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DEGREE SEQUENCES OF GEOMETRIC
PREFERENTIAL ATTACHMENT GRAPHS
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Abstract

We investigate the degree sequence of the geometric preferential attachment model of
Flaxman, Frieze and Vera (2006), (2007) in the case where the self-loop parameter α is set
to 0. We show that, given certain conditions on the attractiveness function F , the degree
sequence converges to the same sequence as found for standard preferential attachment
in Bollobás et al. (2001). We also apply our method to the extended model introduced
in van der Esker (2008) which allows for an initial attractiveness term, proving similar
results.
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1. Introduction

In [7] and [8], Flaxman et al. introduced a model for a growing graph driven by geometric
preferential attachment. In this model, which is a variant of the Barabási–Albert preferential
attachment model introduced in [1] and analysed in [3] and [4], vertices are given a random
location in space (similarly to the random geometric graphs of [12] and the SERN model of [2])
and the probability that a new vertex is connected to an already existing vertex u depends on
the distance between them in space as well as on the degree of u.

In this paper we consider a model similar to that of [8] and show that, under certain conditions
on the underlying space, the probability measure determining the locations of the vertices, and
the strength of the effect of distance on the connection probabilities, the degree distribution
of the graphs produced by our model converges to the same degree distribution as for the
Barabási–Albert model, first shown rigorously in [4].

1.1. Our model

In this paper we will work with the following model, which is based on that studied in [8].
We assume that S is a compact metric space with metric ρ and probability measure µ such
that, for any fixed r , µ(Br(x)) is constant as a function of x, where Br(x) is the open ρ-ball
of radius r centred on x. This condition on µ, which is what appears to be necessary for our
proof method, includes the case where S is a sphere and µ is a uniform measure on S, which
was the case considered in [8]; more generally, it includes the case of the Haar measure on a
compact group with an invariant metric. The locations of the added vertices will be assumed
to be independent random variables with law µ, and we write Xn for the location of vertex n.

Let F : R
+ → R

+ be an attractiveness function. We will assume that F is continuous, but
we allow F(r) → ∞ as r → 0. Let m ∈ N be the number of vertices that each new vertex will
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be connected to when it is added to the graph. As well as combining the preferential attachment
rule with a geometric element, we will also allow a version of the model in which vertices have
an initial attractiveness q ∈ (−m, ∞) that modifies the preferential attachment rule.

To start the process, we let G0 be a connected graph with n0 vertices and e0 edges. Then,
to form Gn+1 from Gn, let V

(n+1)
i , 1 ≤ i ≤ m, be the random variables representing the m

vertices chosen to be neighbours of the new vertex at time n + 1. Conditional on Xn+1 and
Fn, where Fn is the σ -algebra generated by the graphs G0, G1, . . . , Gn and the location in
space of their vertices, we let the V

(n+1)
i be chosen independently such that the probability that

V
(n+1)
i = u is

(degGn
(u) + q)F (ρ(u, Xn+1))

Dn(Xn+1)
,

where degG(u) is the degree of the vertex u in the graph G and

Dn(x) =
n∑

j=1

(degGn
(vj ) + q)F (ρ(Xj , x)).

Note that we allow V
(n+1)
i = V

(n+1)
j for some i �= j , in which case multiple edges will form.

1.2. Comparison with other models

The model in [8] is similar to the above model with q = 0 and has S being a sphere with
µ being the uniform distribution on the sphere and ρ being the angular distance on the sphere.
However, that model has an additional parameter α, and, for an existing vertex u, the probability
that V

(n+1)
i = u is modified to be

degGn
(u)F (ρ(u, Xn+1))

max(Dn(Xn+1), αnmI)
, (1.1)

where I is the integral of F(ρ(v, x)) over the sphere for fixed v (which does not depend on v, and
is assumed finite). These probabilities may sum to less than 1, in which case, with probability

1 −
∑n

k=1 degGn
(Xk)F (ρ(Xk, Xn+1))

max(Dn(Xn+1), αnmI)
, (1.2)

a self-loop is formed, i.e. V (n+1)
i = Xn+1. The parameter α controls the probability of forming

these self-loops, and in particular, if α = 0, self-loops do not form. Assuming that α > 0 also
ensures that the denominator cannot be 0, which may otherwise happen if F(r) is 0 for some
range of r .

The results which are proved in Flaxman et al. [7], [8] on the degree distributions assume
that α > 2. In this regime, they showed that the degree distributions of the resulting sequence
of graphs converge to an asymptotic power law with index −(1 + α).

