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Abstract

Let K be a d-dimensional convex body with a twice continuously differentiable boundary
and everywhere positive Gauss–Kronecker curvature. Denote by Kn the convex hull of n

points chosen randomly and independently from K according to the uniform distribution.
Matching lower and upper bounds are obtained for the orders of magnitude of the variances
of the sth intrinsic volumes Vs(Kn) of Kn for s ∈ {1, . . . , d}. Furthermore, strong laws
of large numbers are proved for the intrinsic volumes of Kn. The essential tools are the
economic cap covering theorem of Bárány and Larman, and the Efron–Stein jackknife
inequality.
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1. Notation

We will work in d-dimensional Euclidean space R
d , with origin o, scalar product 〈·, ·〉, and

induced norm ‖·‖. The dimension d will be fixed throughout the paper. We will not distinguish
between the Euclidean space and the underlying vector space, and we will use the words point
and vector interchangeably, as we need them. Points of R

d are denoted by small-case roman
letters, and sets by capitals. For reals, we use either Greek letters or small-case letters. Let
Bj denote the j -dimensional ball of radius 1 centered at the origin, Sj−1 denote the boundary
of Bj , and κj denote the j -dimensional volume (Lebesgue measure) λj (B

j ) of Bj . We will
also use the simple notation V (·) for the d-dimensional volume when no confusion is possible.
Note that any point x ∈ ∂Bj = Sj−1 can be considered as a point of the boundary of Bj and
also as an outer normal to Bj at the point x. For a point set T ⊂ R

d , we denote the convex hull
of T by conv T or simply by [T ]. A compact convex set K with nonempty interior is called a
convex body.
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The intrinsic volumes Vs(K), s = 0, . . . , d, of a convex body K can be introduced as
coefficients of the Steiner formula

V (K + εBd) =
d∑

s=0

εd−sκd−sVs(K),

where K + εBd is the Minkowski sum of K and εBd of radius ε ≥ 0. In particular, Vd

is the volume functional, V0(K) = 1, V1 is proportional to the mean width, and Vd−1 is a
multiple of the surface area. For more information on intrinsic volumes, see the monographs
by Schneider [16], and Schneider and Weil [17]. To avoid confusion, sometimes we use λs for
the s-dimensional volume (in particular, Vd = λd ).

For a convex body K in R
d , we say that ∂K is Ck+ for some k ≥ 2 if ∂K is a Ck manifold

and its Gaussian curvature is positive everywhere. For a convex body K with C2 boundary and
x ∈ ∂K , we use σj (x) for the j th normalized elementary symmetric function of the principal
curvatures of ∂K at x. In particular, σd−1(x) is the Gaussian curvature.

We integrate on G(d, s), the Grassmannian manifold of s-dimensional linear subspaces
of R

d . The normalized (and unique) Haar measure on G(d, s) is denoted by νs (for details,
see [17, pp. 575–596]). If L ∈ G(d, s) and T ⊂ R

d , then we write T |L for the orthogonal
projection of T onto L. We use 1(·) for the indicator function of a set. As usual, E(·) and var(·)
stand for expectation and variance of a random variable. The notation ‘�’, ‘	’ and ‘≈’ are
used in the following sense. If f (n), g(n) : N → R are two functions then we write f � g

if there exist a constant γ and a positive number n0 such that we have f (n) < γg(n) for all
n > n0. Furthermore, f ≈ g if g � f � g. If n is a positive integer then [n] denotes the set
{1, . . . , n}. We write

([n]
k

)
for the set of all k-element subsets of [n].

2. History and results

In this paper we consider the following probability model. Let K be a d-dimensional convex
body. Select the pointsx1, . . . , xn randomly and independently from K according to the uniform
probability distribution. The density of the uniform distribution with respect to the Lebesgue
measure is the function with the constant value λd(K)−1. The convex hull Kn := [x1, . . . , xn]
is a (uniform) random polytope inscribed in K . For a convex body K , the expectation En(Vs)

of the sth intrinsic volume of Kn tends to Vs(K) as n tends to ∞, and the shape of the boundary
of K determines the asymptotic behavior of the random variable Vs(K) − En(Vs). In this
paper, we prove matching lower and upper bounds for the order of magnitude of the variance
of Vs(Kn) for convex bodies with C2+ boundary. The upper bound on the variance will imply
a strong law of large numbers for Vs(Kn).

Much effort has been devoted to investigating the properties of various geometric functionals
associated with uniform random polytopes. An up-to-date survey about the current state of this
field can be found in the paper by Bárány [4], the book by Schneider and Weil [17, pp. 299–328],
and also in the survey by Weil and Wieacker [20] from 1993. Here we only wish to give a brief
outline of results that are directly connected with our results.

In particular, the following asymptotic formula is known about the expectation of intrinsic
volumes Vs(K), s = 1, . . . , d. If the boundary ∂K of K is C2+ then

lim
n→∞

(
n

V (K)

)2/(d+1)

[Vs(K) − E Vs(Kn)] = cd,s

∫
∂K

σd−1(x)1/(d+1)σd−s(x) dx, (1)
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with a constant cd,s > 0 depending only on d and s. Formula (1) is due to Bárány [2] if K has
a C3+ boundary, and to Reitzner [14] if K has a C2+ boundary.

