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Abstract The ergodic theory and geometry of the Julia set of meromorphic functions on the complex
plane with polynomial Schwarzian derivative are investigated under the condition that the function
is semi-hyperbolic, i.e. the asymptotic values of the Fatou set are in attracting components and the
asymptotic values in the Julia set are boundedly non-recurrent. We first show the existence, uniqueness,
conservativity and ergodicity of a conformal measure m with minimal exponent h; furthermore, we show
weak metrical exactness of this measure. Then we prove the existence of a σ-finite invariant measure
µ absolutely continuous with respect to m. Our main result states that µ is finite if and only if the
order ρ of the function f satisfies the condition h > 3ρ/(ρ + 1). When finite, this measure is shown to be
metrically exact. We also establish a version of Bowen’s Formula, showing that the exponent h equals
the Hausdorff dimension of the Julia set of f .
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1. Introduction

The study of the ergodic theory and geometry of the Julia set of transcendental meromor-
phic functions appears to be a delicate task due to the infinite degree of these functions.
For example, even the existence of conformal measures, on which the whole theory relies
and which is by now completely standard in the realm of rational functions or Kleinian
groups, is not known in general. By employing Nevanlinna’s theory and a convenient
change of the Riemannian metric, we provided a complete treatise for a very general
class of hyperbolic meromorphic functions in [19,20]. In the present paper we relax the
hyperbolicity assumption and allow the Julia set to contain singularities. Clearly, one can
adopt the arguments developed in the theory of rational iteration to deal with certain
types of critical points. A greater challenge is to analyse the contribution of logarithmic
singularities and, as we will see, this gives quite surprising results. The class of meromor-
phic functions with polynomial Schwarzian derivatives fits such a project best, since they
do not have critical points but their inverses have finitely many logarithmic singularities.
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We therefore restrict our considerations to this class of functions which, in particular,
contains the tangent family; definitions and other examples are given in § 2.

In the context of ergodic theory and fractal geometry, meromorphic and entire func-
tions with logarithmic singularities have been investigated in [26–28] (see also [16] for
a more complete historical outline and list of references) and, more recently, in [14].
In [26,27] these singularities landed at poles and, in [28], they were escaping to infin-
ity (like the trajectory of zero under the exponential function) extremely fast. In both
cases the forward trajectory of images of logarithmic singularities experienced a large
expansion neutralizing the contracting effect of singularities themselves. Assuming that
a meromorphic map is subhyperbolic, the post-singular set is bounded, the Julia set is
an entire sphere and the reference conformal measure is the Lebesgue measure, Kotus
and Swiatek [14] addressed the role of logarithmic singularities (algebraic singularities
were also allowed).

In this paper we consider semi-hyperbolic meromorphic functions f : C → Ĉ with
polynomial Schwarzian derivative. By ‘semi-hyperbolic’ we understand that

(i) all the asymptotic values a ∈ Af are finite,

(ii) if a ∈ Ff , then a belongs to an attracting component of Ff and

(iii) all the asymptotic values a ∈ Jf have bounded orbit and are non-recurrent (cf.
Definition 2.2).

Employing the full power of Nevanlinna theory, we first prove the existence of an atomless
conformal measure via the Patterson–Sullivan construction. This measure is proved to
be weakly metrically exact, which implies its ergodicity and conservativity. We then
show the following result, in which the existence of the σ-finite measure µ is obtained by
employing Martens’s general method.

Theorem 1.1. Let f be a semi-hyperbolic meromorphic function f of polynomial
Schwarzian derivative and let m be the h-conformal measure of f obtained via the
Patterson–Sullivan construction. There then exists a σ-finite invariant measure µ abso-
lutely continuous with respect to m. Moreover, the measure

µ is finite ⇐⇒ h >
3ρ

ρ + 1

where ρ = ρ(f) is the order of the function f . If µ is finite, then the dynamical systems
(f, µ) it generates is metrically exact and, in consequence, its Rokhlin’s natural extension
is K-mixing.

Notice that 3ρ/(ρ + 1) � 2 if and only if the order ρ � 2. Consequently, the measure
µ is most often infinite. However, in the case of the tangent family, which is just one
specific example among others, this invariant measure can be finite. Curiously, finiteness
of the invariant measure for the strictly pre-periodic function z �→ 2πiez is not yet known.
(Between submission and publication of the present paper, Dobbs and Skorulski [7] and
Kotus and Swiatek [15] showed independently that the measure is infinite.)
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Let us mention that we do not assume that the Julia set is the entire sphere or that
the conformal measure is the Lebesgue measure. In fact we do not assume that any
conformal measure exists at all. But in the special situation when the Julia set is the
entire sphere (in which case the spherical Lebesgue measure is automatically a conformal
measure) and if, in addition, h = 2 > 3ρ/(ρ + 1), i.e. if the order of the function ρ < 2,
then the existence of a probability-invariant measure absolutely continuous with respect
to the Lebesgue measure follows also from [14]. Indeed, in that situation our necessary
and sufficient condition ρ < 2 coincides with the sufficient condition (Z3) from [15].
Concerning the reciprocal statement, [14] simply provides a counterexample.

The most involved part of the proof of Theorem 1.1 is to show finiteness. In the case
when the measure µ is finite, the dynamical system it generates is shown to be K-mixing
which, in particular, implies mixing of all orders.

We also investigate the Hausdorff dimension of the Julia set and show that this dimen-
sion coincides with h, the exponent of the conformal measure m. Notice that this holds
despite the h-dimensional Hausdorff measure being shown to vanish on the Julia set.