In [8], the case where α = 0 (so that self-loops do not form) is left as an open question; our
aim will be to investigate this case. When q = 0, we will need to assume that the attractiveness
function F is bounded away from 0; this assumption avoids the possibility that the denominator
in the above probability can be 0 and will also be used in our proof. The main result is that,
given certain conditions on F , the asymptotic degree sequence for this process is the same as
for the Barabási–Albert model, which is asymptotically a power law with index −3.

In [13] van der Esker introduced the generalisation of the model of [8] which allows the initial
attractiveness q ∈ (−m, ∞), so that degGn

(u) is replaced in (1.1) and (1.2) by degGn
(u) + q;
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this is similar to generalisations of preferential attachment introduced and analysed in [5], [6],
and [9]. Again, assuming that α > 2, it was shown in [13] that in this model the degree
distributions converge to a distribution which is asymptotically (as the degree tends to ∞) a
power law with index 1 + α(1 + q/2m). We will show that our proof method can be extended
to the case where q > 0 (but not where q ∈ (−m, 0)); in this case the requirement that F be
bounded away from 0 is not necessary.

A similar model was analysed by simulation by Manna and Sen [10], where F(r) was taken to
be rβ and the vertices were embedded in a torus. Their simulations suggested that, for β ≥ −1,
the degree distribution was close to a power law with index −3, while, for β < −1, they
observed a stretched exponential degree distribution. They conjectured that in f dimensions
there was a phase transition from power law to stretched exponential behaviour at β = 1 − f ;
we will discuss this conjecture in Section 5.

2. Our results

We start with some further notation. As in [8], we let I = ∫
S

F (ρ(x, u))µ(dx), and we
also let Ik = ∫

S
F (ρ(x, u))kµ(dx). Note that the assumption that µ(Br(x)) is constant as a

function of x for all r implies that I and Ik do not depend on u.
In what follows, the probability P and the expectation E refer to the probability measure

induced by the construction described in Section 1.1.
Our main results are contained in the following theorem.

Theorem 2.1. Assume that

1. we have I < ∞, and, if m ≥ 2, we also have I2 < ∞;

2. we have q ≥ 0, and, if q = 0, we have F0 > 0 such that F(r) ≥ F0 for all r > 0.

Then, for the model as introduced in Section 1.1, the expectation of the degree sequence
converges to the degree sequence found for nongeometric preferential attachment with the
same m, i.e. if we let p

(n)
d be the proportion of vertices in Gn with degree d then, for d ≥ m,

E(p
(n)
d ) → (2 + q/m)�(3 + q/m + m + q)

(2 + q/m + m + q)�(m + q)

�(d + q)

�(3 + q/m + d + q)
as n → ∞.

Furthermore, for d ≥ m,

p
(n)
d → (2 + q/m)�(3 + q/m + m + q)

(2 + q/m + m + q)�(m + q)

�(d + q)

�(3 + q/m + d + q)
in L2 and in probability.

Note that, if q = 0, the limit of p
(n)
d as found in Theorem 2.1 reduces to

2m(m + 1)

d(d + 1)(d + 2)
.

The arguments used to prove Theorem 2.1 are based on showing that a measure constructed
by considering the degrees of the vertices in a subset of S converges weakly to µ. The argument
is easier to follow in the case where q = 0, so we prove this case in Section 3 and then show
how to extend the argument to the case where q > 0 in Section 4.
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3. Proof of Theorem 2.1 when q = 0

In this section we prove some preliminary results, before putting them together to prove
Theorem 2.1 in the case where q = 0.

We introduce a probability measure δn on S given by

δn(A) = 1

2(mn + e0)

∑
v∈A∩V (Gn)

degGn
(v).

Then
Dn(x)

2(mn + e0)
=

∫
S

F (ρ(x, y)) dδn(y).

Lemma 3.1. (a) If

lim inf
n→∞ min

u∈V (Gn)
P(V

(n+1)
i = u | Fn)

2(mn + e0)

degGn
(u)

≥ K for some K ∈ (0, 1)

then, for any A ⊆ S, P-almost surely,

lim inf
n→∞ δn(A) ≥ 1

2 − K
µ(A).

(b) If

lim sup
n→∞

max
u∈V (Gn)

P(V
(n+1)
i = u | Fn)

2(mn + e0)

degGn
(u)

≤ L for some L ∈ (1, 2)

then, for any A ⊆ S, with probability 1,

lim sup
n→∞

δn(A) ≤ 1

2 − L
µ(A).

