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An ‘inverted flag’ – a flexible plate clamped at its trailing edge – undergoes
large-amplitude flow-induced flapping when immersed in a uniform and steady flow. Here,
we report direct numerical simulations of a related single degree-of-freedom mechanical
system: a rigid plate attached at its trailing edge to a torsional spring. This system is
termed a ‘rigid inverted flag’ and exhibits the dynamical states reported for the (flexible)
inverted flag, with additional behaviour. This finding shows that the flapping dynamics of
inverted flags is not reliant on their continuous flexibility, i.e. many degrees of freedom.
The rigid inverted flag exhibits additional, novel states including a heteroclinic-type orbit
that results in small-amplitude flapping, and a number of chaotic large-amplitude flapping
regimes. We show that the various routes to chaos are driven by a series of periodic
states, including at least two which are subharmonic. The instability and competition
between these periodic states lead to chaos via type-I intermittency, mode competition and
mode locking. The rigid inverted flag allows these periodic states and their subsequent
interaction to be explained simply: they arise from an interaction between a preferred
vortex shedding frequency and a single natural frequency of the structure. The dynamics
of rigid inverted flags is yet to be studied experimentally, and this numerical study provides
impetus for such future work.

Key words: vortex shedding, chaos

1. Introduction

This study reports on the dynamics of a rigid flat plate that is (i) oriented parallel to a
uniform and steady free stream, and (ii) mounted on a torsional spring at its trailing edge.
This mechanical structure has a single degree of freedom: rotation of the plate about its
trailing edge. It is termed a ‘rigid inverted flag’. A schematic of this simple system is
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Figure 1. Schematic of the rigid inverted flag, showing the flag dimensions, L and h; Cartesian coordinate
system, (x, y), and its origin at the plate’s trailing edge; impinging flow in the x-direction; angle of rotation, θ ,
about the torsional spring of stiffness per unit plate width, kθ , at the plate’s trailing edge; and the semicircular
ends used in the numerical method. The z-direction is out of the page.

provided in figure 1. The dynamics of this fluid–structure system is compared with that of
the usual ‘inverted flag’, which consists of a flexible elastic sheet clamped at its trailing
edge. This comparison enables the role of continuous sheet elasticity (many degrees of
freedom) to be assessed and further exploration of the underlying physics of inverted flags.
Many studies have examined the connection between the observed dynamic response of
the (flexible) inverted flag and its vortex shedding. This has been performed numerically
(for example, see Gurugubelli & Jaiman 2015, 2019) and experimentally (among others
see Kim et al. 2013; Kang, Kim & Kim 2017; Yu, Liu & Chen 2017; Hu et al. 2019).
Further, two studies have produced phase maps of the different dynamic responses. The
numerical study of Shoele & Mittal (2016) showed a variety of vortex wake configurations,
classified into four basic groups: SS, LS, SA and LA. The first letter designates the
vibration amplitude: small (S) or large (L), while the second letter denotes symmetric (S)
or asymmetric (A) responses about the undeformed flag position. Shoele & Mittal (2016)
identified two LS states: (i) a high-mass state consisting of an apparently meandering
vortex wake, and (ii) a low-mass state with a vortex dipole from the leading edge and a
single vortex from the trailing edge shed at each half-cycle. A second numerical study
of Goza, Colonius & Sader (2018) used direct numerical simulations that incorporated
stability analysis. This identified all of the equilibria (both stable and unstable) of the
inverted flag system, and six primary response regimes as a function of flow speed and flag
mass. Similar to Shoele & Mittal (2016), Goza et al. (2018) reported two large-amplitude
flapping states, one that was synchronised to the vortex shedding and another that was not
– this difference correlated with the flag mass. Goza et al. (2018) also showed that, for light
flags, large-amplitude flapping was predominantly aperiodic/chaotic. It was reported that
this chaos resulted from an apparently random switching between large-amplitude flapping
and a state where the flag was statically deflected to one side, i.e. the deflected state.

We show that the rigid inverted flag produces similar dynamics and phase maps to
the flexible inverted flag (Goza et al. 2018) with synchronised, subharmonic and chaotic
responses. While the range of flow speeds over which these various states appear is
different between rigid and flexible inverted flags, as may be expected, we find that a
large proportion of the large-amplitude flapping responses of the rigid inverted flag are
chaotic. The single degree-of-freedom mechanical system of the rigid inverted flag allows
the interaction between a number of organising states to be identified, and we show that
chaos in the rigid inverted flag can arise through several different mechanisms depending
on the system parameters.
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Dynamics of a rigid inverted flag

Sader et al. (2016a) presented evidence that the observed large-amplitude flapping of
the flexible inverted flag is a vortex-induced vibration (VIV). Synchronisation between
vortex formation and subsequent shedding from the leading (and trailing) edges, and
the flag motion, is the primary phenomenon controlling this fluid–structure interaction.
These mechanisms have been further investigated in the context of finite span flags (Sader,
Huertas-Cerdeira & Gharib 2016b) and those with different planform shapes (Fan et al.
2019). However, the position of VIV as a governing phenomenon has been challenged in
recent work from Tavallaeinejad et al. (2020a,b). These authors argue that, at least for
heavy flags, the mechanism is not VIV but is instead related to coupled-mode flutter-like
instabilities, or a movement-induced excitation (Naudascher & Rockwell 1994; Païdoussis
2014, 2016).

We show that similar response regimes occur for rigid and flexible inverted flags.
This finding suggests that similar fluid–structure mechanisms occur in both set-ups. The
conventional flag – which is clamped at its leading edge – loses its stability through a
coupled-mode flutter instability. The same mechanism obviously cannot occur for a rigid
plate that is also clamped at its leading edge. The fact that the rigid inverted flag, with its
single mechanical degree-of-freedom, exhibits large-amplitude flapping similar to that of a
flexible inverted flag suggests that the usual framework for understanding the conventional
flag may not necessarily apply.

Another potential framework for modelling the rigid inverted flag is to analyse it in terms
of torsional galloping (Paidoussis, de Langre & Price 2011), i.e. with rotation occurring
about its clamped trailing edge. While there has been some success in analysing the initial
loss of stability of similar systems (see Fernandes & Armandei (2014), and Tadrist et al.
(2015) in the context of the fluttering of leaves), it has not been possible to predict the
dynamics of any large-scale flapping or torsional oscillation via a simplified model, and the
full problem must be solved to capture the nonlinear dynamics. For example, a numerical
study on torsional galloping of rectangular prisms is presented by Robertson et al. (2003).
Related work on autorotation and rotational flutter of plates, that are free to rotate about
an axis at various distances from the leading edge, is given in Mirzaeisefat & Fernandes
(2013), Jin et al. (2016) and Kumar, Poddar & Kumar (2018).

Many studies have investigated the energy harvesting potential of flexible inverted flags
assuming their bending energy can be harnessed by, for example, piezoelectric materials.
For inverted flags, these studies include those by Shoele & Mittal (2016), Orrego et al.
(2017), Gunasekaran & Ross (2019) and Silva-Leon et al. (2019), which follow the earlier
work on conventional flags (Allen & Smits 2001; Michelin & Doaré 2013). Many of the
results for both configurations are reviewed by Yu, Liu & Amandolese (2019). The fact
that similar large-amplitude motions are observed here for the rigid inverted flag suggests
that it too is a viable energy harvester. However, the rigid inverted flag has the potential
to facilitate implementation and be more efficient in its energy conversion because of
its single access point for mechanical deformation: its trailing-edge torsional spring. For
example, rotation about this single axis can be used to drive a conventional electric
generator. We also note that a rotating device will not suffer from fatigue failure that
is inevitable in a bending-based device (Yang et al. 2021). Interestingly, this single-axis
set-up does not appear to have been investigated experimentally.

The primary focus of this paper is to investigate the stability and dynamics of the rigid
inverted flag using two-dimensional direct numerical simulations at a Reynolds number
Re = 200. The study progresses as follows: section 2 outlines the problem set-up; a more
complete description of the numerical method, domain and resolution tests are relegated to
Appendix A. Section 3 then provides results from a series of simulations at different plate
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masses and flow speeds. This maps out the overall picture of the varying states and flow
regimes that occur. A direct comparison and discussion of the rigid and flexible inverted
flags is provided in § 3.3. Section 4 then gives detailed descriptions of the various states
and regimes identified in § 3. Sections 4.1, 4.2 and 4.2.6 describe the steady and periodic
organising states. A simple framework is presented in § 4.2.1 to explain the switch from a
synchronised to a subharmonic state with increasing flag mass. This is developed in terms
of the interaction of a natural frequency accounting for fluid inertia and a preferred vortex
shedding frequency; with details of the consideration of linear fluid inertia presented in
Appendix B. Sections 4.3 and 4.4 describe how these various organising states can interact
and lead to chaotic oscillations, with § 5 providing some concluding remarks.

2. Problem definition and numerical method

A rigid inverted flag consists of a rigid two-dimensional flat, thin plate of length, L, that
rotates an angle, θ , about a torsional spring of stiffness (per unit plate width), kθ , through
an axis along its trailing edge. The entire set-up is immersed in an unbounded free stream
of speed, U; see figure 1. The rest (undeflected) position of the flat plate is parallel to the
incident flow, i.e. θ = 0. The flat plate has constant mass density, ρs, and small but finite
(constant) thickness, chosen for convenience to be h = 0.022L. Finite thickness is required
for proper representation of the plate using the immersed-boundary method, summarised
below and detailed in Appendix A; the plate ends have a semicircular profile, for the same
reason.

Two-dimensional direct numerical simulations are performed of the incompressible
Navier–Stokes equations, in the sharp-interface immersed-boundary method form

∇ · u = 0,
∂u
∂t

= −u · ∇u − 1
ρ

∇p + ν∇2u + 1
ρ

F b, (2.1a,b)

where u is the velocity field, p is the pressure field, t is time, ν is the fluid kinematic
viscosity and ρ is the fluid density; F b is a body force in the fluid domain, ensuring the
flow matches the required boundary condition at the immersed solid boundary.

Structural motion of the rigid flag satisfies

d2θ

dt2
+ kθ

I
θ = M

I
, (2.2)

where I is the mass moment of inertia per unit width of the flag about its trailing edge
(axis), and M is the moment per unit width about the same axis due to fluid forces; the
latter term couples (2.1a,b) and (2.2).