2. The class of functions and definitions

2.1. Definitions

The reader may consult, for example, [11,22,23] for a detailed exposition on meromorphic
functions and [2] for their dynamical aspects. We collect here the properties of interest for
our concerns. The Julia set of a meromorphic function f : C → Ĉ is denoted by Jf and
the Fatou set is denoted by Ff . Note that, in contrast to [19,20], we include here ∞ ∈ Jf

since we are dealing with spherical geometry. However, O−(∞) =
⋃∞

n=0 f−n({∞}) is a
very special subset of the Julia set.

Let Af be the set of asymptotic values (definitions can be found, for example, in [11,
p. 232] or [9, p. 270]). Note that the functions we consider do not have critical values.
Therefore, Af coincides with the so-called set of singular values sing(f−1). The post-
singular set Pf is the closure (in the sphere) of the set

⋃
n>0 fn(Af ).

Concerning the singularities of a meromorphic function f , we make use of Iversen’s
classification (see, for example, [2]): let a ∈ sing(f−1) and, for every r > 0, let Ur be a
component of f−1(D(a, r)) in such a way that r1 < r2 implies Ur1 ⊂ Ur2 . Then there are
two possibilities:

(a)
⋂

r>0 Ur = {c} consists of one point or

(b)
⋂

r>0 Ur = ∅.

In the latter case we say that our choice r �→ Ur defines a transcendental singularity of
f−1 over a. Such a singularity is called logarithmic if the restriction f : Ur → D(a, r)\{a}
is a universal cover for some r > 0. If this is the case, then the component Ur is called a
logarithmic tract. For the functions we consider all the transcendental singularities to be
logarithmic.

In case (a), the point c can be regular or a critical point c ∈ Cf .
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We will always denote by

dσ(z) =
|dz|

1 + |z|2

the spherical metric and by

|f ′(z)|σ = |f ′(z)| 1 + |z|2
1 + |f(z)|2

the derivative of f with respect to the spherical metric. The following direct consequence
of Koebe’s Distortion Theorem will be used.

Lemma 2.1. Let f : C → Ĉ be a meromorphic function and suppose that D(w, 2δ) ⊂
Ĉ \ Pf . Then, for every n � 1, z ∈ f−n(w) and all x, y ∈ D(w, δ) we have that

K−1 � |(f−n
z )′(y)|σ

|(f−n
z )′(x)|σ

� K

for some universal constant K � 1.

Henceforth, f−n
z signifies the inverse branch of fn defined near fn(z) mapping back

fn(z) to z. Another convention will be that D(z, r) stands for the open spherical disc
centred at z and of radius r. To indicate an open spherical r-neighbourhood of a set X

we write B(X, r).

2.2. Nevanlinna functions

We consider meromorphic functions f : C → Ĉ for which the Schwarzian derivative

S(f) =
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

= 2P (2.1)

is a polynomial and for which the set of asymptotic values Af does not contain ∞.
Nevanlinna [21] established that meromorphic functions with a polynomial Schwarzian
derivative are exactly those functions that have only finitely many asymptotic values
and no critical values (thus, these functions are sometimes called Nevanlinna functions).
Moreover, if a Nevanlinna function has a pole, then it is of order 1. Consequently, the
maps of this class are locally injective. We also mention that any solution of (2.1) is of
order ρ = p/2, where p = deg(P ) + 2, and it is of normal type of its order (cf. [12]).

Standard examples are furnished by the tangent family f(z) = λ tan(z) for which S(f)
is constant. By Möbius invariance of S(f), functions like

ez

λez + e−z
and

λez

ez − e−z

also have constant Schwarzian derivative. Examples for which S(f) is a polynomial are

f(z) =
a ai(z) + b Bi(z)
c Ai(z) + d Bi(z)

with ad − bc 	= 0, (2.2)
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where Ai and Bi are the Airy functions of the first and second kind. These are linearly
independent solutions of g′′ − zg = 0 and, in general, if g1, g2 are linearly independent
solutions of

g′′ + Pg = 0, (2.3)

then f = g1/g2 is a solution of the Schwarzian equation (2.1). Conversely, every solution
of (2.1) can be written (locally) as a quotient of two linearly independent solutions of the
linear differential equation (2.3). The asymptotic properties of these solutions are well
known due to the work of Hille [10] (see also [12]). They give a precise description of the
function f near infinity. We now collect the facts that are important for our needs (more
details and references are given, for example, in [20]).

First of all, there are p critical directions θ1, . . . , θp which are given by

arg u + pθ = 0 (mod 2π), (2.4)

where u is the leading coefficient of P (z) = uzp−2 + · · · . In a sector

Sj =
{

|arg z − θj | <
2π

p
− δ; |z| > R

}
,

where R > 0 is sufficiently large and δ > 0, the equation (2.3) has two linear independent
solutions:

g1(z) = P (z)−1/4 exp(iZ + o(1)),

g2(z) = P (z)−1/4 exp(−iZ + o(1));

}
(2.5)

here

Z =
∫ z

2Reiθj

P (t)1/2 dt =
2
p
u1/2z1/2p(1 + o(1)) for z → ∞ in Sj . (2.6)

If f is a meromorphic solution of the Schwarzian equation (2.1), then there are a, b, c, d ∈
C with ad − bc 	= 0 such that

f(z) =
ag1(z) + bg2(z)
cg1(z) + dg2(z)

, z ∈ Sj . (2.7)

Observe that f(z) → a/c if z → ∞ on any ray in Sj ∩ {arg z < θj} and that f(z) → b/d

if z → ∞ on any ray in Sj ∩ {arg z > θj}. The asymptotic values of f are given by all
the a/c, b/d corresponding to all the sectors Sj , j = 1, . . . , p.