Proof. We start by noting that

P(V
(n+1)
i = u | Fn) = E

(
degGn

(u)F (ρ(u, Xn+1))

Dn(Xn+1)

∣∣∣∣ Fn

)

= degGn
(u) E

(
F(ρ(u, Xn+1))

Dn(Xn+1)

∣∣∣∣ Fn

)
.

For (a), by the hypothesis,

P(V
(n+1)
i = u | Fn) ≥ 1

2(mn + e0)
K ′ degGn

(u)

for all u ∈ V (Gn), sufficiently large n, and any K ′ ∈ [0, K). Then, for sufficiently large n,

E(δn+1(A) | Fn) = 1

2(m(n + 1) + e0)

( ∑
v∈A∩V (Gn)

degGn
(v) + m P(Xn+1 ∈ A)

+ m
∑

v∈A∩V (Gn)

P(V
(n+1)
1 = v | Fn)

)

≥ 1

2(m(n + 1) + e0)
(2(mn + e0)δn(A) + mµ(A) + mK ′δn(A)),
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so

E(δn+1(A) − δn(A) | Fn)

≥ 1

2((n + 1) + e0/m)

(
µ(A) +

((
2n + e0

m

)
+ K ′ −

(
2

(
(n + 1) + e0

m

)))
δn(A)

)

= 1

2((n + 1) + e0/m)
(µ(A) − (2 − K ′)δn(A)).

We now use a stochastic approximation argument based on the proof of Lemma 2.6 of [11] to
show that, P-almost surely, lim infn→∞ δn(A) ≥ µ(A)/(2 − K ′). To do this, we show that, for
any b < µ(A)/(2 − K ′) and sufficiently large n, we will have δn(A) > b. We write

δn+1(A) − δn(A) = 1

2((n + 1) + e0/m)
(µ(A) − (2 − K ′)δn(A) + ξn+1 + ηn+1),

where E(ξn+1 | Fn) = 0, and ηn+1 > 0 and is Fn-measurable, and, to simplify notation, we
write b0 = µ(A)/(2 − K ′). Then we can write δn(A) = Zn + Tn, where

Zn =
n∑

i=1

ξi

2(i + 1) + e0/m

is a martingale and Tn is previsible with respect to the filtration (Fn)n∈N. Now martingale
convergence implies that Zn → Z∞ and so there exists N such that, for n ≥ N ,

|Zn − Z∞| <
b0 − b

4
.

Then, if δn(A) ≤ 1
2 (µ(A)/(2 − K ′) + b), we have

µ(A) − (2 − K ′)δn(A) ≥ µ(A) − (2 − K ′)
(

b + b0

2

)
> 0, (3.1)

and so the process (δN+k)k∈N cannot decrease by more than (b0 − b)/4 while staying within
[0, (b + b0)/2). As in the proof of Lemma 2.6 of [11], this now implies that the process
(δN+k)k∈N, which must exit [0, (3b + b0)/4] to the right by (3.1), cannot then return to [0, b].

For (b), replace ‘≥’ by ‘≤’ and let K ′ ∈ (L, 2), and use the same argument.

Lemma 3.2. Assume that I < ∞ and

lim inf
n→∞ min

u∈V (Gn)
P(V

(n+1)
i = u | Fn)

2(mn + e0)

degGn
(u)

≥ K for some K ∈ (0, 1).

Then the same holds for some K̃ > K .

Proof. Lemma 3.1(a) implies, by applying it individually to each element in the set of
closed balls with rational radii at points in a countable dense subset of S (which exists because
a compact metric space is separable) and using these to approximate closed subsets of S, that,
P-almost surely, we have lim supn→∞ δn(A) ≥ µ(A)/(2 − K) for all A ⊆ S. Hence, P-almost
surely, if any subsequence of (δn)n∈N weakly converges to a limit δ then δ(A) ≥ µ(A)/(2−K).
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As S is compact, this implies that, for K ′ < K , if n is sufficiently large then, for all x,

Dn(x)

2(mn + e0)
=

(
F0 +

∫
S

(F (ρ(x, y)) − F0) dδn(y)

)

≥ F0 + 1

2 − K ′

∫
S

(F (ρ(x, y)) − F0) dµ(y)

= F0 + I − F0

2 − K ′

= I + F0(1 − K ′)
2 − K ′ ,

which implies that

lim sup
n→∞

max
u∈V (Gn)

P(V
(n+1)
i = u | Fn)

2(mn + e0)

degGn
(u)

≤ (2 − K)I

I + F0(1 − K)

= 2 − K

1 + F0(1 − K)/I
.