Until quite recently, very little had been known about the variance of intrinsic volumes of
uniform random polytopes. In 1993, in the survey paper by Weil and Wieacker [20], the authors
state that ‘the determination of the variance, for instance, is a major open problem’. Küfer [12]
obtained the first result in this direction; he proved the upper bound O(n−(d+3)/(d+1)) for the
variance of the missed volume for the d-dimensional unit ball. A major breakthrough was
achieved by Reitzner [13], who proved that, for a convex body K with C2+ boundary,

var V (Kn) ≤ c(K)n−(d+3)/(d+1), (2)

where the constant c(K) depends on K and the dimension only. The proof of Reitzner’s
result rests on the jackknife inequality of Efron and Stein [10], [11], which we also use in our
argument. Böröczky et al. [9] obtained an upper bound of the same order of magnitude as in (2)
for the mean width variance of a uniform random polytope for the case when the mother body
has a rolling ball. Bárány and Reitzner [7] established an upper bound for the case of volume
when K is a polytope. More precisely, they proved that

var V (Kn) ≤ c(K)
1

n2 (log n)d−1,

where the constant c(K) depends on K and the dimension only.
The above upper bounds imply strong laws of large numbers for the corresponding func-

tionals.
In [15] Reitzner proved matching lower bounds for the variance of the volume functional

for convex bodies with C2+ boundary, that is,

var V (Kn) ≥ c(K)n−(d+3)/(d+1).

These lower bounds were extended by Bárány and Reitzner [7] to every convex body in the
form

var V (Kn) 	 1

n
V

(
K

(
1

n

))
,

where K(1/n) is the wet part of K with parameter 1/n; see Section 3 for details. The only
known lower bound for the variance of an intrinsic volume of a uniform random polytope other
than that of the volume is due to Böröczky et al. [9]. They established a lower bound with the
order of magnitude n−(d+3)/(d+1) for the mean width of uniform random polytopes for the case
when the mother body has a rolling ball.

The variance of the random variable fs(Kn), which is the number of s-dimensional faces of
Kn (s = 0, 1, . . . , d − 1), can be estimated using the above methods as shown in [7] and [13].
Very recently, Schreiber and Yukich [18] determined the variance of f0(Kn) asymptotically
when K is the unit ball, a significant breakthrough. Hopefully, their methods can work for all
fs(Kn) and Vs(Kn) as well.

In this paper we determine the order of magnitude of var Vs(Kn) when K = Bd , the unit
ball.

Theorem 1. Let Bd ⊂ R
d be the d-dimensional unit ball. Let Bd

n be the convex hull of n

independent random points chosen from Bd according to the uniform probability distribution.
Then, for s = 1, . . . , d,

var Vs(B
d
n ) ≈ n−(d+3)/(d+1) as n → ∞. (3)
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The proof of Theorem 1 can be extended to smooth convex bodies with C2+ boundary. All
techniques used in the argument for the unit ball apply, with minor variations, to the case of
smooth convex bodies. We give a brief outline of how this can be achieved in Section 6.

Theorem 2. Let K ⊂ R
d be a convex body with C2+ boundary. Let Kn be the convex hull of n

independent random points chosen from K according to the uniform probability distribution.
Then, for s = 1, . . . , d,

var Vs(Kn) ≈ n−(d+3)/(d+1) as n → ∞.

The upper bound for the variance of the intrinsic volumes implies a strong law of large
numbers via standard arguments. Thus, we obtain the following result.

Theorem 3. Let K ⊂ R
d be a convex body with C2+ boundary, and let Kn be the convex hull

of n independent random points from K chosen according to the uniform distribution. Then,
for s = 1, . . . , d,

lim
n→∞(Vs(K) − Vs(Kn))n

2/(d+1) = cd,sV (K)2/(d+1)

∫
∂K

σd−1(x)1/(d+1)σd−s(x) dx

with probability 1.

The lower bound on the variance can be used to prove the central limit theorem (CLT) for
the random variable Vs(�n). Here �n, the Poisson random polytope, is similar to the random
polytope Kn, just for the Poisson polytope; the number of random points chosen from K is a
Poisson-distributed random variable with mean n. The method of proving the CLT for this case
was introduced by Reitzner [15] and extended in [8]. It works, with more or less straightforward
modifications, for the case of Vs(�n) when K is either the unit ball or a C2+ convex body. The
actual proof is long, technical, and tedious, and does not use significant new ideas; therefore,
it is omitted. Transferring the CLT from the Poisson polytope to the usual random polytope
is often not so simple and was carried out, for V (Kn) and fs(Kn), by Vu [19] for smooth
convex bodies and by Bárány and Reitzner [8] for polytopes using different methods. The same
transference for the mixed volumes will, most likely, require some new method.

3. Tools

In this section we describe two statements that will be used in our proof, and we will prove
a lemma that will be a useful tool for both the lower and upper estimates of the variance.

If K is a convex body then a cap of K is a set C = K ∩H+, where H+ is a closed half-space.
We define the function v : K → R as

v(x) := min{λd(K ∩ H+) | x ∈ H+ and H+ is a closed half-space}.
The set K(t) = K(v ≤ t) = {x ∈ K | v(x) ≤ t} is called the wet part of K with parameter
t > 0. The remaining part of K , namely, K(v ≥ t) = {x ∈ K | v(x) ≥ t}, is the floating body
of K with parameter t > 0. We can easily verify that if K is a ball then λd(K(t)) ≈ t (d+1)/2.