With this precise description of the asymptotic behaviour of f , one can show [20] that

|f ′(z)| � |z|ρ−1|α + βf(z) + γf(z)2| for z ∈ Sj , (2.8)

where α = −ab/δ, β = (ad + bc)/δ, γ = −cd/δ and δ = ad − bc.
Let us finally mention that, in the case where all asymptotic values of f are finite,

γ 	= 0 and that f has (in fact, infinitely many) poles.
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2.3. Semi-hyperbolic functions

Definition 2.2. A function f : C → Ĉ which satisfies the following three properties
is called semi-hyperbolic.

(i) ∞ 	∈ Af ∪ Pf .

(ii) Every asymptotic value that belongs to the Fatou set is in an attracting component.

(iii) Asymptotic values that are in the Julia set are non-recurrent: Af ∩ Pf ∩ Jf = ∅.

This definition implies in particular that all the asymptotic values of the function f

are finite and that the post-singular set is bounded and nowhere dense in the Julia set.
The natural name for this class of functions would be boundedly non-recurrent functions.
However this may lead to confusions especially with the (quite different) non-recurrent
functions studied by Rempe and van Strien [25]. However, Rempe and van Strien provide
a new Mañé theorem (generalizing the work by Graczyk et al . [9]) which gives the
expanding property on compact invariant sets. Applied to our setting and to the set Pf

we thus have the following useful fact.

Proposition 2.3. If f is semi-hyperbolic, then f is expanding on Pf ∩ Jf .

Besides the assumption that the asymptotic values and Pf stay away from infinity, the
conditions on the orbits of the asymptotic values imply that we deal with two types of
function.

(i) Functions having the whole set of asymptotic values in the Julia set: Af ⊂ Jf . For
those functions we always have Jf = Ĉ.

(ii) Some of the asymptotic values are in attracting domains and some are in the Julia
set. In this case Ff 	= ∅, the spherical Lebesgue measure of Jf is zero and thus,
contrary to the preceding case, it cannot be used as a conformal measure.

Examples are standard. They are related to the bifurcation (or instable) part of the mod-
uli space of a function. For the sake of completeness we provide examples of Misiurewicz
type in the appendix.

From now on we fix a number T > 0 having the following properties:

(T1) 4T < |a1 − a2| for all distinct a1, a2 ∈ Af ;

(T2) B(Pf , 4T ) ∩ Af ∩ Jf = ∅; and

(T3) Jf ∩ f−1(Af ∪ Pf ) ∩ (B(Af ∪ Pf , 4T ) \ (Af ∪ Pf )) = ∅.

To every asymptotic value a ∈ Af ∩ Jf there correspond (finitely many) logarithmic
tracts Ua. In the following, such a tract Ua will always be a component of f−1(D(a, T ))
and we may suppose that Ua ∩ B(Af ∪ Pf , 4T ) ∩ Jf = ∅.

Because of the expanding property, we may also require that T > 0 is so small that
|(fp)′|σ > 2 on B(Pf ∩ Jf , T ) for some p � 1 and that there are open neighbourhoods
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Ω1, Ω0 of Pf ∩ Jf such that Ω̄1 ⊂ Ω0 ⊂ B(Pf , T ) and that g = fp|Ω1 : Ω1 → Ω0 is a
proper mapping. Define

Ωn = g−n(Ω0) and Γn = Ωn \ Ωn+1. (2.9)

Using the facts that repelling periodic points are dense in Jf and that Jf contains
poles, one can easily prove the following.

Observation 2.4 (topological exactness of f). For every non-empty open set U

intersecting Jf , there exists n � 0 such that fn(U) ⊃ Ĉ \ Af . In particular, for every
r > 0 there exists qr � 0 such that fqr (D(z, r)) ⊃ Ĉ \ Af for all z ∈ Jf .

Since Pf is a closed forward-invariant set and the map f |Pf
is expanding, following

the inverse trajectory of a point near Pf , one can prove the following.

Observation 2.5 (repeller). The set Pf ∩ Jf is a repeller for f ; precisely, assuming
T > 0 to be small enough, we have

∞⋂
n=0

f−n(B(Pf ∩ Jf , 2T )) = Pf .

2.4. First observations and the transfer operator

If one chooses the right metric space (C, dσ), then the ergodic theory of meromorphic
functions can be well developed. This has been done in great generality and in the hyper-
bolic case in [19,20]. For the functions we consider here, the right geometry is simply
the spherical one (which results from (2.8); indeed, the functions satisfy the balanced
growth condition of [19] with α1 = ρ − 1 and with α2 = 2, the latter meaning that one
has to work with the spherical metric).

Lemma 2.6. Let f : C → Ĉ be of polynomial Schwarzian derivative with ∞ 	∈ Af .
Then, if z belongs to a logarithmic tract U2T ⊂ f−1(D(a, 2T )) over an asymptotic value
a ∈ Af , we have that

|f ′(z)|σ � (1 + |z|ρ+1)|f(z) − a|

and otherwise
|f ′(z)|σ � 1 + |z|ρ+1

where ρ = ρ(f) < ∞ is the order of f .

Proof. This follows from asymptotic description of f near infinity (in particular (2.8))
together with the fact that f has only simple poles. �

Let us consider the transfer operator with respect to the spherical geometry:

Ltϕ(w) =
∑

z∈f−1(w)

|f ′(z)|−t
σ ϕ(z) ϕ ∈ C(Jf ). (2.10)
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It follows from Lemma 2.6 that

Lt1(w) � max{1, dist(w,Af )−t}
∑

z∈f−1(w)

(1 + |z|ρ+1)−t (2.11)

for every w ∈ Ĉ\Af . The last sum is very well known in the theory of meromorphic func-
tions, and a theorem of Borel [23] together with the divergence property of f established
in [20, Theorem 3.2] implies that

Lt1(w) < ∞ ⇐⇒ t >
ρ

ρ + 1
. (2.12)

We need the following additional properties.

Proposition 2.7. For every t > ρ/(ρ + 1) there exists a constant Mt such that

Σ(t, w) =
∑

z∈f−1(w)

(1 + |z|ρ+1)−t � Mt for every w ∈ Ĉ.