This fluid–structure problem is uniquely specified by three dimensionless parameters.
We follow the set of parameters used by Sader et al. (2016a). The Reynolds number is

Re = UL
ν

, (2.3)

while the respective mass ratio and dimensionless flow speed are

μ = ρL
ρsh

, κ = ρU2L2

kθ

. (2.4a,b)

The usual (dimensional) convective time scale of τ = L/U is chosen; frequencies are
normalised by this time scale.
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Figure 2. Time lapse images of the rigid inverted flag position showing a range of different dynamic states.
The dimensionless flow speed, κ , increases from left to right, top to bottom. The exact parameters used for
these images are the same as the examples marked on the regime maps of figure 4. Descriptions of each of
these states are provided in §§ 4.1, 4.2 and 4.3. In all images, the flag rotates about its right edge and the flow
direction is from left to right.

In all simulations, the Reynolds number is fixed at Re = 200, similar to previous
numerical studies of the flexible inverted flag (Ryu et al. 2015; Shoele & Mittal 2016).
Three mass ratios are studied: (i) μ = 0.39, identical to the inverted flag wind tunnel
experiments of Sader et al. (2016a); (ii) μ = 2.27; and (iii) μ = 4.54, corresponding to
systematically lighter flags. The dimensionless flow speed, κ , is varied as the independent
parameter. This corresponds to varying the torsional stiffness, kθ , at constant flow speed,
similar to previous numerical studies outlined above.

3. Identification of dynamic regimes and their transitions

We begin our exploration of the rigid inverted flag’s dynamics by reporting time domain
simulations in figure 2 as a function of the dimensionless flow speed, κ . A number of
dynamic states are observed, but overall these simulations closely resemble the widely
reported dynamics and transitions for flexible inverted flags. This observation suggests
that plate flexibility, with its many degrees of freedom, is not an essential ingredient.

To summarise this dynamics, bifurcation diagrams of the rigid inverted flag dynamics
are provided in figure 3. These are developed by recording the maxima/minima of the
angular position, θ , over time. The diagrams have been shaded to highlight the different
dynamic states: steady, small-amplitude periodic and chaotic and large-amplitude periodic
and chaotic. Values of κ that are used for example cases in later sections are marked with
vertical lines.

Corresponding spectrograms in figure 3 are generated by first calculating the frequency
spectrum of the time series of the angular position, θ , for each simulation at a fixed
κ . Second, each spectrum is normalised by the magnitude of the largest frequency
component. Finally, these normalised spectra (for each κ) are combined to produce the
spectrograms (for all κ) in figure 3. This approach highlights variations in the dominant
frequency component as a function of κ . These spectrograms are annotated with (i) dashed
lines marking a nominal vortex shedding frequency and its first subharmonic, and (ii) a
solid line denoting a natural resonant frequency that incorporates a correction due of the
surrounding fluid; as outlined in (4.9).

Figure 4 presents the shaded regions only of the bifurcation diagrams in figure 3, now
with annotations labelling the states observed. Below each of these diagrams is a plot with
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Figure 3. Bifurcation diagrams, θ vs κ , (upper figures) constructed by extracting the values of maxima (•,
blue) and minima (•, orange) in θ , and spectrograms (lower figures) of the flag response as a function of the
dimensionless flow speed, κ , for (a) μ = 4.54, (b) μ = 2.27, (c) μ = 0.39 (matching that of the experiments
of Sader et al. (2016a) for the flexible inverted flag). Bifurcation diagrams: vertical dashed lines mark the
divergence instability from inviscid theory, see (4.5). Grey and green shaded areas demarcate parameter ranges
for shear-layer dominated states and large-amplitude flapping states, respectively. Red vertical lines mark the
parameters used for example cases. See figure 4 for further explanation of these parameter ranges and example
cases. Spectrograms: horizontal dashed lines mark the nominal vortex shedding frequency, fvs = 0.12, and its
first subharmonic, fvs/2 = 0.06. Blue curves are a corrected natural frequency, fNf , that approximately accounts
for fluid inertia, as defined in (4.9).
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Dynamics of a rigid inverted flag

vertical lines marking the values of κ used in examples in later sections, and the state
observed in each of these examples.

The results in figures 3 and 4 show that there are general features common for all
mass ratios, μ, studied. For low flow speeds, κ � 0.7, the flag dynamics is governed by
interaction of the shear layers on each side of the plate. The precise value of κ at which
the dynamics ceases to be driven by these shear-layer interactions is weakly proportional
to μ. These regimes are represented by the left-most white and grey areas in figures 3
and 4. There is no distinct vortex shedding. As κ increases, at least four states can be
identified: state I is an undeformed or undeflected equilibrium, while state II is a deflected
equilibrium. State III corresponds to small-amplitude flapping, which is biased to one side.
Note that similar states (using the same terminology) are found for the flexible inverted
flag in Goza et al. (2018). However, for the rigid inverted flag, we find a fourth state which
appears to be a heteroclinic orbit between the two manifestations of state III (one biased
to the left and the other biased to the right). Further details of these shear-layer dominated
states are presented in § 4.1.

For higher flow speeds, κ � 0.7, a wide variety of large-amplitude flapping states occur.
The first distinction is between periodic and chaotic flapping. Ranges of κ where periodic
oscillation occurs are marked with dark shading in figures 3 and 4, and κ-ranges where
chaotic oscillations arise are lightly shaded. The chaotic regimes are not broken down
into separate ranges for each type of chaotic interaction observed – hard boundaries in the
parameter space where each occurs are not delineated. However, example cases of each
type of interaction are provided, and the parameters of these example cases are marked in
the second subplots of figure 4. This shows that the type of chaotic oscillation observed
varies with κ .

Figures 3 and 4 also show that the set of large-amplitude states depends on the mass
parameter, μ. We delineate between states for ‘higher’ and ‘lower’ μ; corresponding
to lighter and heavier flags, respectively. Both μ = 4.54 and μ = 2.27 correspond to
higher-μ cases, with a similar progression of states with increasing κ . The progression
for the lower value of μ = 0.39 is distinctly different; this distinction is discussed further
in §§ 3.1 and 3.2 below.

3.1. Lighter flags – higher mass ratios, μ

As κ increases, the first large-amplitude flapping state observed in both higher-μ cases is
a periodic synchronised state (denoted P1 in figure 4a), where flapping is synchronised
to the vortex shedding. This is marked in figures 3 and 4 by the dark green stripe over a
range of κ starting just before κ = 0.8. The extent of this range is observed to be inversely
proportional to μ. The synchronisation is suggestive of a VIV, as proposed by Sader et al.
(2016a) for the flexible inverted flag and described as ‘mode IV’ in Goza et al. (2018). This
synchronised state is not observed for the lower-μ case of μ = 0.39; a simple argument
supporting this loss of synchronisation at low μ is presented in § 4.2.1. Details of this state
are presented in § 4.2.3.

Figure 3 shows that as κ is increased, this synchronised periodic state is followed by a
regime of chaotic response (light green stripe in figures 3 and 4). This chaotic response
is characterised by oscillation amplitudes that fluctuate around the value obtained for the
synchronised P1 state. We propose that this chaotic response is driven by instability of the
P1 limit cycle, producing type I intermittency (Pomeau & Manneville 1980) (as labelled
in figure 4b). Details of this process are presented in § 4.3.1.

Following this chaotic response is a very narrow band near κ = 1 where a periodic state
is again recovered. This state is distinct from P1, because it is asymmetric. The bifurcation
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Figure 4. As for figure 3, showing the shaded regions of the bifurcation diagrams and annotations of the
observed states. Example cases used in later sections are indicated by vertical lines in plots below each
bifurcation diagram. Legend: steady regimes (white); periodic/chaotic small-amplitude oscillations driven by
shear layer interactions (dark/light grey); periodic/chaotic large-amplitude oscillations with significant vortex
shedding (dark/light green). Steady and periodic ranges are annotated with the state observed in that range.
Chaotic ranges are labelled simply as chaotic – the interactions leading to chaos are a function of κ , hard
boundaries are not provided for each of these interactions; (a) μ = 4.54, (b) μ = 2.27, (c) μ = 0.39.

948 A47-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

71
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.718


Dynamics of a rigid inverted flag

diagrams of figure 3 show that it has two local maxima and one minimum per oscillation
cycle; it is denoted the P2A state (as labelled in figure 4a). Details of this state are presented
in § 4.2.4.

The next feature as κ increases further is a large band of κ where chaotic oscillations
reappear, before the onset of the periodic laid-over (deflected) state D. Figures 3 and 4
show that a chaotic dynamics dominates the range of κ studied. However, the nature of
the chaos is not uniform across this entire range. Chaos via mode competition occurs
depending on the value of κ . For κ-values at the low end of this range (just above κ = 1)
there is competition between the two manifestations of P2A : one with a positive mean and
one with a negative mean. For κ ≈ 1.8, there is competition between the manifestations
of P2A and a spatio-temporally symmetric, but subharmonic state P2. This is despite the
subharmonic state P2 never being observed as a stable state for high μ; it is, however,
observed for low μ as described in § 3.2. For higher κ ≈ 2.2, there is competition between
the subharmonic P2 and the deflected state D. For κ ≈ 2.3 and above there is competition
between the two manifestations of D; again, one with a negative and one with a positive
mean. These interactions are labelled at sample locations on figure 4, and details of the
various mode competitions are outlined in §§ 4.3.2–4.3.5.

Finally, for κ � 2.5 (the exact value depends on μ) the flag settles into the deflected state
D, where it is permanently deflected to one side and oriented approximately normal to the
flow. There are small, essentially periodic oscillations as the flag behaves as a normal flat
plate generating periodic vortex shedding. Details of this state D are presented in § 4.2.6.

3.2. Heavier flags – lower mass ratios, μ

There are two significant differences in the response when μ is reduced. The first occurs at
the onset of large-amplitude flapping. While the higher-μ cases start with the periodic
and synchronised P1, the (low) μ = 0.39 case starts with chaotic oscillations. These
oscillations are similar to the type I intermittency (generated from the unstable P1 limit
cycle) observed for higher μ at κ beyond values where state P1 is observed. This suggests
that state P1 still plays a role in the dynamics, but that at the lower value of μ = 0.39 the
motion is unable to synchronise with the vortex shedding; a point elaborated on in § 4.2.1.

The second significant difference at low μ is the appearance of a κ-range centred
around κ ≈ 1.5 where periodicity is recovered, but via the subharmonic state P2. In
this state, there is a full cycle of vortex shedding for each half-cycle of oscillation; see
details in § 4.2.5. The appearance of this state ‘splits’ the large range of κ where only
chaotic oscillations are observed for the higher μ cases. This suggests that the relatively
heavier plate slows the time scale for motion compared with the relatively lighter plate (for
higher μ). This allows the plate to synchronise with a subharmonic of the vortex shedding
frequency; again, this is further explained in § 4.2.1.