The following theorem of Bárány and Larman [6] and Bárány [1] plays a central role in our
proof.

Theorem 4. (Economic cap covering.) Assume that K is a convex body with unit volume, and
let 0 < t < t0 = (2d)−2d . Then there are caps C1, . . . , Cm and pairwise disjoint convex sets
C′

1, . . . , C
′
m such that C′

i ⊂ Ci for each i, and

(i)
⋃m

1 C′
i ⊂ K(t) ⊂ ⋃m

1 Ci ,

https://doi.org/10.1239/aap/1282924055 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924055


Intrinsic volumes of inscribed random polytopes SGSA • 609

(ii) V (C′
i ) 	 t and V (Ci) � t for each i,

(iii) for each cap C with C ∩ K(v > t) = ∅, there is a Ci containing C.

An immediate consequence of this theorem is that mt � λd(K(t)) � mt . For more details
and for further references on the economical cap covering theorem, see [3] and [6].

Our second major tool is the Efron–Stein jackknife inequality (see [10], [11], and [13]).
If Kn denotes the random polytope inscribed in a convex body K as above, then the original
Efron–Stein theorem readily implies that

var(Vs(Kn)) ≤ (n + 1) E(Vs(Kn+1) − Vs(Kn))
2. (4)

Finally, we need a simple statement on the measure of special linear subspaces of R
d .

Assume that z ∈ Sd−1 and A ∈ G(d, s) are given. Their angle, � (z, A), is defined as the
minimum of the angles � (z, x) for all x ∈ A.

Lemma 1. For fixed z ∈ Sd−1 and small α > 0, νs{A ∈ G(d, s) | � (z, A) ≤ α} ≈ αd−s .

Proof. Let L ∈ G(d, s − 1) be a subspace in the orthogonal complement z⊥ of the vector z.
For every e ∈ L⊥ ∩Sd−1 with � (e, z) ≤ α, the subspace A = linspan(L∪{e}) makes an angle
at most α with z. Also, conversely, every such subspace A ∈ G(d, s) can be written in this
form. It is not hard to see that the νs-measure of this set is approximately equal to αd−s .

4. Proof of the lower bound in Theorem 1

The idea of the proof of the lower bound is similar to that presented in [9] and [15], namely,
we define small independent caps, and we show that the variance is ‘large’ in each cap. From
the properties of the variance, the required estimate will follow.

We will use Kubota’s formula (see [17, p. 222]) to represent intrinsic volumes as mean
projections:

Vs(K) = c(d, s)

∫
G(d,s)

λs(K|L)νs(dL), (5)

where c(d, s) is a constant depending only on d and s.
For x ∈ Sd−1 and t ∈ (0, 1), we define H(x, t) = {z ∈ R

d | 〈z, x〉 = 1 − t} and we write
xt = (1 − t)x. Let C(x, t) be the smaller cap cut off from Bd by H(x, t). We call x the center
of this cap. Clearly, B(x, t) = H(x, t) ∩ Bd is a (d − 1)-dimensional ball centered at the
point xt . The radius of B(x, t) is

√
t (2 − t), showing that

(xt + √
tBd) ∩ H(x, t) ⊂ H(x, t) ∩ Bd ⊂ (xt + √

2tBd) ∩ H(x, t). (6)

This implies that, for all t ∈ (0, 1), we have

C(x, t) ⊂ x + 2
√

tBd . (7)

In fact, we will work with t very close to 0 (see (11), below), and all inequalities with ‘�’
below are meant with t → 0.

Next we inscribe a regular (d − 1)-simplex into B(x, t), whose vertices are the points
w1, w2, . . . , wd ∈ ∂B(x, t). It follows from (6) that the simplex [w1, . . . , wd ] contains the
(d − 1)-ball of radius

√
t/d centered at the point xt . Set w0 = x. Then 
 = [w0, w1, . . . , wd ]

is a d-dimensional simplex inscribed in C(x, t).
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For all j = 0, 1, . . . , d, we define


j = 
j(x, t) = wj + 1

4d
([w0, w1, . . . , wd ] − wj).

Here 
j is a homothetic copy of 
 with center wj and factor 1/(4d). It readily follows from
(6) that V (
j (x, t)) ≈ t (d+1)/2. Choose a point zj in each 
j(x, t), and define

�1(x, t) = Sd−1 ∩
(

x +
√

t

8
Bd

)

and
�2(x, t) = Sd−1 ∩ (x + 2d

√
tBd).

Set 
(z) = [z0, . . . , zd ], and write N for the cone of outer normals to 
(z) at vertex z0. We
claim that

�1(x, t) ⊂ Sd−1 ∩ N ⊂ �2(x, t). (8)

To prove (8), pick an arbitrary v ∈ Sd−1 such that 〈v, x〉 = 0. From the definition of 
j and
(6), we obtain √

t

2d
≤ h
(z)(v) − 〈z0, v〉 ≤ 2

√
t,

where h
(z)(·) is the support function of 
(z). Similarly,

t

2
≤ 〈z0, x〉 − h
(z)(x) ≤ t.