The proof of this result uses parts of [19,20] and relies heavily on Nevanlinna theory.
(Good references for this are [4, 22].) Let us simply recall that nf (r, a) denotes the
number of a-points of modulus at most t, that the integrated counting number Nf (r, a)
is defined by dNf (r, a) = nf (r, a)/r and that Tf (r) denotes the characteristic function
of f .

Proof. Fix ε = 1 and let A > 0 be a constant that will be made precise later. We
may suppose that the origin is not a pole of f .

Case 1 (w �∈ D(f(0), ε)). Then we have that

Σ(t, w) � CA +
∑

f(z)=w,

|z|>A

(1 + |z|ρ+1)−t � CA +
∑

f(z)=w,

|z|>A

|z|−u

with CA = supw∈Ĉ
nf (w, A) < ∞ and with u = (ρ + 1)t. Since f is of finite order ρ, we

can make the following two integrations by parts:

∑
f(z)=w,

|z|>A

|z|−u = −nf (A, w)
Au

− u
Nf (A, w)

Au+1 + u2
∫ ∞

A

Nf (s, w)
su+1 � u2

∫ ∞

A

Nf (s, w)
su+1 .

The First Main Theorem of Nevanlinna [19, Corollary 4.2] gives

Nf (r, w) � Tf (r) − log[f(0), w],

where [a, b] denotes the chordal distance on the Riemann sphere (with, in particular,
[a, b] � 1 for all a, b ∈ Ĉ). Since in this first case w 	∈ D(f(0), ε), there exists Θ < ∞
such that

Nf (r, w) � Tf (r) + Θ for every w 	∈ D(f(0), ε).
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Therefore,

∑
f(z)=w,

|z|>A

(1 + |z|ρ+1)−t � u2
∫ ∞

A

Tf (s) + Θ

su + 1
ds = M̃u < ∞ for every w 	∈ D(f(0), ε).

All in all, there exists M
(1)
u < ∞ such that

Σ(t, w) � M (1)
u for every w 	∈ D(f(0), ε).

Case 2 (w ∈ D(f(0), ε)). We are led to find a uniform bound for

∑
f(z)=w,

|z|>A

|z|−u, w ∈ D(f(0), ε).

Let v ∈ C be a point that is not a pole of f and such that |f(−v) − f(0)| > 2ε. Set
A = 3|v| and define the meromorphic function g(ξ) = f(ξ − v) + v. If ξ = z + v, then
f(z) = w is equivalent to g(ξ) = w + v.

Notice that g(0) = f(−v) + v. If we set a = w + v, then

|a − g(0)| = |w − f(−v)| � |f(−v) − f(0)| − |f(0) − w| > ε. (2.13)

On the other hand, if |ξ − v| � A, then |ξ| � A − |v| � 2|v| and

1
|ξ − v| � 2

|ξ| .

It follows that ∑
f(z)=w,

|z|>A

|z|−u =
∑

g(ξ)=a,

|ξ−v|>A

|ξ − v|−u �
∑

g(ξ)=a,

|ξ|>2|v|

(
2
|ξ|

)u

.

In the same way as before, we can again use the First Main Theorem of Nevanlinna theory,
this time applied to the function g. Remember that by (2.13) we have a 	∈ D(g(0), ε)
whenever w = a − v ∈ D(f(0), ε). Therefore,

∑
f(z)=w,

|z|>A

|z|−u � 2u
∑

g(ξ)=a,

|ξ|>2|v|

|ξ|−u � ˜̃Mu

for every a = w + v, w ∈ D(f(0), ε). It follows that there exists M
(2)
u < ∞ such that

Σ(t, w) � M (2)
u for every w ∈ D(f(0), ε).

All in all, we have shown that there is Mt < ∞ such that ‖Σ(t, ·)‖∞ � Mt. �
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3. Conformal measures

Conformal measures are frequently obtained via the standard Patterson–Sullivan method.
We will make use of Denker and Urbański’s K(V )-method, which is explained in detail
in [24, Chapter 11] (see also [16, Appendix 1]). The main reason for using this method
is that, for meromorphic functions, one must check very carefully what is going on at
infinity, because at this point the function is not defined. In other words, the support of
a conformal measure is the non-compact set Jf ∩ C.

Definition 3.1. A probability measure m on the Julia set Jf of a meromorphic func-
tion f : C → Ĉ is a t-conformal measure for f if m({∞}) = 0 and if for every measurable
set E ⊂ C for which the restriction f |E is injective, we have

m(f(E)) =
∫

E

|f ′|tσ dm. (3.1)

If ever the exponent t is sufficiently large that the transfer operator is well defined
(in our case t > ρ/(ρ + 1)), then we can reformulate this definition in terms of the
transfer operator: m is t-conformal if and only if L∗

t m = m [5]. Notice that the condition
m({∞}) = 0 is important here. If m is a probability measure on Jf that satisfies (3.1)
but has some mass c = m({∞}) > 0 at infinity, then we only have

L∗
t m = m − cδ∞.

If Jf = Ĉ, which is the case when all the asymptotic values are strictly pre-periodic,
the spherical Lebesgue measure is a 2-conformal measure. Therefore, we could restrict
our discussion in the following subsection to functions with non-empty Fatou set.

3.1. Existence of conformal measures

In the following f : C → Ĉ will again be a semi-hyperbolic meromorphic function of
polynomial Schwarzian derivative.

In the K(V )-method, one first restricts f to a compact invariant set that does not
contain critical points or ∞. In our case, f does not have critical points. We therefore
set Vj = D(∞, 1/j), for every j � 1, and consider the compact f -invariant set

Kj =
⋃
n�0

f−n(C \ Vj) = {z ∈ C; fn(z) 	∈ Vj , n � 0}.