This synchronisation to the subharmonic also appears to introduce another route
to chaos via mode locking, effectively where the flow ‘locks’ to states consisting of
progressively higher numbers of vortex shedding cycles per half-cycle of oscillation. This
progression is discussed in § 4.4.

3.3. Comparison between rigid and flexible inverted flags
We note the similarity between the bifurcation diagram for the rigid inverted flag in figure 3
and that for the flexible inverted flag, previously explored by Goza et al. (2018).
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Primary similarity: for light flags (higher μ), there is a synchronised large-amplitude
flapping state, corresponding to state P1 here and mode IV in Goza et al. (2018) (where it
is referred to as ‘large-amplitude flapping’).

Note that we use the term ‘large amplitude’ to refer to any of the series of dynamic states
that occur for κ � 0.7. Both of these states (for rigid and flexible inverted flags) exhibit
(i) periodic flapping with vortex shedding at the same frequency, and (ii) appear as the
first large-amplitude response as κ increases, at higher μ. Even though the geometries
of these flags are different – the rigid inverted flag by definition has zero curvature
while the flexible inverted flag has curvature that varies over the oscillation cycle – it
is reasonable to conclude that these two states are driven by a similar fluid–structure
mechanism.

Second similarity: the synchronised large-amplitude flapping state is not observed at
lower μ, and is replaced by either chaotic states or periodic states at lower frequency.

For the flexible inverted flag, Goza et al. (2018) attributed the first state (mode IV,
equivalent to P1 here) to VIV, but noted a ‘non-classical’ VIV for heavier (lower μ)
flexible inverted flags. The distinction between a ‘classical’ and ‘non-classical’ VIV is
made based on the nature of the synchronisation or ‘lock-in’ phenomenon (Navrose &
Mittal 2016), where the body motion and vortex shedding occur at the same frequency,
and that frequency is influenced by the natural frequency of the structure. In classical
VIV, the lock-in frequency is near the natural structural frequency; in non-classical VIV,
the lock-in frequency may be a subharmonic of the natural structural frequency. This is
consistent with our observation for the rigid inverted flag of the loss of stability of P1,
but the appearance of a stable subharmonic state P2 (which seems to be similar to the
non-classical VIV of Goza et al. 2018) for our heaviest, lower-μ case of μ = 0.39. Goza
et al. (2018) noted that this phenomenon was attributable to a mismatch in time scales, an
idea we investigate further in § 4.2.1.

Third similarity: most of the large-amplitude responses for light inverted flags are
chaotic, while most of the large-amplitude responses for heavy inverted flags are periodic.

For the flexible inverted flag, Goza et al. (2018) reports that the dynamics can become
chaotic essentially via instability of the first periodic state P1 when the flexible inverted
flag is light enough for P1 to exist. Again, we make a similar observation for the rigid
inverted flag, showing that the first route to chaos is via type I intermittency as the P1 limit
cycle becomes unstable. Further, Goza et al. (2018) reports that chaos is not present for
heavy inverted flags. The bifurcation diagrams of that study also indicate that the periodic
flapping of heavy flags – their non-classical VIV – is subharmonic. The heaviest flag
(lowest μ) studied here shows a large-amplitude subharmonic state P2 over a wide range
of κ .

Primary difference: we identify many routes to chaos for the rigid inverted flag as
opposed to the single route proposed by Goza et al. (2018) for the flexible inverted flag.

Goza et al. (2018) groups all the chaotic dynamics of the flexible inverted flag into a
single response regime V, and indicates that this chaos is driven by an interaction between
the ‘lock-on’ state of mode IV and their deflected mode VI (corresponding to our P1 and
D). However, that study also mentions that some cases in the chaotic range of κ can be
periodic over a longer time scale (cases showing this behaviour were not reported). For
the rigid inverted flag, we have shown a number of different chaotic states driven by the
interaction between unstable periodic states. This can occur even if the periodic state is
never observed as a stable state. The identification of these various periodic regimes for the
rigid inverted flag appears to be a novel contribution, and suggests that a closer inspection
of the flexible inverted flag data would uncover similar regimes.
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Dynamics of a rigid inverted flag

However, as pointed out above and expanded in § 4.2.1, the disappearance of a stable
state P1 and the appearance of a stable state P2 is a consequence of the synchronisation
between the vortex shedding and natural frequencies of the flag.

4. Description of dynamic states and their interaction

The following sections provide an in-depth description of the various dynamic states
identified and labelled in figures 3 and 4. In § 4.1, we start with the shear-layer dominated
states that occur at low κ for all μ. This is followed by a description of the identified
periodic states in § 4.2; the subsequent deflected state at higher κ is briefly discussed in
§ 4.2.6. Note that not all of the stable periodic states are observed for all μ. However,
we have grouped them in this way because interaction between these states controls the
chaotic dynamics, even when the periodic states are unstable; explained in §§ 4.3 and 4.4.

4.1. Shear-layer dominated deformation: S-states
For low κ , the wake is dominated by two long shear layers. However, there are a number
of states this flow can take that are sensitive to κ . Figure 5 gives examples of at least four
distinct regimes, which are now described.

4.1.1. Undeformed equilibrium: state I
For very low κ , the rigid inverted flag remains completely stationary. The flow is
dominated by a wake consisting of two long shear layers produced from the boundary
layers on each side of the flag. Figure 5 shows an example of this flow and the associated
time history of the angular displacement of the flag, θ , which is zero throughout.

4.1.2. Deformed equilibrium: state II
As κ is increased, the first bifurcation occurs with the rigid inverted flag deflecting steadily
to one side. The wake flow structure is almost unaffected relative to state I, except for a
slight asymmetry; see figure 5. A similar biased state has been observed for the flexible
inverted flag at a similar Re (Gurugubelli & Jaiman 2015; Ryu et al. 2015; Goza et al.
2018).

The rigid inverted flag acts as a thin airfoil that is prone to divergence instability; similar
to a flexible inverted flag (Sader et al. 2016b). We consider a generalisation of the rigid
inverted flag by considering the pivot point to occur at the Cartesian position, x0, along the
plate; x0 = −L is the leading edge of the plate, with x0 = 0 being its trailing edge, as per
figure 1. The resulting hydrodynamic torque per unit width, Mhydro, experienced by the
plate about its pivot point, x0, is given by thin airfoil theory in the inviscid limit (Tchieu &
Leonard 2011)

Mhydro = −1
2ρU2L2CM ẑ, (4.1)

where ẑ is the Cartesian basis vector in the z-direction (see figure 1), and the dimensionless
torque coefficient is

CM = 2πθ

(
x0

L
+ 3

4

)
. (4.2)

Adding this torque per unit plate width to that produced by the torsional spring, Mspring =
kθ ẑ, at the pivot point, gives the critical dimensionless flow speed for a divergence (zero
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κ = 0.733 – small deflection flapping IIIA

(a)

(b)
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(d )

Figure 5. Progression of the shear-layer dominated states with increasing κ , for μ = 4.54. (a–d) Undeformed
equilibrium I; deformed equilibrium II; small-deflection flapping III; and small-amplitude flapping IIIA. Time
histories of the angular displacement are shown for all examples; frequency spectra of this displacement are
shown for the small-deflection and small-amplitude flapping states. Flow visualisation are instantaneous images
of vorticity, with purple/orange contours representing negative/positive non-dimensional vorticity, Ω = ωD/U
between levels of ±1.

stiffness) instability

κcritical = ρU2L2

kθ

= 1
π

(
x0

L
+ 3

4

)−1

, (4.3)

establishing that a divergence instability occurs only if the pivot position satisfies

x0 > −3L
4

, (4.4)

i.e. the pivot position must be downstream from the quarter-chord position. This shows
that a rigid conventional flag (with a pivot position at its leading edge, x0 = −L) cannot
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Dynamics of a rigid inverted flag

exhibit a divergence instability; it also cannot undergo coupled-mode flutter (at least due
to coupling between structural modes) due to its single structural degree of freedom.

For the rigid inverted flag considered here, i.e. x0 = 0, (4.3) gives a divergence
instability at

κcritical = 4
3π

≈ 0.424. (4.5)

The precise boundary between states I and II in the simulations is difficult to discern,
but certainly occurs for κ > κcritical ≈ 0.424. This critical (inviscid) value is indicated
in figure 3 as a dashed vertical line. Finite Reynolds number is known to lower the lift
experienced by a thin airfoil (Gurugubelli & Jaiman 2015), which is consistent with this
enhanced viscous value for κcritical in simulations. This observation suggests that the rigid
inverted flag undergoes a divergence instability as the dimensionless flow speed, κ , is
increased, following which (deflected) state II emerges and is observed for all angles,
θ � 5.7◦. This behaviour is similar to that observed for the flexible inverted flag, where a
small-amplitude deflected equilibrium is observed for low flow speeds (Goza et al. 2018).

4.1.3. Small-amplitude simple flapping: state III
As the flow speed, κ , is increased further, state II gives way to unsteady motion of the
rigid inverted flag. Figure 5 shows such a ‘state III’ for a slightly larger value of κ = 0.713
with respect to the case shown for state II (κ = 0.675). Very small-amplitude periodic
oscillations are observed to occur in state III about the mean deflected position; the flag
does not cross its zero deflection equilibrium position, θ = 0. For the flexible inverted flag,
Goza et al. (2018) showed that this state arises from a bifurcation of the small-amplitude
deformed equilibrium.

Figure 5 shows that the wake of state III is still dominated by long shear layers, but
these layers start to break up downstream. This state bears a striking resemblance to
small-amplitude stall flutter (Razak, Andrianne & Dimitriadis 2011). Physically, such an
instability occurs via the following mechanism:

(i) Initially, the deflected flag generates enough lift to deflect it beyond the angle at
which the flow separates from its leading edge and upper surface.

(ii) This flow separation causes a loss of lift, which leads to the flag angle decreasing.
(iii) The decreased angle allows the flow to reattach to the flag surface.
(iv) The flag returns to its original position and the process repeats.

Because the flag angle is always small, the separated flow does not roll up into a distinct
vortex but merely deforms the shear layers in the wake.

While the explanation of the observed behaviour in terms of stall flutter is not
definitive, it appears that small-amplitude stall flutter could also describe the observed
small-amplitude periodic oscillation in the flexible inverted flag (Goza et al. 2018),
discussed above. Note the similarity in the Strouhal numbers exhibited by the rigid and
flexible inverted flags in this regime: for a light flexible inverted flag, Goza et al. (2018)
record a value of St ≡ fL/U ≈ 0.1, whereas the example shown in figure 5 for a light rigid
inverted flag with μ = 4.54 and κ = 0.713 gives St ≈ 0.09.