From these we deduce that the ‘extremal’ element u of the normal cone N in the direction
v (u = 〈u, x〉x + 〈u, v〉v) satisfies

√
t

4
≤ tan(� (u, x)) ≤ 2d

√
t,

and so claim (8) follows.
Relation (8) can be dualized:

�∗
2 (x, t) ⊂ {λ(y − z0) | λ ≥ 0, y ∈ [z0, z1, . . . , zd ]} ⊂ �∗

1 (x, t),

where �∗
j (x, t) = {y | 〈y, u〉 ≤ 0 for all u ∈ �j(x, t)} is the usual dual cone of �j . Note that

(8) also implies that there exists an absolute constant γ such that

Bd \ C(x, γ t) ⊂ z0 + �∗
2 (x, t). (9)

Now fix x, t , and zj ∈ 
j(x, t) for j = 1, . . . , d. We write F = [z1, . . . , zd ]. Define the
function V̂s : 
0(x, t) → R as follows:

V̂s(z0) =
∫

L∈G(d,s), L∩�2 �=∅

λs([z0, F ]|L)νs(dL).

Here V̂s clearly depends on F ; if we want to emphasize this dependence then we write V̂s(z0; F).

Lemma 2. If Z is a random point chosen uniformly from 
0(x, t) then

var V̂s(Z) 	 td+1.
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Proof. Let w be the centroid of the facet of 
0(x, t) opposite to x, and let w1 = 2
3x + 1

3w

and w2 = 1
3x + 2

3w. In addition, define

�1 = (w1 − �∗
2 (x, t)) ∩ 
0(x, t), �2 = (w2 + �∗

2 (x, t)) ∩ 
0(x, t).

In particular, there exists some constant γ0 > 0 such that

V (�j ) ≥ γ0V (
0(x, t)), (10)

and, for any Z1 ∈ �1 and Z2 ∈ �2, we have [Z2, z1, . . . , zd ] ⊂ [Z1, z1, . . . , zd ].
Fix L ∈ G(d, s) such that L ∩ �2 �= ∅, and choose an orthonormal basis e1, . . . , es in L

such that e1 ∈ L ∩ �2.
Consider the closed (positive) half-space given by w2 and e1, i.e. H+

1 ={y | 〈y, e1〉 ≥
〈w2, e1〉}, and the set G = H+

1 ∩ (Z1 + �∗
2 (x, t)). Clearly, G ⊂ [F, Z1] and G ∩ [F, Z2] ⊂

{w2}. From these, it follows that

λs([F, Z1]|L) − λs([F, Z2]|L) ≥ λs(G|L).

We can see that
λs(G|L) 	 t

√
t
s−1 = t (s+1)/2;

hence,
V̂s(Z1) − V̂s(Z2) 	 t (s+1)/2νs({L | L ∩ �2 �= ∅}).

By the definition of �2, L ∩ �2 �= ∅ is equivalent to L ∩ (x + 2d
√

tB) �= ∅. Lemma 1
yields

V̂s(Z1) − V̂s(Z2) 	 t (d+1)/2.

Finally, we obtain

var V̂s(Z) = 1
2 E(V̂s(Z1) − V̂s(Z2))

2

≥ 1
2 E((V̂s(Z1) − V̂s(Z2))

21(Z1 ∈ �1, Z2 ∈ �2))

	 td+1 E(1(Z1 ∈ �1, Z2 ∈ �2))

	 td+1,

where the last inequality follows from (10).

It is sufficient to prove the lower bound for large enough n. We fix

tn = n−2/(d+1), (11)

and, hence, V (C(x, tn)) ≈ 1/n for all x ∈ Sd−1. We choose a maximal family of points
y1, . . . , ym ∈ Sd−1 such that, for i �= j , we have

‖yi − yj‖ ≥ 2
√

γ
√

tn.

This condition implies that the caps C(yj , γ Tn) (j ∈ [m]) are disjoint. We can see that

m 	 n(d−1)/(d+1). (12)

For each j ∈ [m], we construct the simplex 
(yj , tn) in the cap C(yj , tn) and, for each
i = 0, 1, . . . , d, we construct the corresponding small simplices 
i(yj , tn). For j ∈ [m],
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let Aj denote the event that each 
i(yj , tn), i = 0, . . . , d, contains exactly one random point
out of x1, . . . , xn, and C(yj , γ tn) contains no other random point. We note that the definition
of 
i , (7), and (9) yield, for i = 0, . . . , d,

V (
i(yj , tn)) 	 1

n
and V (C(yj , γ tn)) � 1

n
.

Thus, for j = 1, . . . , m, we have

P(Aj ) 	
(

n

d + 1

)(
1

n

)d+1(
1 − 1

n

)n−d−1

	 1. (13)

If Aj holds then we write Zj to denote the random point in 
0(yj , tn), and Fj to denote the
convex hull of the random points in 
i(yj , tn) for i = 1, . . . , d. If J ⊂ [m] and Aj holds for
all j ∈ J , then the random variables V̂s(Zj ; Fj ), j ∈ J , are independent according to (9).

We next introduce the σ -algebra F that keeps track of everything except the location of
Zj ∈ 
0(yj , tn) for which Aj occurs. We decompose the variance by conditioning on F :

var Vs(Kn) = E var(Vs(Kn) | F ) + var E(Vs(Kn) | F ) ≥ E(var Vs(Kn) | F ).