Now let

L = max

(
1 + ε,

2 − K

1 + F0(1 − K)/I

)

for any sufficiently small ε > 0; then L < 2 − K . Then, similarly to above, Lemma 3.1(b)
implies that

lim sup
n→∞

Dn(x)

2(mn + e0)
≤ I + F0(1 − L)

2 − L
,

and so

lim inf
n→∞ min

u∈V (Gn)
P(V

(n+1)
i = u | Fn)

2(mn + e0)

degGn
(u)

≥ 2 − L

1 − F0(L − 1)/I
= K̃,

where

K̃ = 2 − L

1 − F0(L − 1)/I
> 2 − L > K.

Proposition 3.1. Under the hypotheses of Theorem 2.1 with q = 0, we have

lim inf
n→∞ min

u∈V (Gn)
P(V

(n+1)
i = u | Fn)

2(mn + e0)

degGn
(u)

= lim sup
n→∞

max
u∈V (Gn)

P(V
(n+1)
i = u | Fn)

2(mn + e0)

degGn
(u)

= 1.

Proof. We need to show that the hypothesis of Lemma 3.2 holds for some K ∈ (0, 1); if we
can do this, we apply Lemma 3.2 to show that

lim inf
n→∞ P(V

(n+1)
i = u | Fn)

2(mn + e0)

degGn
(u)

= 1,

because if this lim inf is equal to some K ∈ (0, 1), Lemma 3.2 then shows that it is equal to
K̃ > K , providing a contradiction. The argument in Lemma 3.2 shows that the lim sup must
also be 1.
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To show that the hypothesis of Lemma 3.2 holds for some K , we define a further probability
measure µn by

µn(A) = 1

n + n0

∑
v∈V (Gn)

1{v∈A} .

As all vertices of Gn have degree at least m,

δn(A) ≥ n + n0

2(mn + e0)
mµn(A),

and, almost surely, µn converges weakly to µ. Hence, almost surely, if a subsequence of
(δn)n∈N weakly converges to a limit δ then δ(A) ≥ K ′µ(A) for K ′ < 1

2 . We now follow the
argument in the first part of the proof of Lemma 3.2 to show that this lower bound for δn implies
that

lim sup
n→∞

max
u∈V (Gn)

P(V
(n+1)
i = u | Fn)

2(mn + e0)

degGn
(u)

≤ I

K ′I + F0(1 − K ′)
,

and I/(K ′I +F0(1 −K ′)) < 2 if K ′ is close enough to 1
2 . Hence, we can apply Lemma 3.1(b)

as in the second part of the proof of Lemma 3.2 to obtain

lim inf
n→∞ min

u∈V (Gn)
P(V

(n+1)
i = u | Fn)

2(mn + e0)

degGn
(u)

≥ 2 − L

1 − F0(L − 1)/I
,

where (2 − L)/(1 − F0(L − 1)/I ) > 0. So the hypothesis of Lemma 3.2 holds for K ∈
(0, (2 − L)/(1 − F0(L − 1)/I )).

We will also need to use the following elementary lemma on the convergence of sequences.

Lemma 3.3. ([9, Lemma 1].) For n ∈ N, let xn, yn, ηn, and rn be real numbers such that

xn+1 − xn = ηn+1(yn − xn) + rn+1

and

1. yn → x as n → ∞;

2. ηn > 0, and there exists N0 such that, for n > N0, ηn < 1;

3.
∑∞

n=1 ηn = ∞;

4. as n → ∞ rn/ηn → 0.

Then xn → x as n → ∞.

Proof. See the proof of Lemma 1 in [9].

The preceding results now allow us to prove Theorem 2.1 in the case q = 0.

Proof of Theorem 2.1 when q = 0. We start by showing that, when m > 1, the probability of
a multiple edge being formed at time n is O(n−1). Conditional on Fn and Xn+1, the probability
that a vertex u is connected to the new vertex at least twice is bounded above by

(
m

2

)(
degGn

(u)F (ρ(u, Xn+1))

Dn(Xn+1)

)2

,
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so, conditional on Fn, it is bounded above by

(
m

2

)(
degGn

(u)

2(mn + e0)

)k

E

((
F(ρ(u, Xn+1))∫

S
F (ρ(Xn+1, y))δn(dy)

)2 ∣∣∣∣ Fn

)
.