4.1.4. Small-amplitude complex flapping: state IIIA
The presence of stall flutter is further supported by the following observation, where
the dimensionless flow speed is slightly increased from κ = 0.713 (for state III) to
κ = 0.733. This also leads to small-amplitude flapping but now with a complex time
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series at significantly lower fundamental frequency, and around the zero deflected
equilibrium, θ = 0; see figure 5. The wake is again formed by two shear layers which
are deformed/modulated by the flag motion. Strikingly, the frequency spectrum shows a
primary oscillation frequency approximately one third that of state III. The complex and
distorted time series of θ , relative to state III (at κ = 0.713), indicates the origin of this
behaviour:

(i) Initially, there is one cycle of the stall flutter process, that increases the deflection
angle then decreases it following separation. However, the maximum deflection
angle exceeds that of state III which leads to a very slight overshoot past θ = 0.

(ii) The flag then re-approaches θ = 0, which is unstable once the flow reattaches,
because κ exceeds that for divergence instability.

(iii) The stall flutter cycle repeats, but now on the other side of θ = 0.

The first and third steps in this process are identical to that for state III, while the time
series in figure 5 shows that the second step takes similar time. This explains the origin of
the threefold decrease in the observed oscillation frequency relative to state III.

Other examples of this small-amplitude complex flapping state are observed for different
mass ratios, μ (data not shown). They contain slightly different frequency profiles and
some exhibit oscillations about θ /= 0. However, all of this dynamics can be described by
the above-mentioned stall flutter process. State IIIA, with its complex time series, has not
been reported in previous studies of flexible inverted flags; it occurs over a very small
range of κ .

The stability analysis of Goza et al. (2018), for the flexible inverted flag, indicates that
the small-deflection flapping state is a limit cycle oscillation that encircles the unstable
equilibrium position. The numerical results here, for the rigid inverted flag, show that the
oscillation amplitudes of states III and IIIA are similar. Moreover, states III and IIIA do not
significantly alter the vorticity and wake structure near the body, with no coherent vortex
shedding; see figure 5. Taken together, these facts suggest that state IIIA results from a
heteroclinic connection between the two (now unstable) limit cycles on each side of θ = 0
for state III.

This conclusion is further supported by the results in figure 6, which gives the
trajectories in (θ, θ̇) phase space, for κ = 0.713 (state III) and κ = 0.733 (state IIIA). Note
that the deflection angle never crosses θ = 0 for state III, while it overshoots θ = 0 for state
IIIA. Once the trajectory crosses θ = 0, it is initially attracted into the limit cycle traced
by state III (at very similar κ). The trajectory then spirals out, gradually diverging from the
state III limit cycle and causing the angle to again cross θ = 0 in the opposite direction.
The same process is repeated on the other side, completing the heteroclinic cycle.

4.2. Flapping dynamics: periodic organising states
For the flexible inverted flag, Sader et al. (2016a) presented an argument for the appearance
of large-amplitude flapping as a VIV, based on the framework that the flapping arises
when there is a synchronisation between a preferred wake or vortex shedding frequency,
and the natural structural frequency of the flag. We show here that the same concept of
synchronisation and an interaction between time scales is useful in analysing the rigid
inverted flag. We find no evidence that contradicts the theory that the large-amplitude
flapping is a vortex-induced vibration, and we discuss the point of potential mechanisms
in § 4.2.2.
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Figure 6. Phase portraits in the (θ, θ̇) space of the small-deflection flapping state III and the small-amplitude
flapping state IIIA. Blue solid/dashed lines show limit cycles for the small-deflection flapping state deflected
to the left/right, for μ = 4.54 and κ = 0.713. The fine orange line is the cycle for the small-amplitude flapping
state IIIA with a small increase in κ , to κ = 0.733. For the state IIIA case, when the angle crosses θ = 0 (i.e.
the flag overshoots the neutral position) a path is traced that spirals away from the limit cycle for the state
III case, which causes the flag to overshoot in the other direction; the process repeats on the other side of the
neutral position.

4.2.1. Interaction between vortex shedding and flag natural frequencies
Knisely (1990) studied vortex shedding by rigid flat plates and showed that the Strouhal
number, St ≡ fvsH/U ≈ 0.17, for all appreciable angles of attack φ, where fvs is the vortex
shedding frequency and H is the projected frontal length. For the rigid inverted flag, this
frontal length, H, is directly related to the plate length, L, and the amplitude of oscillation,
θ , via H = 2L sin θ . Therefore, the vortex shedding frequency normalised by the plate
length can be estimated in the quasi-static limit, as fvsL/U ≈ 0.085/ sin θ . Figure 3 shows
that at the onset of large-amplitude flapping, the amplitude is θ ≈ 45◦, which gives a
normalised vortex shedding frequency fvsL/U ≈ 0.12. This frequency and its subharmonic
are marked on the spectrograms of figure 3.

We now calculate an estimate for the natural flapping frequency for the rigid inverted
flag. Its natural frequency in vacuo, fN = 1/(2π)

√
kθ /I, where I is the moment of inertia

per unit width of the flag, is not appropriate here due to the significant added mass
(inertia) of the fluid. This added inertia, characterised by its moment per unit width, Ia, is
proportional to that of a cylinder of fluid of radius, L, i.e. Icyl, that is the potential volume
swept by the flag, i.e.

Ia = cIIcyl, (4.6)

where cI is a dimensionless order-one coefficient. We can non-dimensionalise Icyl by the
flag’s moment of inertia, I, to obtain

Icyl

I
=

1
2
πρL4

1
3
ρshL3

= 3
2
πμ. (4.7)
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Combining (4.6) and (4.7) gives

Ia = 3
2πcIμI, (4.8)

which then leads to the corrected natural frequency of the rigid inverted flag

fNf = 1
2π

√
kθ

I + Ia
= fN

√√√√ 1

1 + 3
2
πcIμ

, (4.9)

where cI remains to be evaluated.
Note that this is essentially the same idea as that traditionally employed when calculating

an added mass to analyse the VIV of circular cylinders (Gopalkrishnan 1993; Khalak
& Williamson 1996; Govardhan & Williamson 2002). The ‘impulsive added mass’ –
derived from the hydrodynamic force arising from impulsive motion of the body – can
be calculated (Magnaudet 2011), and this has been done with some success for oscillating
cylinders that are both externally controlled and undergoing VIV (Leonard & Roshko
2001; Carberry, Sheridan & Rockwell 2005). An ‘apparent added mass’ could also be
derived from all of the fluid force that is in phase with the acceleration, which will
include the impulsive added mass plus a component due to the presence of vorticity. In
the remainder of this section and Appendix B, we determine cI both theoretically in the
inviscid limit, and empirically by fitting to the simulation data thereby including the impact
of viscosity and vorticity.

No impinging flow: we first consider the special case of no impinging flow
and small-amplitude oscillation, which is amenable to both analytical and numerical
evaluation. This provides a baseline for the effect of non-zero impinging flow. The
evaluation is characterised in terms of the oscillatory Reynolds number

Reω = ωNf L
2

ν
, (4.10)

where the angular frequency, ωNf = 2πfNf . The case of inviscid flow, Reω → ∞, is
calculated analytically in Appendix B and gives

cI = 9
64 ≈ 0.141. (4.11)

To evaluate cI for finite Reω, numerical simulations are performed using the
immersed-boundary code for the flag with a very small initial displacement. The resulting
damped oscillations or ‘ring down’ then provides access to the linear resonant frequency
and hence cI (Chakraborty et al. 2013). These numerical results are reported in figure 22,
showing that the effect of viscosity is to enhance the added mass (inertia) in the fluid, as
expected.

Large-amplitude flapping: next, we consider the large-amplitude flapping dynamics of
a rigid inverted flag, for which we determine cI using (4.9) (Chakraborty et al. 2013); fNf
is taken to be the flapping frequency. Figure 3 shows that for the lighter flags (μ = 2.27
and 4.54), large-amplitude flapping first occurs via a periodic state P1 that is synchronised
with the vortex shedding frequency. Figure 7 gives cI for these cases as a function of
the dimensionless flow speed, κ , and the oscillatory Reynolds number Reω. The reported
values of cI are an order-of-magnitude higher than for the case of no impinging flow
(above), commensurate with substantial vortex shedding in the P1 state. Interestingly, cI is
found to be a weak function of κ which ranges from cI ≈ 1.4 at the onset of flapping down
(lower κ) to cI ≈ 1.2 at the loss of stability of the periodic state (higher κ).
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Figure 7. Added inertia coefficient, cI , defined in (4.9) as a function of (a) the dimensionless flow speed, κ ,
and (b) an oscillatory Reynolds number, Reω, for the first periodic flapping state P1 identified for the two mass
ratios, μ = 4.54 (•, blue) and μ = 2.27 (•, orange).

As a heuristic, we apply the value cI ≈ 1.4 obtained near the onset of P1 flapping, to
all flapping states to calculate a natural frequency fNf accounting for the apparent added
mass, shown as the solid curve in the spectrograms of figure 3. This provides reasonable
agreement with the dominant frequencies in the numerically evaluated spectrograms,
suggesting that inertia induced by vortex shedding is the primary mechanism controlling
the flapping frequency, at the onset of flapping.

Finally, these estimates of vortex shedding frequency, fvs, and the natural frequency in
fluid, fNf , provide a framework to understand the appearance of stable periodic states as a
synchronisation between these two frequencies. The first periodic state may be expected
when fvs and fNf coincide. Figure 3 shows that the value of κ at which this coincidence
occurs is quite close to the value at which the periodic state P1 occurs with the onset of
large-amplitude flapping. However, for the heavier flag (μ = 0.39), fvs = fNf at a value of
κ that is much lower, or equivalently, where the flag natural frequency is lower. In this
case, the vortex shedding is too fast to match the preferred frequency of the flag, and the
synchronisation to the periodic P1 does not occur. However, for this same heavier flag the
value of κ at which the first subharmonic of the vortex shedding frequency coincides with
the natural frequency (fvs/2 = fNf ) is also lower, and a large range of κ is observed where
the flow synchronises to a subharmonic state P2.

The various organising states can therefore be thought of as a synchronisation between
the vortex shedding at a preferred frequency, and the oscillation of the plate at a corrected
natural frequency. This natural frequency is that which incorporates the impact of the
vortices on the apparent added mass. There is a type of ‘basin of attraction’ for this
to occur, and the two frequencies need to be reasonably close for nonlinear effects to
synchronise them. This suggests that even in situations where these synchronised states
may not be stable, they can still play a role in the dynamics when the flow is chaotic. We
show in § 4.3 that the chaotic oscillations are not the product of a single mechanism. There
are multiple routes to chaos depending on the value of κ and μ, which are governed by the
periodic states (albeit unstable) outlined above.