The independence structure mentioned above implies that

var(Vs(Kn) | F ) =
∑

1(Aj )=1

varZj
Vs(Kn) =

∑
1(Aj )=1

varZj
V̂s(Zj ; Fj ),

where the variance is taken with respect to the random variable Zj ∈ 
0(yj , tn), and we sum
over all j = 1, . . . , m with 1(Aj ) = 1. Combining this with Lemma 2, (11), (12), and (13)
implies that

var Vs(Kn) 	 E

( ∑
1(Aj )=1

td+1
n

)
	 n−2 E

( m∑
j=1

I (Aj )

)
	 n−2m 	 n−(d+3)/(d+1).

5. Proof of the upper bound in Theorem 1

Now K = Bd is the unit ball and Kn is the corresponding random polytope.
Let Tn be the event that the floating body K(v ≥ V (K)(c ln n)/n) is contained in Kn. Here

c = cd is a large constant to be specified soon. We write T c
n for the complement of Tn. We are

going to use the main result of [5] which states that there is a constant δ depending only on d

such that T c
n occurs with probability n−δc.

We use the Efron–Stein jackknife inequality (4):

var(Vs(Kn)) � n E(Vs(Kn+1) − Vs(Kn))
2

= n E((Vs(Kn+1) − Vs(Kn))
21(Tn)) + n E((Vs(Kn+1) − Vs(Kn))

21(T c
n )).

The second term here is very small if the constant c is chosen large enough because (Vs(Kn+1)−
Vs(Kn))

2 ≤ Vs(Kn+1)
2 ≤ Vs(K)2 and E(1(T c

n )) ≤ n−δc. We choose c = cd so large that the
second term is smaller than the lower bound in Theorem 1 proved in the previous section. So we
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concentrate on the first term:

var(Vs(Kn)) � n E((Vs(Kn+1) − Vs(Kn))
21(Tn))

� n E

((∫
G(d,s)

λs(Kn+1 \ Kn|A)νs(dA)

)

×
(∫

G(d,s)

λs(Kn+1 \ Kn|B)νs(dB)1(Tn)

))

� n E
∫

G(d,s)

∫
G(d,s)

λs(Kn+1 \ Kn|A)

× λs(Kn+1 \ Kn|B)1(Tn)νs(dA)νs(dB). (14)

Note that the set (Kn+1 \ Kn)|A is either empty (if xn+1|A ∈ Kn|A) or it is the union of
several internally disjoint simplices which are the convex hull of xn+1|A and those facets of
Kn|A that can be seen from xn+1|A. For the index set I = {i1, . . . , is} ⊂ {1, . . . , n}, let
FI = [xi1 , . . . , xis ], which is an (s − 1)-dimensional simplex with probability 1. Clearly,
FI |A is also an (s − 1)-simplex with probability 1. The affine hull of FI is denoted by aff FI

and similarly the affine hull of FI |A is denoted by aff(FI |A). Furthermore, let H0(FI , A) be
the closed half-space (in R

d ) delimited by the hyperplane A⊥ + aff FI that contains o, and
let H+(FI , A) be the other half-space. Similarly, we use H0(FI |A) and H+(FI |A) for the
corresponding s-dimensional half-spaces in A. Now, we introduce the notation F (A) for the
set of ((s − 1)-dimensional) facets of Kn|A that can be seen from xn+1|A:

F (A) = {FI |A : Kn|A ⊂ H0(FI |A), xn+1|A ∈ H+(FI |A), I = {i1, . . . , is} ⊂ {1, . . . , n}}.
Of course, F (A) depends on x1, . . . , xn and xn+1 as well, but we suppress this dependence

in the notation. We continue by estimating the right-hand side of (14) (denoted RHS(14)):

RHS(14) ≤ n E

[∫
G(d,s)

∫
G(d,s)

λs(Kn+1 \ Kn|A)λs(Kn+1 \ Kn|B)νs(dA)νs(dB)1(Tn)

]

� n

κn+1
d

∫
K

· · ·
∫

K

∫
G(d,s)

∫
G(d,s)

( ∑
F∈F (A)

λs([xn+1|A, F ])
)

×
( ∑

F ′∈F (B)

λs([xn+1|B, F ′])1(Tn)

)
νs(dA)νs(dB) dx1 · · · dxn+1.

By changing the order of integration and extending the integration over all index sets I, J ∈ ([n]
s

)
,

we obtain

n

κn+1
d

∫
G(d,s)

∫
G(d,s)

∫
Kn+1

(∑
I

1(FI |A ∈ F (A))λs([FI , xn+1]|A)

)

×
(∑

J

1(FJ |B ∈ F (B))λs([FJ , xn+1]|B)1(Tn)

)
dx1 · · · dxn+1νs(dA)νs(dB). (15)

We use the following notation. Let

Cs(I, A) = H+(FI |A) ∩ Bd,
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which is, in fact, a subset of the unit ball in the subspace A and

Cd(I, A) = (H+(FI |A) + A⊥) ∩ Bd.