Using the lower bound on F , the expectation here will be bounded if

I2 =
∫

S

F (ρ(x, u))2µ(dx)

is finite.
We can now use an argument based on that of Theorem 2 of [9] to show that the expected

proportion of vertices with degree d converges to 2m(m + 1)/d(d + 1)(d + 2) as n → ∞.
Using the above, E(p

(n+1)
d | Fn) is equal to

1

n + n0 + 1

( ∑
{u : degGn

(u)=d−1}
m P(V

(n+1)
i = u | Fn)

+
∑

{u : degGn
(u)=d}

(1 − m P(V
(n+1)
i = u | Fn))

)
+ O(n−2).

Now, by Proposition 3.1, for each k, we have

∑
degGn

(u)=k

m P(V
(n+1)
i = u | Fn) = mk

2(mn + e0)
(n + n0)p

(n)
k (1 + o(1))

= k

2
p

(n)
k (1 + o(1)).

Hence, for each d ,

E(p
(n+1)
d | Fn) = 1

n + n0 + 1

(
p

(n)
d

(
n + n0 − d

2
+ o(1)

)

+ p
(n)
d−1

(
d − 1

2
+ o(1)

)
+ δm,d

)
+ O(n−2) (3.2)

(where δm,d = 1 if d = m and is 0 otherwise), and so

E(p
(n+1)
d | Fn) − p

(n)
d = 1

n + n0 + 1

(
− p

(n)
d

(
1 + d

2
+ o(1)

)

+ p
(n)
d−1

(
d − 1

2
+ o(1)

)
+ δm,d

)
+ O(n−2).

Hence, repeatedly using Lemma 3.3 gives E(p
(n)
d ) → 2m(m + 1)/d(d + 1)(d + 2) as n → ∞.

To show that the convergence is in L2, we use the same argument as for Theorem 3 of [9].
Take (3.2) and square both sides, giving

E(p
(n+1)
d | Fn)

2 = (p
(n)
d )2 + 1

n + n0 + 1
(p

(n)
d p

(n)
d−1(d − 1) + δm,dp

(n)
d − (p

(n)
d )2(2 + d))

+ O(n−2).
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As in [9], |p(n+1)
d − p

(n)
d | = O(n−1), so var(p(n+1)

d | Fn) = O(n−2), so

E((p
(n+1)
d )2 | Fn) − (p

(n)
d )2 = 1

n + n0 + 1
(p

(n)
d p

(n)
d−1(d − 1) + δm,dp

(n)
d − (p

(n)
d )2(2 + d))

+ O(n−2).

Hence, we can again use Lemma 3.3 repeatedly to show that, as n → ∞,

E((p
(n)
d )2) →

(
2m(m + 1)

d(d + 1)(d + 2)

)2

,

giving the result.

4. Proof of Theorem 2.1 when q > 0

We will consider how the method of the previous section can be adapted to prove Theorem 2.1
in the case where q > 0. In this case the probability that V

(n+1)
i = u conditional on Xn+1 and

Gn is
(degGn

(u) + q)F (ρ(u, Xn+1))

Dn(Xn+1)
,

where Dn(x) = ∑
v∈V (Gn)(degGn

(v) + q)F (ρ(v, x)).
Redefine the probability measure δn by

δn(A) = 1

2(mn + e0) + q(n + n0)

∑
v∈A∩V (Gn)

(degGn
(v) + q).

Then
Dn(x)

2(mn + e0) + q(n + n0)
=

∫
S

F (ρ(x, y)) dδn(y).

To generalise Lemma 3.1(a), if we assume that, for all u ∈ V (Gn), we have

P(V
(n+1)
i = u | Fn) ≥ K ′ degGn

(u) + q

2(mn + e0) + q(n + n0)

for some K ′ ∈ (0, 1), then

E(δn+1(A) | Fn) ≥ 1

2(m(n + 1) + e0) + q(n + n0 + 1)

× ((2(mn + e0) + q(n + n0))δn(A) + (m + q)µ(A) + mK ′δn(A)),

from which

E(δn+1(A) − δn(A) | Fn) ≥ 1

2((n + 1) + e0/m) + (q/m)(n + n0 + 1)

×
((

1 + q

m

)
µ(A) − δn(A)

(
2 + q

m
− K ′

))
,

so, P-almost surely,

lim inf
n→∞ δn(A) ≥ 1 + q/m

2 + q/m − K ′ µ(A).
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Similarly, we can generalise Lemma 3.1(b) so that if, for all u ∈ V (Gn), we have

P(V
(n+1)
i = u | Fn) ≥ K ′ degGn

(u) + q

2(mn + e0) + q(n + n0)

for some L′ ∈ (1, 2 + q/m), then, P-almost surely,

lim inf
n→∞ δn(A) ≤ 1 + q/m

2 + q/m − L′ µ(A).

