It is clear that u, v ∈ S (⊕`∞Eγ). Then

‖Ṽγ(x) − Ṽγ(x′)‖ = ‖V(u) − V(v)‖

= ‖u − v‖ = ‖x − x′‖

for any x, x′ ∈ B1(Eγ), by Proposition 2.5. By the Mazur–Ulam theorem, Ṽγ is a linear
map.

We now define Ṽ : ⊕`∞Eγ→⊕`∞Eδ by

Ṽ(u)δ = Ṽσ−1(δ)(uσ−1(δ))

for any δ ∈ ∆ and u ∈ ⊕`∞Eγ. By Proposition 2.5, Ṽ |S (⊕`∞Eγ) = V and Ṽ is linear. This
completes the proof. �
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