For the volumes of these caps, we use Vs(I, A) = λs(Cs(I, A)) and Vd(I, A) = λd(Cd(I, A)).
Now we estimate these integrals from above using the fact that the simplices [FI , xn+1]|A and
[FJ , xn+1]|B are contained in the associated caps Cs(I, A) and Cs(J, B), respectively. Hence,

(15) � n

κn+1
d

∫
G(d,s)

∫
G(d,s)

∑
I

∑
J

∫
(Bd)n+1

1(FI |A ∈ F (A))Vs(I, A)

× 1(FJ |B ∈ F (B))Vs(J, B)1(Tn) dx1 · · · dxn+1νs(dA)νs(dB). (16)

The summation extends over all s-tuples I and J , so I and J may have nonempty intersection.
If we fix the size of I ∩ J to be k, say, then the corresponding terms in the sum are clearly
independent of the particular choice of i1, . . . , is and j1, . . . , js . For any given k ∈ {0, 1, . . . , s},
let I = {1, . . . , s} and J = {s − k + 1, . . . , 2s − k}, and set F = conv{xi : i ∈ I } and
G = conv{xj : j ∈ J }. Thus, I and J , and, consequently, F and G, depend on k, but this is
not shown in the notation. We can estimate (16) from above:

(16) ≤ n

κn+1
d

s∑
k=0

(
n

s

)(
s

k

)(
n − s

s − k

) ∫
G(d,s)

∫
G(d,s)

∫
(Bd)n+1

1(F |A ∈ F (A))

× Vs(I, A)1(G|B ∈ F (B))Vs(J, B)1(Tn) dx1 · · · dxn+1νs(dA)νs(dB). (17)

Since the integrand is symmetric, we may restrict summation to those pairs of F and G where
Vs(I, A) ≥ Vs(J, B), or, equivalently, Vd(I, A) ≥ Vd(J, B), at the price of a factor 2. Thus,
we can estimate (17) from above:

(17) ≤
s∑

k=0

2n

κn+1
d

(
n

s

)(
s

k

)(
n − s

s − k

) ∫
G(d,s)

∫
G(d,s)

∫
(Bd)n+1

1(F |A ∈ F (A))

× Vs(I, A)1(G|B ∈ F (B))Vs(J, B)1(Vs(I, A) ≥ Vs(J, B))

× 1(Tn) dx1 · · · dxn+1νs(dA)νs(dB).

Let �k denote the kth term in this sum, k = 0, . . . , s. We are going to estimate �k for each
fixed k.

We first remove 1(G|B ∈ F (B)) from the integrand in �k , which clearly increases the
integral. We then multiply the integrand by 1(Cd(I, A)∩Cd(J, B) �= ∅). This does not change
the integral since the sets Cd(I, A) and Cd(J, B) have at least the point xn+1 in common. Thus,
we obtain

�k � n2s−k+1

κn+1
d

∫
G(d,s)

∫
G(d,s)

∫
(Bd)n+1

1(F |A ∈ F (A))Vs(I, A)

× 1(Cd(I, A) ∩ Cd(J, B) �= ∅)Vs(J, B)1(Vs(I, A) ≥ Vs(J, B))

× 1(Tn) dx1 · · · dxn+1νs(dA)νs(dB).

Now, if F |A ∈ F (A) then x2s−k+1, . . . , xn are all contained in H0(F, A) and xn+1 is
contained in H+(F, A) because, under condition Tn, Cd(I, A) is the smaller cap cut off from Bd
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by the hyperplane A⊥ +aff F and o ∈ Kn. We integrate with respect to x2s−k+1, . . . , xn, xn+1,
and the condition Tn is replaced by the condition Wn saying that Vd(I, A) ≤ κd(c ln n)/n:

�k � n2s−k+1

κn+1
d

∫
G(d,s)

∫
G(d,s)

∫
(Bd)2s−k

(κd − V+(F, A))n−2s+kVd(I, A)

× Vs(I, A)1(Cd(I, A) ∩ Cd(J, B) �= ∅)Vs(J, B)

× 1(Vd(I, A) ≥ Vd(J, B))1(Wn) dx1 · · · dx2s−kνs(dA)νs(dB)

� n2s−k+1
∫

G(d,s)

∫
G(d,s)

∫
(Bd)2s−k

(
1 − Vd(I, A)

κd

)n−2s+k

× Vd(I, A)Vs(I, A)1(Cd(I, A) ∩ Cd(J, B) �= ∅)Vs(J, B)

× 1(Vd(I, A) ≥ Vd(J, B))1(Wn) dx1 · · · dx2s−kνs(dA)νs(dB). (18)

In the next step, we integrate with respect to the variables xi, i ∈ J , that is, we estimate the
following integral expression:

∫
(Bd)s−k

1(Cd(I, A) ∩ Cd(J, B) �= ∅)1(Vd(I, A) ≥ Vd(J, B))

× Vs(J, B)1(Wn) dxs+1 · · · dx2s−k. (19)

Since we assume that Vd(I, A) ≥ Vd(J, B), the height of the cap Cd(I, A) is at least that
of Cd(J, B). The condition Cd(I, A) ∩ Cd(J, B) �= ∅ implies that there is a constant β such
that Cd(J, B) is contained in βCd(I, A), where βCd(I, A) is an enlarged homothetic copy of
Cd(I, A), where the center of homothety is z ∈ ∂Bd , the center of the cap Cd(I, A) (cf. [3]).
Thus,