4.2.2. Discussion of potential mechanisms leading to large-amplitude flapping
The preceding discussion has presented a framework to understand the large-amplitude
flapping dynamics in terms of synchronisation between the vortex shedding and the
structural natural frequency, accounting for the apparent added mass of the fluid. While
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we have determined this added mass empirically, the data show that this simple approach
is able to at least suggest the loss of stability of the P1 state and the gain of stability of
the P2 state with increasing plate mass or equivalently decreasing μ, both of which are
observed.

We note that similar ‘lock-ins’, or synchronisations have been observed for the flexible
inverted flag, including the change from a harmonic to subharmonic synchronisation (Goza
et al. 2018). Sader et al. (2016a) took this evidence – as well as the fact that large-amplitude
flapping occurs at a value of κ above that for divergence instability, such that the inverted
flag already presents a sharp edge to the flow from which vortices can separate – as support
for the hypothesis that the flapping is a VIV.

The loss of the harmonic synchronisation for heavy inverted flags has recently been
studied experimentally and theoretically by Tavallaeinejad et al. (2020a,b). Tavallaeinejad
et al. (2020a) concluded that VIV cannot be the causal mechanism for the onset of
instability of the undeflected equilibrium of the heavy flag because there does not appear
to be a bifurcation from the equilibrium that could lead to VIV. Instead, Tavallaeinejad
et al. (2020b) attributed the instability leading to large-amplitude flapping of heavy flags
to flutter-like modes, drawing an analogy to the coupled-mode flutter of conventional flags.

While the rigid and flexible inverted flag systems are not identical, the comparison of our
rigid inverted flag data with those from the flexible inverted flag study of Goza et al. (2018)
indicates that their underlying fluid–structure mechanisms are similar – despite the rigid
inverted flag possessing only one structural degree of freedom. That is, the mechanism of
excitation for the rigid inverted flag cannot be coupled-mode flutter, at least not a flutter
driven by the coupling of structural modes of the flag.

However, this does not rule out the idea that the large-amplitude flapping is a
coupled-mode or movement-induced excitation (Naudascher & Rockwell 1994; Païdoussis
2014) in the broader sense. Indeed, de Langre (2006) produced a low-order model for the
VIV of a circular cylinder, where the single degree-of-freedom structure was coupled
to a van der Pol oscillator modelling the wake dynamics. This model reproduced the
stability characteristics of classic coupled-mode flutter, where the coupling was between
the structural mode and a wake mode. Further, it has been shown that ‘vortex-induced’
vibrations can occur for the classic system displaying VIV – the flow past an elastically
mounted cylinder constrained to oscillate in the transverse direction – even when the flow
past a fixed cylinder is completely steady, i.e. at Reynolds numbers Re < 47 (Dušek, Le
Gal & Fraunié 1994). Experiments (Buffoni 2003), global stability analysis (Navrose &
Mittal 2016) and a model based on an impedance criterion (Sabino et al. 2020) have all
shown this ‘subcritical’ VIV. In this case, VIV must be thought of as a movement-induced
excitation; the oscillation of the flow and structure are intrinsically coupled. This is
contrasted against the view that VIV is an instability-induced excitation (Naudascher &
Rockwell 1994; Païdoussis 2014), where the presence of vortices (even when the structure
is completely stationary) is what causes the onset of structural motion.

We have not observed anything in the rigid inverted flag problem that contradicts
the argument that the large-amplitude flapping is a VIV – in fact, the synchronisation
characteristics across both light and heavy flags and the flow visualisation of the
synchronised modes adds evidence for it. The single degree of freedom definitively rules
out coupling between structural modes, as occurs in a conventional elastic flag (which is
free at its trailing edge), leading to instability.

However, we cannot conclude definitively that VIV – interpreted as either a
movement-induced excitation stemming from an instability of the undeflected equilibrium,
or as an instability-induced excitation caused by vortices shed from the inverted flag that is
deflected by other instabilities including divergence – is at the inception of the flapping. A
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Figure 8. Synchronised state P1: (a) time history of the angular displacement; (b) frequency spectrum of the
angular displacement; and (c) an image of the vorticity field at τ = 350, for κ = 0.835 and μ = 4.54. Black
dashed line marks the nominal Strouhal frequency f = 0.12. Orange dashed line marks the first subharmonic,
f = 0.06.

full global stability analysis of the rigid inverted flag – which may be simpler to interpret
than a similar analysis of the flexible inverted flag – is required to definitively settle the
question of the mechanism of inception which we suggest as a future research direction.

In the following sections, we focus on the periodic states that arise due to
synchronisation, organised in order of increasing κ .

4.2.3. Synchronised state: P1
Figure 8 presents data for the first organising periodic (synchronised) state, P1, with
κ = 0.835 and μ = 4.54. The time history and frequency spectrum both show clear
periodicity, with an amplitude of θmax ≈ 45◦. Vortex shedding is also periodic with the
same frequency as the flag oscillation. The wake structure is reasonably complex with
the interaction of vortices generated from the leading and trailing edge of the flag. Goza
et al. (2018) identified a synchronised state as the first sub-regime of their mode IV for the
flexible inverted flag. State P1 matches the ‘VIV mode’ identified by Goza et al. (2018);
we have renamed it to fit an overall classification of a more extensive collection of states.

Vortex formation process: the far wake consists of four distinct vortices per cycle: a pair
of oppositely signed strong vortices in the middle of the wake and a weaker vortex of each
sign off to each side. The strong vortices in the middle are organised in an inverted Kármán
configuration, i.e. their sense of rotation induces a jet, not a wake. However, the structure
nearer the body shows that six unique vortices are shed per oscillation cycle, or three per
half-cycle. Two of these vortices are formed as a pair due to motion of the leading edge of
the flag, as it accelerates from close to its maximum displacement back towards its neutral
position; they are shed close to the point where the flag is pointing straight into the flow,
both ejected from the trailing edge. The pair of vortices are annotated as L−

1 and L+
1 in

figure 8: L−
1 is the leading-edge vortex formed by the separated flow at the leading edge

as it accelerated down; L+
1 is a vortex of opposite sign formed from the vorticity on the

top of the flag that is induced by the formation of the separated leading-edge vortex L−
1 .

The third vortex, T−
1 , is shed from the trailing edge when the flag is close to its maximum

anti-clockwise displacement presenting an upwards ramp to the flow. This process occurs
in reverse as the flag accelerates up; the three vortices, L+

2 , L−
2 and T+

2 , shed during the
previous upward-accelerating half-cycle are also annotated on figure 8. The stronger vortex
of the leading edge pair eventually wraps the weaker vortex and annihilates it, forming a
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Figure 9. Asymmetric state P2A : (a) time history of the angular displacement; (b) frequency spectrum of the
angular displacement; and (c) an image of the vorticity field at τ = 300, for κ = 1.013 and μ = 4.54. Black
dashed line marks the nominal Strouhal frequency, f = 0.12. Orange dashed line marks the first subharmonic,
f = 0.06.

single large central wake vortex, whereas the trailing-edge vortex becomes the weaker
vortex off to the side of the wake.

4.2.4. Asymmetric subharmonic state: P2A
The second of the organising states is a large-amplitude state which is asymmetric in
terms of the lift and mean displacement of the flag. An example of this subharmonic
state is shown in figure 9, for κ = 1.013 and μ = 4.54. Its periodicity is clear from
the displacement time history, and its subharmonic nature is evident by the significant
frequency component at half of the primary frequency.

Vortex formation process: figure 10 shows a sequence of images over one cycle of
oscillation, along with the time history of the flag displacement over two cycles of
oscillation. The first two images show that as the flag accelerates from its maximum
clockwise displacement to its neutral position, a large negative leading-edge vortex is
formed. This pairs with the vortex formed by the positive vorticity induced on the top
surface of the flag, forming the first leading-edge pair (L1−, L1+). The third and fourth
images of figure 10 show that as the flag accelerates from its maximum anti-clockwise
displacement towards its neutral position, a similar process occurs but with reversed signs
on the vortices, forming the second leading-edge pair (L2+, L2−). However, as the flag
approaches its neutral position it does not cross the centreline, and it instead stagnates
at a small negative angle. During a period of stagnation (see fifth image), a small pair
of vortices are shed into the wake (W+, W−) – essentially from the trailing edge of the
flag – and the flag deflects in the anti-clockwise direction again. After this anti-clockwise
deflection, the flag then again accelerates towards its neutral position as shown in the
sixth image, and during this acceleration a final pair of leading-edge vortices are formed
and shed (L3+, L3−). The flag motion continues past the neutral position to its maximum
clockwise deflection, and the cycle repeats.

4.2.5. Symmetric subharmonic state: P2
The third organising state is a subharmonic state, with two cycles of vortex shedding
occurring over a single cycle of the flag motion. Figure 11 shows an example case of this
state for κ = 1.572 and μ = 0.39, which is only stable at this lower μ. The subharmonic
nature of the state is clear from the spectrum in figure 11: the primary peak is aligned with
fvs/2. Its amplitude is very large, with the angle of displacement exceeding 90◦, so that
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Figure 10. Asymmetric state P2A : snapshots of vorticity in the near wake, with the time history of angular
displacement of the flag. Circles on the time history coincide with the instants shown in the images. One
leading-edge pair of vortices, (L1−, L1+), is shed from the top side of the flag, while two leading-edge pairs,
(L2−, L2+), (L3−, L3+), are shed from the bottom side, with a wake pair, (W+, W−), shed in between these two
leading-edge pairs. The example shown is the same case as figure 9, i.e. κ = 1.013 and μ = 4.54.
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Figure 11. Symmetric subharmonic state P2: (a) time history of the angular displacement; (b) frequency
spectrum of the angular displacement; and (c) an image of the vorticity field at τ = 300, for the case κ = 1.572
and μ = 0.39. Black dashed line marks the nominal Strouhal frequency, f = 0.12. Orange dashed line marks
the first subharmonic, f = 0.06.

the flag goes past a vertical orientation; see flow visualisation in figure 12. The flag spends
a large portion of the cycle approximately normal to the flow, which dictates the vortex
shedding and formation.