We now consider applying the proof of Lemma 3.2 to this case. Assuming that

lim inf
n→∞ min

u∈V (Gn)
P(V

(n+1)
i = u | Fn)

2(mn + e0) + q(n + n0)

degGn
(u) + q

≥ K,

the same argument as before (with F0 = 0) will show that, for K ′ < K ,

Dn(x)

2(mn + e0) + q(n + n0)
≥ I (1 + q/m)

2 + q/m − K ′ ,

which gives

lim sup
n→∞

max
u∈V (Gn)

P(V
(n+1)
i = u | Fn)

2(mn + e0) + q(n + n0)

degGn
(u) + q

≤ 2 + q/m − K

1 + q/m
,

so we let

L = 2 + q/m − K

1 + q/m
.

Then, adapting the last part of the proof of Lemma 3.2 shows that

lim inf
n→∞ min

u∈V (Gn)
P(V

(n+1)
i = u | Fn)

2(mn + e0) + q(n + n0)

degGn
(u) + q

≥ K̃ = 2 + q/m − L

(1 + q/m)
.

Now

K̃ = 2 + q/m − (2 + q/m − K)/(1 + q/m)

1 + q/m
= (q/m)2 + 2q/m + K

(1 + q/m)2 .

To use the same argument as in Section 3, we require that K̃ > K for all K < 1. To check this,

K̃ − K = (q/m)2 + 2q/m + K − K(1 + q/m)2

(1 + q/m)2

= (1 − K)(q/m)2 + 2(1 − K)q/m

(1 + q/m)2

= (1 − K)(1 + q/m)2 − (1 − K)

(1 + q/m)2 ,

so K̃ − K is always positive for K < 1 if q > 0.
Next, we need to consider the argument in Proposition 3.1. The lower bound on δn(A)

becomes

δn(A) ≥ (n + n0)(m + q)

2(mn + e0) + q(n + n0)
µn(A),
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so, for any subsequential weak limit of (δn)n∈N, we have δ(A) ≥ K ′µ(A) for K ′ < (m +
q)/(2m + q), which will give

lim sup
n→∞

max
u∈V (Gn)

P(V
(n+1)
i = u | Fn)

2(mn + e0) + q(n + n0)

degGn
(u) + q

≤ 1

K ′ ,

and 1/K ′ < 2 + q/m if K ′ is close enough to (m + q)/(2m + q). Hence, the hypothesis of
the modified Lemma 3.2 will hold for some K > 0.

The argument that the probability of forming multiple edges is O(n−1) will be the same,
with the same condition. The rest of the proof will be essentially the same as before, giving

p
(n)
d → (2 + q/m)�(3 + q/m + m + q)

(2 + q/m + m + q)�(m + q)

�(d + q)

�(3 + q/m + d + q)

in L2 as n → ∞.

5. Discussion and open questions

In [10], it was conjectured, based on simulations, that, with F(r) = rβ , in f dimensions
there is a phase transition from power law to stretched exponential behaviour of the degree
distribution at β = 1 − f . With this choice of F , I is finite for β > −f , so our results imply
that (for m = 1) if there is a phase transition at some βc then βc ≤ −f , suggesting that, if
there is a phase transition, it occurs at a lower β than conjectured in [10]. The plots of the
proportion of degree 1 vertices in [10] do appear to be consistent with a slow convergence to
the Barabási–Albert distribution for β < −f with a phase transition at β = −f .

Open questions include whether we can say anything about the case where I is infinite; the
simulation results in [10] suggest that the degree distribution can be different in this case. Other
questions include whether the assumption that F is bounded away from 0, which is important to
our proof method, is necessary, assuming the initial configuration is such that Dn(x) is never 0,
and whether the assumption that I2 = ∫

S
F (ρ(x, u))2µ(dx) finite is necessary if m > 1. The

model also makes sense with the initial attractiveness q ∈ (−m, 0), but our proof method does
not seem to work in this case, so another question is whether the results hold with negative q.

We also pose the question of whether similar results apply in some cases when the measure
µ does not satisfy the condition that, for any fixed r , µ(Br(x)) is constant as a function of x,
for example a uniform measure on a square, or a nonuniform measure on a sphere or torus.
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