(19) ≤ βd(s−k)Vd(I, A)s−kVs(J, B) � Vd(I, A)s−kVs(I, A). (20)

The conditions Cd(I, A) ∩ Cd(J, B) �= ∅ and Vd(I, A) ≥ Vd(J, B) can only be satisfied if
the angle between the vector z and the subspace B, � (z, B), is not larger than 2α, where α is
the central angle of the cap Cd(I, A). We can easily verify that

α ≤ bdVd(I, A)1/(d+1), (21)

where bd is a constant depending only on d . Using this condition on the mutual positions of z

and B together with (20), we obtain

(18) � n2s−k+1
∫

G(d,s)

∫
G(d,s)

∫
(Bd)s

(
1 − Vd(I, A)

κd

)n−2s+k

Vd(I, A)s−k+1

× Vs(I, A)21( � (z, B) ≤ 2bdVd(I, A)1/(d+1))

× 1(Wn) dx1 · · · dxsνs(dA)νs(dB). (22)

We now fix A ∈ G(d, s) and estimate

∫
(Bd)s

(
1 − Vd(I, A)

κd

)n−2s+k

Vd(I, A)s−k+1Vs(I, A)21(Wn) dx1 · · · dxs. (23)

We are going to use the economic cap covering theorem. Because of the condition Wn, every cap
Cd(I, A) has volume at most κd(c ln n)/n. Let h be a (positive) integer with 2−h ≤ (c ln n)/n.
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For each such h, let Mh be a collection of caps {C1, . . . , Cm(h)} forming the economic cap
covering of the wet part of Bs = Bd |A with t = (κd2−h)(s+1)/(d+1) (we suppose that n is so
large that the theorem works). Each such cap Ci is the projection of a d-dimensional cap Ci(A)

from Bd to A. Since the heights of Ci and Ci(A) are equal, we have λd(Ci(A)) � κd2−h.
Consider an arbitrary (x1, . . . , xs) with the corresponding Cd(I, A) having volume at most
κd(c ln n)/n, and associate with (x1, . . . , xs) the maximal h such that, for some Ci ∈ Mh,
Cs(I, A) ⊂ Ci . Such an h clearly exists. It follows that

Vs(I, A) ≤ λs(Ci) � 2−h(s+1)/(d+1)

and
Vd(I, A) ≤ λd(Ci(A)) � 2−h.

On the other hand, by the maximality of h,

Vs(I, A) ≥ (κd2−(h+1))(s+1)/(d+1),

and, consequently,
Vd(I, A)

κd

≥ 2−(h+1).

Now we integrate over (Bd)s under condition Wn by integrating each (x1, . . . , xs) on its
associated Ci(A) or, more precisely, on (Ci(A))s . The integrand in (23) can be estimated as

(
1 − Vd(I, A)

κd

)n−2s+k

Vd(I, A)s−k+1Vs(I, A)2

� (1 − 2−(h+1))n−2s+k2−h(s−k+1)2−2h(s+1)/(d+1).

Thus, the integral on (Ci(A))s (Ci(A) ∈ Mh) is bounded by

exp(−(n − 2s + k)2−h−1)2−h(s+k−1)2−2h(s+1)/(d+1)(Vd(Ci(A)))s

� exp(−(n − 2s + k)2−h−1)2−h(s+k−1)2−2h(s+1)/(d+1)2−hs . (24)

Now we return to (22). In order to estimate the integral, we still need the number of
elements, |Mh|, of Mh. The volume of the wet part of Bs with parameter 2−h(s+1)/(d+1) is
λs(B

s(2−h(s+1)/(d+1))) ≈ 2−2h/(d+1) (the ‘≈’notation makes sense, since h → ∞ as n → ∞).
It readily follows that

|Mh| � 2−2h/(d+1)

2−h(s+1)/(d+1)
= 2h(s−1)/(d+1).

Keeping in mind the condition � (z, B) ≤ 2bdVd(I, A)1/(d+1) and applying Lemma 1 and
(24), we obtain, with h0 = �c ln n/n�,

∫
G(d,s)

∫
(Bd)s

(
1 − Vd(I, A)

κd

)n−2s+k

Vd(I, A)s−k+1Vs(I, A)2

× 1( � (z, B) ≤ 2bdVd(I, A)1/(d+1)) dx1 · · · dxsνs(dB)

�
∞∑

h=h0

exp(−(n − 2s + k)2−h−1)2−h(s+k−1)2−2h(s+1)/(d+1)2−hs

× |Mh|νs({B | � (z, B) < 2bd2−h/(d+1)})
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�
∞∑

h=h0

exp(−(n − 2s + k)2−h−1)

× 2−h(s+k−1)2−2h(s+1)/(d+1)2−hs2h(s−1)/(d+1)2−h(d−s)/(d+1)

=
∞∑

h=h0

exp(−(n − 2s + k)2−h+1)2−h[(2s−k+1)+(d+3)/(d+1)].

Now, we divide the sum in (24) into two parts. First, let h1 be defined by

2−h1 ≤ 1

n
< 2−h1+1.