Then the K(V )-method provides a so-called semi-conformal measure mj for f |Kj . More
precisely [16, Lemma 8.2], there exist sj ∈ [0, 2] and a Borel probability measure mj on
Kj such that

mj(f(A)) �
∫

A

|f ′|sj
σ dmj (3.2)

for every Borel set A ⊂ C such that f |A : A → f(A) is one-to-one and

mj(f(A)) =
∫

A

|f ′|sj
σ dmj if, in addition, A ∩ V̄j = ∅. (3.3)
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Passing to a subsequence if necessary, we may suppose that mj converges weakly to
some probability measure m on Jf and sj → h ∈ [0, 2] as j → ∞. We then have two
possibilities.

Case 1 (m({∞}) = 0). In this case we do have an h-conformal measure for the
function f : C → Ĉ as defined in Definition 3.1. As remarked upon right after this
definition, we need a good lower bound for the exponent h in order to be able to deal
with the transfer operator.

Proposition 3.2. For a semi-hyperbolic meromorphic function f of polynomial
Schwarzian derivative with Ff 	= ∅ we have that

2
ρ

ρ + 1
< h.

Proof. Let a ∈ Af ∩ Jf and let a′ = f(a). The function f is expanding on Pf ∩ Jf ,
meaning that there exists p > 0 such that |(fp)′|σ > 2 on B(Pf ∩ Jf , T ). Again let
g = fp

Ω1
(see (2.9)). Notice that g(D(gn(a′), T )) ⊃ D(gn+1(a′), T ). Denote

An = D(gn(a′), T ) \ g−1
gn(a′)(D(gn+1(a′), T )). (3.4)

Increasing p if necessary, we have, from the fact that Pf ∩ Jf is compact and nowhere
dense in Jf ∩ C together with the fact that the conformal measure m has positive mass
on open sets that intersect the Julia set, that

inf
n�0

m(An) � c > 0.

If Vn = f−1
a ◦ g−n

a′ (An), then

m(Vn) � (|f ′(a)|σ|(gn)′(a′)|σ)−hm(An) � diam(Vn)h, n � 1. (3.5)

The preimages of Vn to a logarithmic tract U over a can be labelled by Un,k = f−1
k (An).

Let zn,k ∈ Un,k be any point. Then

m(Un,k) � |f ′(zn,k)|−h
σ diam(Vn)h

� |zn,k|−(ρ+1)h|f(zn,k) − a|−h diam(Vn)h

� |zn,k|−(ρ+1)h, (3.6)

where the relation
|zn,k| � (n2 + k2)1/2ρ (3.7)

follows from an elementary calculation based on (2.6) and (2.7). Hence,

1 � m(U) =
∑
n,k

m(Un,k) �
∑
n,k

|zn,k|−(ρ+1)h �
∑
n,k

(n2 + k2)−(ρ+1)h/2ρ. (3.8)

The assertion of the lemma now follows, since the last sum is convergent if and only if
(ρ + 1)h/2ρ > 1. �
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Case 2 (m({∞}) = c > 0). If this case occurs, then m is not really conformal but it
still has the most important property (3.1). This implies that m has mass on every point
of O−(∞), from which it follows that m has positive mass on open sets that intersect the
Julia set. Therefore, the proof of Proposition 3.2 is also valid in this case and we again
have that

2
ρ

ρ + 1
< h.

This information is sufficient to show that this second case does not occur. In order to
prove this let us consider again the measures mj . Since the associated exponents sj → h

as j → ∞, there exists j0 � 1 such that sj > 2ρ/(ρ + 1) for every j � j0.

Lemma 3.3. The sequence (mj)j is tight at ∞, i.e. for every ε > 0 there is R > 0
such that mj(WR) < ε for every j � j0, where WR = {|z| > R}.

Proof. The set WR can be written as

WR =
⋃

a∈Af

(Ua ∩ WR) ∪ W̃R,

where the union is taken over all the (finitely many) logarithmic tracts Ua ⊂ f−1(D(a, T ))
over the asymptotic values a ∈ Af .

Let us first consider W̃R. From the semi-conformality of the measures mj and, more
precisely, from the inequality (3.2), one deduces, similarly to the conformal case, that∫

Lsj ϕ dmj �
∫

ϕ dmj for every integrable function ϕ.

For ϕ = 1W̃R
this gives

mj(W̃R) �
∫

Lsj1W̃R
dmj .

Since
sj > 2

ρ

ρ + 1
>

ρ

ρ + 1
,

there exists γ > 0 such that (ρ + 1)sj − 2γ > ρ for every j � j0. Then it follows from
Proposition 2.7 that

mj(W̃R) �
∫

Lsj1W̃R
dmj

�
∫

C

∑
z∈f−1(w)

1W̃R
(z)|z|−(ρ+1)sj dmj(w)

� 1
Rγ

∫
C

∑
z∈f−1(w)

(1 + |z|)γ−(ρ+1)sj dmj(w)

� M

Rγ

for every j � j0.
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Let us now figure out what happens on a logarithmic tract U = Ua ⊂ f−1(D(a, T ))
over a ∈ Af . Using the notation and arguments from the proof of Proposition 3.2, one
has mj(Vn) � diam(Vn)sj and

mj(Un,k) � |f ′(zn,k)|−sj
σ diam(Vn)sj � |zn,k|−(ρ+1)sj � (n2 + k2)−(ρ+1)sj/2ρ.