Vortex formation process: vortex formation and shedding is dominated by two
processes: (i) Kármán-like vortex shedding when the flag is approximately normal to the
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Figure 12. Close-up images of the symmetric subharmonic state P2 over a half-cycle of oscillation. (a) At
maximum displacement, θ = 98◦; (b) during the acceleration phase, with the flag at θ = 61◦; (c) at the neutral
position, pointing almost straight into the flow θ = 5◦; (d) during the deceleration phase, θ = −52◦; and (e)
at maximum displacement pointing downward, θ = −98◦. Three main vortices – a Kármán wake pair, (k−
and k+), and a leading-edge vortex, (L−) – dominate the dynamics, with a smaller vortex induced by the
leading-edge vortex of opposite sign, (L+), and an elongated trailing-edge vortex, T−, playing a secondary
role.

flow, resulting in a vortex being shed from the leading edge, then one from the trailing
edge; and (ii) formation of a leading-edge vortex during the accelerating phase of the
motion. Figure 12 shows close-up images of the flow over a half-cycle of oscillation for
the same case as figure 11.

The first image is at a phase of the flag motion that is close to its maximum clockwise
displacement, i.e. θ ≈ 98◦, and therefore is almost normal to the flow. At this phase,
vortices roll up from each side of the normal plate, reminiscent of Kármán vortex
shedding. The first image shows the formation of the first of the Kármán vortices of a
pair from the leading edge of the plate, labelled k−.

The second image shows the flag at θ ≈ 61◦, during its anti-clockwise motion towards
its neutral position. The second Kármán vortex forming from the trailing edge is clear
(labelled k+). Both the Kármán wake vortices k− and k+ have grown, and there is also
a large amount of negative vorticity generated from the accelerating leading edge. This
is still feeding the negative Kármán vortex, but is also starting to roll up into a defined
leading-edge vortex as described in the third image.

The third image shows the flag at close to its neutral position (θ ≈ 5◦), pointing almost
straight into the oncoming flow. The negative Kármán vortex, k−, has been shed and the
positive Kármán vortex, k+, is about to detach with only a thin layer of positive vorticity
from the lower side of the flag still feeding it. The negative vorticity previously feeding k−
has rolled up into a leading edge vortex, L−. This vortex, L−, has progressed to the trailing
edge and its presence above the flag has induced positive vorticity on the upper side of the
flag.

The fourth image shows the flag at θ ≈ −52◦. The negative Kármán vortex, k−, has been
shed while the positive Kármán vortex, k+, and the negative leading-edge vortex, L−, have
been ejected from the trailing edge as a dipole pair. The detachment and shedding of the
negative leading-edge vortex, L−, and the fact that the flag top surface when angled down
generates a favourable pressure gradient, induces the flow to reattach. Consequently, the
positive vorticity that had been formed on the top surface rolls up into a small positive
vortex, L+, trailing the larger dipole pair. The negative vorticity formed in the boundary
layer on the top surface of the flag also starts to roll up into a vortex labelled, T−, as it
separates from the trailing edge. These small positive and negative vortices are secondary
to the main Kármán vortices, k− and k+, and the leading-edge vortex, L−.
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Figure 13. Deflected state D: (a) time history of the angular displacement; (b) frequency spectrum of the
angular displacement; and (c) an image of the vorticity field at τ = 342, for the case κ = 2.815 and μ =
4.54. Black dashed line marks the nominal Strouhal frequency f = 0.12. Orange dashed line marks the first
subharmonic f = 0.06.

The fifth and final image shows the flag at close to its maximum anti-clockwise
displacement. The vortex structure is a mirror image of the structure at maximum
clockwise displacement.

4.2.6. Deflected state: D
The final state is the deflected state, D, shown in figure 13 for κ = 2.913 and μ = 4.54.
This is almost stationary in a laid-over configuration, where the hydrodynamic force
experienced by the flag is balanced by the torsional spring. The wake structure and vortex
shedding frequency is similar to that of a stationary flat plate. This state coincides with
mode VI for the flexible inverted flag identified by Goza et al. (2018). While vortex
shedding from state D is periodic in the near wake, there is a secondary instability
that leads to the two rows of Kármán vortices breaking down into a lower frequency,
longer wavelength configuration. In figure 13, this occurs around 10L downstream. This
phenomenon has been documented in a number of bluff-body wakes that form this
two-row vortex structure, e.g. see Hosseini, Griffith & Leontini (2021), and is associated
with an absolute instability of the mean wake profile.

4.3. Flapping: chaotic states observed for all cases
The previous sections describe the various periodic states that can be observed. In this
section, we describe the routes to chaos that occur via the loss of stability, and the nonlinear
interaction of, these periodic states. These routes to chaos occur for all values of the mass
ratio, μ, tested. These chaotic states are listed in order of increasing κ . The examples
shown are for μ = 2.27, and the values of κ are marked on figure 4(b). Section 4.4 shows
a further route that only appears for the lower-μ flags.

4.3.1. Instability of the synchronised state P1: type I intermittency
The first route to chaos that we examine is the loss of stability of state P1. Figure 14
shows time history of the angular displacement for (i) a stable P1 case, and (ii) an unstable
case with a slightly higher value of κ . The latter case shows almost periodic oscillations,
interspersed with high-amplitude bursts. Both cases are also plotted in the (θ, θ̇) phase
space which shows a limit cycle for the stable case that appears to act as an attractor;
orbits of the unstable case are close to this attractor for a number of cycles (with almost
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Figure 14. Instability of P1 leading to type I intermittency. (a,b) Show time histories of flag angular
displacement for mass ratio, μ = 2.27, with κ = 0.810 ((a), blue) and κ = 0.885 ((b), orange). These represent
a stable P1 case, and an unstable case. The same cases are plotted in the (θ, θ̇) plane on the right; the stable
case with a bold blue line and the unstable case with the finer orange line. This plot shows the limit cycle for
the stable case, with the unstable case orbiting close to this limit cycle for many periods before spiralling away,
then collapsing back to the unstable limit cycle.

periodic oscillations), but eventually spiral away (high-amplitude bursts), before returning
back towards the attractor. This ‘type I intermittency’ (Pomeau & Manneville 1980) has
been demonstrated in a number of dynamical systems and discrete maps.

We note here that this route to chaos only relies on a periodic solution existing at nearby
parameter values. The periodic solution itself may never be observed. We highlight this
point as this type I intermittency occurs for both higher and low values of μ, while a stable
periodic solution (state P1) is only observed for the higher-μ cases. The fact that P1 is not
observed for the lower-μ case, μ = 0.39, does not preclude this route to chaos.

4.3.2. Instability of state P2A generates heteroclinic-like orbits
The second route to chaos is organised around state P2A . Because this state is asymmetric,
it can be biased to either positive or negative angular displacements. This presents two
attracting states, either of which can be reached depending on the initial conditions if the
state is stable. If this P2A state is unstable, it presents two unstable limit cycles in the
(θ, θ̇) phase space. The flag dynamics may visit each of these cycles for some time, before
diverging and potentially settling towards the other cycle. After some time the dynamics
will diverge from this cycle, and settle again towards the original cycle, where the process
can repeat. This is similar to a heteroclinic cycle – the cyclic nature of the dynamics is
driven by attraction to one state, but then repulsion in at least one direction in phase space.
This direction of repulsion from one state drives the dynamics towards the second state,
which itself is unstable – which drives the dynamics back towards the original state.

Figure 15 shows an example of this process. In panel (a), the two possible limit cycles
in the (θ, θ̇) phase space are shown for a stable P2A . In panel (b), the trajectory traced by
a case at a slightly higher value of κ , which is unstable, is given. This clearly shows that
the unstable orbit spends time cycling near an orbit of the P2A state, before spiralling away
and being attracted toward the orbit of the P2A state biased to the other side. The cycle is
not perfect, leading to a chaotic trajectory organised around the two manifestations of the
P2A state.
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Figure 15. Phase portraits in the (θ, θ̇) plane, demonstrating heteroclinic-like mode competition between the
two manifestations of the asymmetric state P2A . (a) Shows the trajectory for state P2A , at μ = 2.27 and κ =
0.996. Solid/dashed line represents the state biased to the left/right. (b) Shows the trajectory for a case at a
very slightly higher, κ = 1.013. The image shows that the dynamics spends time near one orbit before losing
stability and spiralling to the orbit biased to the other side.
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Figure 16. Phase portraits in the (θ, θ̇) plane illustrating mode competition between organising states P2A and
P2. (a) The trajectories for the stable P2A state, at μ = 2.27 and κ = 0.996. Solid/dashed line represents the
state biased to the left/right. (b) The trajectory for the stable P2 state, at μ = 0.39 and κ = 1.572. (c) The
trajectory for the chaotic oscillation, at μ = 2.27 and κ = 1.822; the chaotic trajectory spends periods orbiting
near each of the organising states.

4.3.3. Mode competition between states P2A and P2
The third route to chaos is apparent mode competition between states P2A and P2. Similar
to the other states, this is demonstrated by trajectories in the (θ, θ̇) phase space. Figure 16
shows (left to right) (i) the trajectories of the two possible, stable P2A states at μ = 2.27
and κ = 0.996, then (ii) the cycle for the stable P2 state (albeit at a lower value of μ =
0.39), followed by (iii) the chaotic trajectory at μ = 2.27 and κ = 1.822.

The P2 state is not stable for higher-μ flags, and this is why the example cycle shown in
figure 16 is from the lower-μ flag. Note, however, that the chaotic trajectory does seem to
orbit near this example cycle, providing evidence that the P2 state is still playing a role in
organising the dynamics for the higher-μ flags.

4.3.4. Mode competition between states P2 and D
The fourth route to chaos is apparent mode competition between the unstable P2 state and
the two manifestations of the deflected state D (deflected either to positive or negative
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Figure 17. Phase portraits in the (θ, θ̇) plane illustrating mode competition between organising states P2 and
D. (a) The trajectory for the stable P2 state, at μ = 0.39 and κ = 1.572. (b) The trajectory for the stable D state,
at μ = 2.27 and κ = 2.545. Solid/dashed line represents the state biased to the left/right. (c) The trajectory for
the chaotic oscillation, at μ = 2.27 and κ = 2.169; the chaotic trajectory spends periods orbiting near each of
the organising states.

angular displacement). Figure 17 gives the trajectory of an example case compared with
stable examples of the two organising states involved. The range of θ̇ covered by the chaotic
trajectory is smaller than that for the example where P2A plays a role (figure 16). Moreover,
a number of small loops appear that gradually spiral out near the extremities of the range
of θ covered. This shows that the flag spends long portions of time near the deflected
D state, which eventually loses stability, causing the flag to execute oscillations similar to
the subharmonic P2 state, before settling towards the D state again, possibly biased to the
other side.

4.3.5. Instability of the deflected state D
The fifth and last route to chaos found for all flags is mode competition between the regions
of the deflected state D, i.e. positive and negative angular displacement. Figure 18 gives
the trajectory of an example case, along with the two stable limit cycles representing D.
This shows that the trajectory is dominated by loops that orbit near one of the D cycles,
that slowly spiral out. Physically, this represents the flag being deflected almost normal
to the flow and exhibiting small, but growing oscillations. Eventually these oscillations
become so large that they cause the flag to overshoot the centreline of the flow, causing it
to be deflected to the other side, where this cycle again repeats.