Since in this case exp(−(n − 2s + k)2−h−1)) is smaller than 1, it follows that

∞∑
h=h1

exp(−(n − 2s + k)2−h−1)2−h[(2s−k+1)+(d+3)/(d+1)] ≤
∞∑

h=h1

2−h[(2s−k+1)+(d+3)/(d+1)]

� n−2s+k−1n−(d+3)/(d+1). (25)

For the other part, when h0 ≤ h < h1, we let � = h1 − h. Then � runs from 1 to �1 = h1 − h0.
Thus,

h1−1∑
h=h0

exp(−(n − 2s + k)2−h−1)2−h[(2s−k+1)+(d+3)/(d+1)]

≤
�1∑

�=1

exp(−(n − 2s + k)2−h1+�−1)2−(h1−�)[(2s−k+1)+(d+3)/(d+1)]

�
�1∑

�=1

exp(−(n − 2s + k)2−h1+�−1)n−(2s−k+1)2�(2s−k+1)n−(d+3)/(d+1)2�(d+3)/(d+1)

� n−(2s−k+1)n−(d+3)/(d+1)
∞∑

�=1

exp(−2�)2�[(2s−k+1)+(d+3)/(d+1)]

� n−(2s−k+1)n−(d+3)/(d+1)
∞∑

j=1

exp(−j)j4d

� n−(2s−k+1)n−(d+3)/(d+1). (26)

Now, substituting (25) and (26) into (22), we obtain

�k � n2s−k+1
∫

G(d,s)

n−(2s−k+1)n−(d+3)/(d+1)νs(dA) � n−(d+3)/(d+1).

Summing this for all k = 0, . . . , s proves the upper bound in Theorem 2.

6. Outline of the proof of Theorem 2

In this section we give a brief outline of how to modify the proof of Theorem 1 so that it
applies to convex bodies with C2+ boundary. We chose to give the detailed proof only for the
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unit ball, because all the major ideas appear in that case and it is naturally easier to follow. The
proof in the general case uses the same tools as the proof for the unit ball combined with some
well-known estimates about convex bodies. We make only a few remarks about the proof and
leave the details for the interested reader.

Since K is compact, there exist a global upper bound γ and a global lower bound � on the
principal curvatures of ∂K . We also know that, for every x ∈ ∂K , there exists a unique outer
unit normal ux to K at the point x. We define the cap C(x, t) such that it is cut off by the
hyperplane H(x, t) := {y | 〈y, ux〉 = 〈x, ux〉 − t}. It readily follows that (6) remains true in
the following form:

(xt + γ1
√

tBd) ∩ H(x, t) ⊂ H(x, t) ∩ K ⊂ (xt + γ2
√

tBd) ∩ H(x, t), (27)

where the constants γ1 and γ2 depend on γ and �. From these estimates, it follows that the
simplices used in the proof can be defined in the same way as in the case of the unit ball, and
they have the same size, approximately t (d+1)/2. We also need a slight modification of the
definitions of �1 and �2:

�1(x, t) = Sd−1 ∩
(

ux +
√

γ t

8
Bd

)

and
�2(x, t) = S ∩ (ux + 2d

√
�tBd).

From this point, the steps of the proof can be followed without complications. For the details
of a similar argument, see [7] or [9].

For the proof of the upper bound, we require that all projected images of K also have a
C2+ boundary; furthermore, we can choose γ and � in such a way that they are not only upper
and lower bounds of the principal curvatures of K but also for all (s-dimensional) projections
of K . It follows from these facts that the volume of a cap of height t is approximately equal to
t (i+1)/2, where i is the dimension of the cap (in the proof d or s, respectively). From (27), it
follows that (21) remains true. We note that we did not really need the economic cap covering
theorem in the case of the ball; however, in the general case we make a full use of it. Naturally,
the stated equalities on the volumes of the caps are not true any more, but the existence of γ and
� implies that they hold with ‘≈’. The calculations completing the proof can be done precisely
the same way as for the unit ball.

7. Proof of Theorem 3

We are going to show that the asymptotic formula (1) and Theorem 2 yield the strong law
of large numbers for Vs(Kn) by standard arguments.

We deduce by Chebyshev’s inequality that

P(|Vs(K) − Vs(Kn) − E(Vs(K) − Vs(Kn))|n2/(d+1) ≥ ε) ≤ ε−2n4/(d+1) var Vs(Kn)

� n−(d−1)/(d+1).

Since the sum
∑∞

k=2 n
−(d−1)/(d+1)
k is finite for nk = k4, the sum of the probabilities

P(|Vs(K) − Vs(Knk
) − E(Vs(K) − Vs(Knk

))|n2/(d+1)
k ≥ ε) for k ≥ 2
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is finite as well. Therefore, the Borel–Cantelli lemma and the asymptotic formula (1) yield

lim
k→∞(Vs(K) − Vs(Knk

))n
2/(d+1)
k = cd,sV (K)2/(d+1)

∫
∂K

σd−1(x)1/(d+1)σd−s(x) dx (28)

with probability 1. Now, Vs(K) − Vs(Kn) is decreasing, and, hence,

(Vs(K) − (Vs(Knk−1))n
2/(d+1)
k−1 ≤ (Vs(K) − Vs(Kn))n

2/(d+1) ≤ (Vs(K) − Vs(Knk
))n

2/(d+1)
k

holds for nk−1 ≤ n ≤ nk . As limk→∞ nk/(nk−1) = 1, the subsequence limit theorem yields
Theorem 3.
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