Therefore,
mj(U) =

∑
n,k

mj(Un,k) �
∑
n,k

(n2 + k2)−(ρ+1)sj/2ρ < ∞

since sj > 2ρ/(ρ + 1).
The constants involved in these estimates do not depend on j. Moreover, increasing j0

if necessary, there exists τ > 2ρ/(ρ + 1) such that sj � τ for every j � j0. Consequently,
in the last sum of the previous estimation one can replace the exponent sj by τ and it
follows that mj(U ∩ WR) → 0 as R → ∞ uniformly in j � j0. �

In conclusion, this second case does not occur. All in all we have shown that f has an
h-conformal measure m. In the following, m will always refer to this conformal measure
and h, or even hf , denotes the corresponding exponent of conformality.

3.2. Additional properties

Recall the definition of the annuli Γn are given in (2.9). We start with the following.

Lemma 3.4. There exists 0 < γ < 1 such that m(Γn) � γn for every n � 0.

Proof. Let Pf ∩ Jf ⊂
⋃N

j=1 Dj , where the discs Dj = D(xj , 2T ), xj ∈ Pf ∩ Jf , built
a Besicovitch covering of Pf . We may suppose that Ω0 ⊂

⋃N
j=1 Dj . Fix q � 1 such that,

for every j = 1, . . . , N ,
m(Γq ∩ Dj) � ηm(Γ0 ∩ Dj),

with η > 0 some small number to be determined later. Remember that g = fp|Ω1 . Clearly,
all the inverse branches of gn are well defined and of bounded distortion on every disc Dj .
Let us denote these by g−n

∗ . With this notation we can calculate, for every n � 1, that

m(g−n(Dj ∩ Γq)) =
∑

∗
m(g−n

∗ (Dj ∩ Γq))

=
∑

∗

m(g−n
∗ (Dj ∩ Γq))

m(g−n
∗ (Dj ∩ Γ0))

m(g−n
∗ (Dj ∩ Γ0))

�
∑

∗

m(Dj ∩ Γq)
m(Dj ∩ Γ0)

m(g−n
∗ (Dj ∩ Γ0))

� η
∑

∗
m(g−n

∗ (Dj ∩ Γ0))

= ηm(g−n(Dj ∩ Γ0)).

Summing over j and using the Besicovitch property of the covering we get that

m(Γq+n) � Cηm(Γn) for every n � 0.

The assertion follows, provided that η has been chosen such that Cη < 1
2 . �
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In the rest of this section we denote by ν any h-conformal measure (and keep m for the
conformal measure that has been constructed above). Note that, for any Borel probability
measure ν on a compact metric space (X, ρ),

Mν(r) := inf{ν(B(x, r)) : x ∈ supp(ν)} > 0

for every r > 0. Let us also prove the following.

Lemma 3.5. For any h-conformal measure ν we have ν(Pf ∩ Jf ) = 0.

Proof. Recall that one condition imposed on T was that, for every z ∈ Pf ∩ Jf and
every n � 0, there exists a holomorphic inverse branch f−n

z : D(fn(z), 2T ) → Ĉ of fn

sending fn(z) to z. It then follows from the bounded distortion property (Lemma 2.1)
that

ν(D(z, K−1T |(fn)′(z)|−1
σ )) � ν(f−n

z (D(fn(z), T )))

� |(fn)′(z)|−h
σ ν(D(fn(z), T ))

� |(fn)′(z)|−h
σ . (3.9)

Since Pf ∩ Jf is a nowhere-dense subset of Jf , there exists γ > 0 such that for every
y ∈ Pf ∩ Jf there exists ŷ ∈ Jf such that

Dy := D(ŷ, γ) ⊂ D(y, K−2T ) \ Pf .

Then

f−n
z (Dfn(z)) ⊂ f−n

z (D(fn(z), K−2T )) \ Pf ⊂ D(z, K−1T |(fn)′(z)|−1
σ ) \ Pf (3.10)

and
ν(f−n

z (Dfn(z))) � |(fn)′(z)|−h
σ ν(Dfn(z)) � Mν(γ)|(fn)′(z)|−h

σ .

Combining this with (3.9) and (3.10), and noting that supp(ν) = Jf , we get that

ν(D(z, K−1T |(fn)′(z)|−1
σ ) \ Pf )

ν(D(z, K−1T |(fn)′(z)|−1
σ ))

� Mν(γ) for every n � 1.

Therefore,

lim sup
r→0

ν(D(z, r) \ Pf )
ν(D(z, r))

� Mν(γ) > 0.

So, z is not a Lebesgue density point of ν, and therefore ν(Pf ∩ Jf ) = 0. �

3.3. Metric exactness, conservativity and ergodicity

Suppose that (X, F , ν) is a probability space and that T : X → X is a measurable map
such that T (A) ∈ F whenever A ∈ F . The map T : X → X is said to be weakly metrically
exact provided that limn→∞ ν(Tn(A)) = 1 whenever A ∈ F and ν(A) > 0. The measure
ν is called conservative if, for every Borel set A of positive measure, the ν-a.e. orbit
returns infinitely many times into A. A straightforward observation concerning weak
metrical exactness is as follows.
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Observation 3.6. If a measurable transformation T : X → X of a probability space
(X, F , ν) is weakly metrically exact, then it is ergodic and conservative.

In the context of invariant measures we have the following, more involved fact, which
also indicates a dynamical significance of weak metrical exactness (see, for example, [24]).

Fact 3.7. A measure-preserving transformation T : X → X of a probability space
(X, F , µ) is weakly metrically exact if and only if it is exact, which means that

lim
n→∞

µ(Tn(A)) = 1

whenever A ∈ F and µ(A) > 0 or, equivalently, the σ-algebra
⋂

n�0 T−n(F) con-
sists of sets of measure 0 and 1 only. Then Rokhlin’s natural extension (T̃ , X̃, µ̃) of
(T, X, µ) is K-mixing.

The main result of this subsection is the following.