This final route to chaos appears to be the state hypothesised by Goza et al. (2018) to
drive the chaotic oscillations in the flexible inverted flag. Whether the other routes to chaos
identified above are present for the flexible inverted flag remains an open question.

4.3.6. Development of chaos across the flapping regime for higher μ

The changing nature of the chaotic dynamics is further investigated in figure 19, which
shows the time histories of the angular displacement for increasing κ with μ = 2.27.

For the smallest flow speeds, i.e. κ < 1.2, there are reasonably long epochs of time
where the flag oscillates in a state similar to the periodic state P1, interspersed amongst
intermittent epochs of disordered oscillations. This is seen in figure 19 for κ = 1.131 –
there is a long epoch, 170 < τ < 250, where the flag oscillates almost periodically, but the
oscillations either side of this epoch fluctuate in amplitude and frequency. This is another
example of the first route to chaos shown in figure 14.
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Figure 18. Phase portraits in the (θ, θ̇) plane illustrating mode competition between the two possible
manifestations of organising state D. (a) Shows the trajectory for the stable D state, at μ = 2.27 and κ = 2.545.
Solid/dashed line represents the state biased to the left/right. (b) Shows the trajectory for the chaotic oscillation,
at μ = 2.27 and κ = 2.291; the chaotic trajectory spends periods orbiting near each of the examples of state D,
before flipping to the other.

Slightly increasing κ sees the flag switch between two types of epochs: (i) the flag
oscillates in a state similar to the periodic but asymmetric state P2A biased to one side,
and (ii) the same state biased to the other side. See the example for κ = 1.312 in figure 19,
which shows that there are a number of cycles with the flag biased to negative angular
displacement over 220 < τ < 240, and a cycle biased to positive angular displacement
over 270 < τ < 285. This is an example of the second route to chaos illustrated in
figure 15.

Increasing κ further leads to epochs similar to the asymmetric state P2A , interspersed
with epochs reminiscent of the subharmonic state P2. See the example for κ = 1.407 in
figure 19 which shows chaos via mode competition between states P2A and P2 – the third
route to chaos – as outlined in figure 16.

A further increase in κ produces intermittent switching between the subharmonic state
P2 and oscillations near the periodic deflected state D. See the examples in figure 19
for 1.713 ≤ κ ≤ 1.934, which also show that as κ is increased, the duration of the
epochs spent in the subharmonic state P2 decreases while epochs near the deflected state
D become more dominant. This dynamics corresponds to mode competition between
states P2 and D – the fourth route to chaos – as per figure 17.

Larger values of κ again generate long epochs where the dynamics produces oscillations
near the periodic deflected state D biased to one side, interspersed with epochs of the same
state biased to the other side. This is shown in figure 19 for cases in the range 2.050 ≤ κ ≤
2.291. The chaotic motion cycles between the two manifestations of the deflected state D,
as outlined in figure 18 – the fifth route to chaos.

Finally, for the highest values of κ , the flag oscillations settle to the periodic deflected
state D, as shown for κ = 2.545 in figure 19.

4.4. Flapping: chaotic states for the heaviest flag
The general picture of the development of chaos for the heaviest flag studied, i.e. μ =
0.39, is similar to the lighter flags as described in § 4.3. However, there is one important
difference that we highlight here.

The spatio-temporally symmetric subharmonic state, P2, is not found in a stable
configuration for the two lighter flags, but occupies a reasonably large range of κ for
the heaviest flag; see figures 3 and 4. This feature splits the κ-ranges where chaos via
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Figure 19. Development of the time history of oscillation with increasing κ , for μ = 2.27 in the
large-amplitude flapping range. For low κ (e.g. κ = 1.131), the flag oscillates for long epochs in a state
similar to P1, interspersed with intermittent losses of stability. For slightly higher κ (e.g. κ = 1.312), there
are epochs of oscillation similar to P2A , first biased to one side then the other. Higher κ again (e.g. κ = 1.506)
shows intermittent switching between epochs similar to P2A and P2. Higher κ again (e.g. κ = 1.822) shows
intermittent switching between epochs similar to P2 and the deflected state D. Finally for the highest κ shown,
the dynamics settles to a stable deflected state D periodic oscillation.

a heteroclinic-like cycle between the two manifestations of state P2A occurs, and where a
cycle between the two manifestations of the deflected state D results. For the lighter flags,
this same range is occupied by chaos via mode competition between states P2A and P2.

We propose that stabilisation of the subharmonic state P2 presents another potential
route to chaos via the interaction and instability of a series of states of increasing
period, i.e. mode locking. Figure 20 gives time histories for increasing κ , starting from
a stable P2 case for κ = 1.659. Increasing to κ = 1.747 produces an extra ‘bump’ in each
oscillation, and an apparent doubling of the oscillation period. As shown in figure 12, state
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Figure 20. Time histories of the oscillation for the heaviest flag, μ = 0.39, for increasing values of the
dimensionless flow speed, κ , displayed left to right, top to bottom. As κ is increased, evidence of states
of oscillation with increasing numbers of vortex shedding cycles (for each half-oscillation cycle) is found –
indicative of mode locking – until the period becomes so long that the flag remains on one side of the wake.
Orange shaded regions mark epochs of possible mode locked oscillation, the number annotated in these regions
indicates the number of vortex shedding periods per half-cycle. The first value of κ = 1.659 corresponds to the
stable state P2, the last value of κ = 2.326 to the stable state D.

P2 is formed via a cycle of Kármán-like shedding while the flag is oriented around 90◦.
The flag then swings to the other side which is also followed by a cycle of Kármán-like
shedding. The extra bump in each oscillation is due to a second cycle of vortex shedding,
which occurs for the slightly reduced stiffness or increased κ . Further slight reductions in
stiffness (or increased κ) allow for more Kármán cycles on each side, and a subsequent
increase in the oscillation period.

Figure 20 shows that with increasing κ , there are epochs of oscillation with increasing
numbers of vortex shedding cycles. This is consistent with mode locking. Weakly
nonlinear systems that are periodically driven will often ‘lock’ to that period, or an integer
multiple of that period. This is likely to occur when the driving period is close to a natural
frequency, or a sub-harmonic of the natural frequency of the system. This means that as
the driving frequency (or the ratio of the driving frequency to the natural frequency) is
varied, ranges of the driving frequency can occur where the dynamics is synchronised
and periodic, which are interspersed among ranges where the dynamics is more complex.
In the circle map, these synchronised ranges are referred to as Arnold tongues (Arnold́
1965). The width of the Arnold tongues are typically proportional to the ratio between
the driving frequency and the natural frequency being synchronised, i.e. there is a wider
locking range when the driving frequency is close to the natural frequency than when the
driving frequency is close to the first subharmonic.

This feature is consistent with the observations of this study, if the rigid inverted flag is
considered as a weakly nonlinear oscillator driven by vortex shedding. Namely, there is:

(i) A reasonably wide range of synchronisation to the state, where one vortex shedding
cycle occurs on each side (the stable state P2).
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(ii) A much smaller range of synchronisation, where two shedding cycles occur on each
side.

(iii) Subsequently ever smaller ranges, where larger numbers of vortex shedding cycles
occur, interspersed with ranges of more complex oscillations.

This is consistent with our inability to observe the lower frequency subharmonics (those
with more vortex shedding cycles per half-cycle of oscillation) in a ‘pure’ stable state – the
frequency range or κ for which they are stable becomes vanishingly small. Similar mode
locking cascades have been observed in the somewhat-related flows of forced cylinder
wakes (Leontini, Lo Jacono & Thompson 2011, 2013) and the flow-induced vibration of
square cross-sections undergoing transverse galloping (Zhao et al. 2014).

5. Concluding remarks

The dynamics of a rigid and thin plate attached at its trailing edge to a torsional spring –
a rigid inverted flag – has been investigated. This provides a practically realisable single
degree-of-freedom mechanical analogue to the widely studied flexible inverted flag. The
rigid inverted flag enables a focus on the fundamental interactions between the fluid and
structure, by eliminating the complexity of the structural modes of the flexible inverted
flag. The resulting structural dynamics is rich, and we have classified their equilibria,
periodic and chaotic oscillations.

The dynamics of the rigid inverted flag was found to be strikingly similar to that of
the flexible inverted flag. Elimination of any potential for coupling between structural
modes in the former case – due to its single structural degree of freedom – establishes
that such instabilities are not needed to generate the observed dynamics. We cannot,
however, rule out coupling between the structural modes and modes of the flow leading to
large-amplitude flapping dynamics via a movement-induced excitation.

The large-amplitude flapping dynamics of the rigid inverted flag is organised around a
set of periodic states, which are a product of synchronisation between a nominal vortex
shedding frequency and a natural frequency corrected to account for the apparent added
mass. These states play a role as organising states during chaotic oscillations, even when
they are not realisable as stable limit cycles. The fact that the stability of these periodic
states can be associated with a synchronisation of vortex shedding and oscillation time
scales, is consistent with large-amplitude flapping being a VIV.

Similar to the flexible inverted flag, the majority of the large-amplitude flapping states,
particularly for lighter flags are chaotic. We have shown that this chaos is driven by
competition between various states which are dependent on the dimensionless flow speed,
κ , with mode locking also present for lower μ.

The reported dynamics of the rigid inverted flag and its application, e.g. to energy
harvesting, are yet to be realised experimentally.
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Appendix A. Immersed-boundary method and convergence studies

Details of the immersed-boundary method used in this study are presented in this
appendix.

A.1. Spatial discretisation
The fluid domain is spatially discretised using a Cartesian mesh with (2.1a,b)
approximated using second-order central finite differences. The Cartesian mesh enables
simple domain decomposition for efficient parallel computation. Solid body boundaries,
i.e. the rigid inverted flag, are discretised using linear segments. The sharp-interface
method is implemented by modifying the difference stencil for ‘ghost points’ in this
Cartesian mesh, i.e. mesh points inside the solid body that have at least one neighbour
point (a mesh point exactly adjacent) outside the body. On these points, an extrapolation
scheme is used: a probe line is drawn from the ghost point to the closest point on the body
surface; this probe line length is then doubled, so its end point is in the fluid and the closest
point on the body surface is at its centre; the fluid field variables at the end of this line are
obtained by interpolation from the surrounding mesh points; each interpolated value, and
the desired boundary condition at the surface, are then used to linearly extrapolate a value
at the ghost point.