Theorem 3.8. The measure m is the only regular probability measure on Jf having
the property

m(f(E)) =
∫

E

|f ′|hσ dm for every measurable set E such that f |E is injective. (3.11)

In particular, m is a unique h-conformal measure for f . The dynamical system f :
Jf → Jf is weakly metrically exact with respect to m. In particular, it is ergodic and
conservative.

Proof. Let
P∗

f =
{

z ∈ Jf : dist
σ

(z,Af ∪ Pf ) > 2T
}

.

By Observation 2.5,

J∗
f = {z ∈ Jf \ O−(∞) : ω(z) ∩ P∗

f 	= ∅} = Jf \
∞⋃

n=0

f−n(Pf ∪ {∞}). (3.12)

Take z ∈ J∗
f . Then there exists a strictly increasing sequence (nj = nj(z))∞

j=1 of positive
integers such that

fnj (z) ∈ P∗
f \ {∞}

for all j � 1. Then, for every j � 1, there exists a meromorphic inverse branch
f

−nj
z : D(fnj (z), 2T ) → Ĉ of fnj sending fnj (z) to z. Let ν be a regular probability

measure on Jf that satisfies (3.11). It then follows from Lemma 2.1 (the bounded dis-
tortion property) that

ν(D(z, K−1T |(fnj )′(z)|−1
σ )) � ν(f−nj

z (D(fnj (z), T )))

� |(fnj )′(z)|−h
σ ν(D(fnj (z), T ))

� |(fnj )′(z)|−h
σ . (3.13)
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Put
rj(z) = (4K)−1T |(fnj )′(z)|−1

σ .

The above formula can then be rewritten as

ν(D(z, 4rj(z))) � rh
j (z). (3.14)

It also follows from Lemma 2.1 that

ν(D(z, rj(z))) � ν(f−nj
z (D(fnj (z), ((4K2)−1T ))))

� |(fnj )′(z)|−h
σ ν(D(fnj (z), 4K2)−1T )

� Mν((4K2)−1T )|(fnj )′(z)|−h
σ

� rh
j (z). (3.15)

Now fix E, an arbitrary Borel set contained in J∗
f . Fix also ε > 0. Since the measure m

is regular, for every z ∈ E there exists j(z) � 1 such that, with r(z) = rj(z)(z), we will
have

m

( ⋃
z∈E

D(z, r(z))
)

� m(E) + ε. (3.16)

By the (4r)-Covering Theorem there now exists a countable set Ê ⊂ E such that the
balls {D(z, r(z))}z∈Ê are mutually disjoint and⋃

z∈Ê

D(z, 4r(z)) ⊃
⋃
z∈E

D(z, r(z)) ⊃ E.

Hence, using (3.14), (3.15) (with ν replaced by m) and (3.16), we get

ν(E) �
∑
z∈Ê

ν(D(z, 4r(z)))

� (4K2/T )h
∑
z∈Ê

rh(z)

� K2hMm((4K2)−1T )
∑
z∈Ê

m(D(z, r(z)))

� m

( ⋃
z∈Ê

D(z, r(z))
)

� m(E) + ε.

Thus, letting ε ↘ 0, we get ν(E) � m(E). Hence, ν|J∗
f

is absolutely continuous with
respect to m|J∗

f
. Exchanging the roles of ν and m, we get that m|J∗

f
� ν|J∗

f
and finally

that ν|J∗
f

is equivalent to m|J∗
f
. Since, in view of Lemma 3.5,

m

( ∞⋃
n=0

f−n(Pf )
)

= ν

( ∞⋃
n=0

f−n(Pf )
)

= 0,
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we thus conclude that ν and m are equivalent on Jf \ O−(∞). Finally, if ν(O−(∞)) > 0,
then ν∗ = ν|O−(∞) would be a measure that satisfies (3.11) and which is without mass
on Jf \ O−(∞). But then we would have a contradiction, since we have just seen that m

and ν∗ are equivalent on Jf \ O−(∞). Therefore, ν(O−(∞)) = 0 and both measures are
equivalent on the whole Julia set.

Passing to the proof of weak metrical exactness of f with respect to the measure m,
suppose that E ⊂ Jf and

lim sup
n→∞

sup{m(fn(E) ∩ D(y, K−2T ))/m(D(y, K−2T )) : y ∈ P∗
f } = 1. (3.17)

We shall show that
lim sup

n→∞
m(fn(E)) = 1. (3.18)

By virtue of Observation 2.4 there exists q � 0 such that

fq(D(y, K−2T )) ⊃ Ĉ \ Af

for all y ∈ Jf . Clearly, by conformality of m, for every ε > 0 there then exists δ > 0 such
that if y ∈ Jf , G ⊂ D(y, K−2T ), and if m(G)/m(D(y, K−2T )) � 1−δ, then m(fq(G)) �
1 − ε. Combining this with (3.17) yields (3.18). In order to obtain the weak metrical
exactness of m, suppose by contradiction that E ⊂ Jf and lim supn→∞ m(fn(E)) < 1.
By (3.17) and (3.18), this implies that

2κ := lim inf
n→∞

inf{m(D(y, K−2T ) \ fn(E))/m(D(y, K−2T )) : y ∈ P∗
f } > 0.

So, for all n � 1 large enough, say n � p,

inf{m(D(y, K−2T ) \ fn(E))/m(D(y, K−2T )) : y ∈ P∗
f } � κ > 0.

Fix z ∈ E ∩J∗
f . We shall show that z is not a Lebesgue density point for the measure m.

Let nj = nj(z) � p, j � 1, have the same meaning as in the first part of the proof. Then

f−nj
z (D(fnj (z), K−2T ) \ fnj (E)) ⊂ D(z, K−1T |(fnj )′(z)|−1

σ ) \ E (3.19)

and

m(f−nj
z (D(fnj (z), K−2T ) \ fnj (E)))

� K−h|(fnj )′(z)|−h
σ m(D(fnj (z), K−2T ) \ fnj (E))

� κK−h|(fnj )′(z)|−h
σ m(D(fnj (z), K−2T ))

� κK−hMm(K−2T )|(fnj )′(z)|−h
σ .