This modification of the interpolation stencil produces the term, F b, in the discretised
version of (2.1a,b). This term is zero everywhere except at the ghost points. It maintains
the overall second-order accuracy of the discretisation and ensures a sharp representation
of the boundary. The present scheme closely follows Mittal et al. (2008) and our particular
implementation is detailed in Griffith & Leontini (2017).

A.2. Temporal discretisation
Equation (2.1a,b) is integrated in time using a two-way time-splitting scheme. A first
substep equation is formed by integrating only the advection, diffusion and body
acceleration terms – respectively, the first, third and fourth terms on the right-hand side
of the momentum equation (2.1a,b) – to arrive at a velocity field at an intermediate
time between the beginning and end of the time step. The advection term is solved
using a second-order Adams–Bashforth scheme, the diffusion term using a second-order
Crank–Nicolson scheme and the acceleration term via the extrapolation scheme outlined
in § A.1. The resulting implicit equation is solved using Gauss–Jacobi iteration.

From this intermediate velocity field and the existing pressure field, (2.2) is integrated to
update the body position using a Newmark-β scheme. Any mesh points that emerge from
the solid body into the fluid domain are assigned a value using an interpolation scheme,
employing (i) the nearby mesh point values, and (ii) the boundary condition at the point
on the body surface which is closest to the mesh point.

A second-order scheme is then employed for the pressure, which after enforcing mass
conservation in (2.1a,b) produces a Poisson equation for the pressure correction. This
Poisson equation is solved using a custom geometric multigrid method after employing
a scheme to avoid odd–even decoupling or checker-boarding. A cut-cell scheme is
employed to minimise the spurious force oscillations that can arise in sharp-interface
immersed-boundary methods due to errors in the discrete conservation of mass (Seo &
Mittal 2011). The eventual pressure correction is then used to update the velocity field
from the intermediate time to the end of the time step.

948 A47-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

71
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.718


J.S. Leontini and J.E. Sader

A.3. Boundary and initial conditions
Standard external flow boundary conditions are used. For the velocity field, a free stream
condition is imposed upstream (u = [U 0 0]T ), while a zero-stress condition is applied
at the transverse and downstream boundaries (∂u/∂n = 0, where n is the normal vector).
For the pressure, a zero gradient condition is used at the upstream and lateral boundaries
(∂p/∂n = 0), and a Dirichlet condition (p = 0) is applied downstream. At the immersed
boundaries, a no-slip condition is imposed for the velocity such that the flow velocity
matches the local surface velocity, and a zero gradient condition is used for the pressure
(∂p/∂n = 0).

Two initial conditions are used. The first is to start the flow from rest. The second is
to force the rigid inverted flag to perform two cycles of oscillations at a non-dimensional
frequency of 0.2, and an amplitude of 0.25 (or approximately 14.3◦), before allowing the
flag to oscillate freely. This second initial condition is used in cases that would diverge
when starting from rest due to numerical errors resolving the non-physical pressure field
in the first time step. Cases that do not diverge are tested with both initial conditions, where
the eventual saturated states are found to be insensitive to the choice of initial conditions.

A.4. Domain and mesh
The fluid domain used extended 15L upstream, 36L downstream and 15L in the transverse
direction from the trailing edge of the flag. The Cartesian mesh used for the fluid domain
consisted of 1025 points in both the x and y directions, for a total of 1 050 625 points;
the points are not equidistant, instead being concentrated in the area surrounding the flag.
The mesh spacing used in a box L × L surrounding the flag is �x = �y = L/256. This
guarantees at least 4 points exist across the plate thickness h = 0.022L, regardless of the
flag orientation. This ensures an accurate representation of the boundary of the flag at all
times (using the extrapolation scheme for ghost point values) while also allowing for the
use of a very thin flag. The mesh spacing from this box to the edge of the domain increases
linearly in each direction.

A.5. Mesh resolution tests
Validity of the mesh is examined using a series of tests for κ = 1.045 and μ = 2.27.
This case is chosen because it exhibits a complex dynamics and thus presents a hard test
of the capacity of the simulation. Three configurations are tested by varying the mesh
resolution and the plate thickness: (i) the configuration adopted in the rest of the study,
�x = L/256 and h = (L/50) × 1.1 = 0.022L; (ii) a configuration with twice the plate
thickness, �x = L/256, and h = 0.044L; and (iii) a configuration with twice the plate
thickness and twice the mesh spacing/half the resolution throughout the domain, �x =
L/128 and h = 0.044L. This allows the mesh resolution to be lowered while still retaining
an accurate representation of the thicker plate in the immersed-boundary scheme.

Figure 21 shows phase space portraits in the (θ, θ̇) plane of these three configurations.
The total time duration in these portraits is 250τ . All three cases display a similar
dynamics, with their phase portraits producing two inner lobes surrounded by larger orbits
that are bounded, but not repeating. Comparing the first two cases – same mesh resolution
but different plate thickness – shows that their dynamics is reasonably insensitive to
the plate thickness. For the second two cases – same plate thickness but different mesh
resolution – their dynamics is also reasonably insensitive to the mesh spacing.
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Figure 21. Resolution test results: phase portraits of plate angular frequency, θ̇ , as a function of θ , for κ =
1.045 and μ = 2.27. Results given for three near-body mesh spacings, �x, and plate thickness, h, combinations.
(a) The combination used throughout this study, �x = L/256 and h = 0.022L; (b) the same base mesh but a
plate twice as thick, �x = L/256 and h = 0.044L; (c) a base mesh at half resolution and a plate twice as thick,
�x = L/128 and h = 0.044L. The plots show that all three combinations result in a similar dynamics, and the
two cases for the thicker plate produce a quantitatively similar result, in terms of maximum displacement and
velocity.

Mesh spacing and plate thickness θmax (◦) θ̇max (◦/τ )

�x = L/256, h = 0.022L 89.88 80.97
�x = L/256, h = 0.044L 87.94 78.26
�x = L/128, h = 0.044L 87.05 77.68

Table 1. Resolution test results: maximum angular displacement, θmax, and angular velocity, θ̇max, for the
case, κ = 1.045 and μ = 2.27. Results given for three near-body mesh spacings, �x, and plate thickness, h,
combinations.

Table 1 presents the maximum angular displacement and velocity for the three
configurations. These data show that there is very little change in the maximum excursions
of the plate between the different configurations. The two cases with the same mesh
resolution but different plate thickness have changes in the maximum displacement and
velocity of 2.1 % and 3.3 %, respectively. The two cases with the same plate thickness
have changes in the maximum displacement and velocity of 1.01 % and 0.7 %. These
indicate that the mesh resolution is adequate to resolve the dynamics, and that the finite
plate thickness of h = 0.022L is a good approximation of a thin plate and therefore of the
rigid inverted flag.

Appendix B. Natural linear frequency including fluid inertia

In this appendix, we calculate the fluid inertia for an elastically hinged thin plate oscillating
with small amplitude in a quiescent fluid, and hence its linear resonance frequency, ωNf .
Comparison of this result with that for large-amplitude flapping of a rigid inverted flag
enables assessment of the impact of nonlinear phenomena, such as vortex shedding.

B.1. Inviscid flow
In the limit of high frequency, where the viscous penetration depth over which vorticity
diffuses is small (relative to the plate length, L), the flow can be considered to be inviscid.
Fluid inertia experienced by a linearly oscillating rigid inverted flag in a quiescent fluid
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can then be calculated using (11) of Shen, Chakraborty & Sader (2016) for a ‘line clamp’.
The pressure jump across the solid plate in figure 1, i.e. for −L ≤ x ≤ 0, is

�P = ρ

2
(L − 2x)

√
−x(L + x)

d2θ

dt2
, (B1)

and the resulting moment of inertia per unit plate width induced about the flag’s trailing
edge, x = 0, is

Ia = 9π

128
ρL4. (B2)

Substituting this expression into (4.8) then gives the required result

cI = 9
64 . (B3)

B.2. Viscous flow
Dimensional considerations reveal that the coefficient, cI , in (4.8) depends on two
dimensionless parameters: an oscillatory Reynolds number,

Reω = ωNf L
2

ν
, (B4)

and the added mass parameter, μ, defined in (2.4a,b); this latter parameter delineates the
regimes of heavy and light fluid loading. Since the flag has only a single degree of freedom,
and hence its mode shape cannot vary, a dependence of cI on μ is not expected.

Numerical simulations for linear viscous flow are performed using the immersed-
boundary code for the rigid inverted flag, in a quiescent fluid, i.e. no imposed flow. This
is achieved by specifying a small initial angular displacement (θ0 = 1◦ is used), following
which the flag dynamics is monitored. The resulting angular displacement is fit to the
response of a damped harmonic oscillator, from which the resonant frequency, ωNf , is
extracted. A strong underdamped response is required to ensure a robust fit. Simulated
responses with quality factors, Q < 2, are discarded because the resulting fits are poor and
can introduce significant error.

Figure 22 gives numerical data for the resulting added inertia coefficient, cI – again
using (4.8) – for a series of simulations where the torsional stiffness, fluid viscosity and
density are varied. As discussed above, data for Q < 2 are not shown which is indicated
by a truncation on the left-hand side of each curve for different μ. Slight differences are
observed in this left-most data due to uncertainty involved in fitting and extracting ωNf , for
significant damping. Even so, the data collapse well and are seen to approach the inviscid
analytical result of (B3) as the viscous penetration depth decreases, i.e. Reω → ∞, as
expected.

The data in figure 22 exhibit approximate but accurate exponential decay (evident on a
log–log scale, not shown). This leads to the empirical fit formula

cI = cIinv
exp(A ReB

ω), (B5)

where cIinv
= 9/64 as specified in (B3); A and B are real-valued fit coefficients. The values

of these coefficients for the three mass ratios tested are presented in table 2.
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Figure 22. Linear added inertia coefficient, cI , as a function of the oscillatory Reynolds number, Reω, with
different mass ratios, μ, for a plate executing linear oscillations about its edge in a quiescent fluid. The mass
ratios, μ = 0.39 and μ = 4.54, coincide with the smallest and largest values used throughout this study, and
μ = 0.045 has been added to extend the range of the parameters. Symbols represent data from numerical
simulations. Lines are curve fits to (B5).

μ A B

0.045 2.417 −0.325
0.39 2.940 −0.369
4.54 3.600 −0.395

Table 2. Parameters for the fit to cI as a function of Reω presented in (B5) for each μ.

B.3. Effect of vortex shedding
The linear added inertia in (B5) (where no vortices are produced) is to be compared with
inertia for large-amplitude flapping (where vortex shedding is dominant, see figure 7). The
linear result strongly underestimates the added inertia for large-amplitude flapping, by an
order of magnitude, further highlighting the importance of the vortices in this flow.
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