Combining this along with (3.19) and (3.13), we get that

m(D(z, K−1T |(fnj )′(z)|−1
σ ) \ E)

m(D(z, K−1T |(fnj )′(z)|−1
σ ))

� κK−2hMm(K−2T ).
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Therefore,

lim
r→0

m(D(z, r) \ E)
m(D(z, r))

� κK−2hMm(K−2T ) > 0.

So, z is not a Lebesgue density point for m. Thus m(E ∩ J∗
f ) = 0. Since m(J∗

f ) =
1 (see Lemma 3.5 and (3.12)), we finally obtain that m(E) = 0. The weak metrical
exactness of f with respect to m is established. Ergodicity and conservativity follow
from Observation 3.6. Since ν (introduced in the first part of the proof) is equivalent to
m, the equality ν = m follows from ergodicity of m. This completes the proof. �

4. Invariant measures

We now consider f : C → Ĉ a semi-hyperbolic meromorphic function f of polynomial
Schwarzian derivative and investigate invariant measures equivalent to the conformal
measure m obtained in the previous section. In particular, in the course of this section
we prove Theorem 1.1.

4.1. Existence of σ-finite invariant measures.

Since we have already established conservativity of the conformal measure m, we can
use the method of Martens [18] (see also [16] for a description of this method) in order
to obtain the following.

Proposition 4.1. Let f be a semi-hyperbolic meromorphic function f of polynomial
Schwarzian derivative and let m be the conservative h-conformal measure of f with
m(Pf ) = 0. Then there exists µ a σ-finite invariant measure absolutely continuous with
respect to m.

Proof. Using a Whitney decomposition of C \ (Af ∪ Pf ) it is easy to construct a
countable partition {An; n � 0} of X = Jf \ ({∞} ∪ Af ∪ Pf ) such that for every
n, m � 0 there exists k � 0 such that

m(f−k(Am) ∩ An) > 0.

Since m has no mass on Jf \X and since m is conservative, Martens’s result [18] applies
and gives the σ-finite invariant measure absolutely continuous with respect to m. Notice
that for every Borel set A ⊂ X we have that

µ(A) = lim
n→∞

∑n
k=0 m(f−k(A))∑n
k=0 m(f−k(A0))

. (4.1)

For the choice of the set A0 there is much freedom. In particular, we will use the fact
that A0 ⊂ X is such that all the inverses of the iterates of f are well defined and have
bounded distortion. �

Let ∆ = Ĉ \ B(Af ∪ Pf , T ).

Lemma 4.2. There is K > 1 such that 1/K � ϕ < K on ∆, where ϕ = dµ/dm.
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Proof. Let z ∈ ∆. From (4.1) it follows that

ϕ(z) = lim
r→0

µ(D(z, r))
m(D(z, r))

� lim
r→0

1
m(D(z, r))

lim
n→∞

∑n
k=0 Lk

h1(z)m(D(z, r))∑n
k=0 Lk

h1(z0)m(A0)
,

where z0 ∈ A0 is any point. Now, if z1, z2 ∈ ∆ are any two points, then they can be
joined by a chain of at most N = N(∆) spherical discs of radius T . On each of these
discs all the inverse branches of every iterate of f are well defined and have distortion
bounded by some universal constant. Therefore,

Lk
h1(z) � Lk

h1(z0) for every k � 0.

The lemma is proved. �

This simple observation on the density h has several important applications, starting
with the following.

Proposition 4.3. µ(B(Af ∩ Jf , T )) < ∞.

Proof. It suffices to show that µ(D(a, T )) < ∞, a ∈ Af ∩ Jf . The measure µ being
invariant, we have µ(D(a, T )) = µ(f−1(D(a, T ))). By the choice of the constant T > 0
(see (T3)), we obtain

f−1(D(a, T )) ∩ B(Af ∪ Pf , T ) ∩ Jf = ∅.

It therefore follows from Lemma 4.2 that

µ(D(a, T )) = µ(f−1(D(a, T ))) � m(f−1(D(a, T ))) < ∞.

�

4.2. When is the σ-finite invariant measure finite?

To our great surprise it turns out that finiteness of the invariant measure µ does depend
on the order of the function.

Theorem 4.4. Let f be a semi-hyperbolic meromorphic function of polynomial
Schwarzian derivative and let m be the (unique) hf -conformal measure of f . Then there
is a finite f -invariant measure µ absolutely continuous with respect to m if and only if
h > 3ρ/(ρ + 1).

Consequently, the invariant measure µ can be finite in the particular case of the tangent
family and also for the examples of (2.2) that involve the Airy functions. Notice that
3ρ/(ρ + 1) � 2 as soon as the order ρ = 1

2 deg(P ) + 1 � 2.

Corollary 4.5. A semi-hyperbolic solution f of the polynomial Schwarzian equation
S(f) = 2P can have a finite invariant measure absolutely continuous with respect to the
hf -conformal measure if and only if deg(P ) = 0 or deg(P ) = 1.
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We now prove Theorem 4.4 in several steps and again use the notation given in (2.9).
In the following let us consider f , a semi-hyperbolic meromorphic function of polynomial
Schwarzian derivative, and let m again be the hf -conformal measure of f .

Lemma 4.6. If hf � 3ρ/(ρ + 1), then there is no finite invariant measure absolutely
continuous with respect to m.

Proof. Suppose to the contrary that such a finite invariant measure µ exists. Remem-
ber that g = fp|Ω1 : Ω1 → Ω0. Let a ∈ Af ∩ Jf , and set a′′ = fp(a) and D′′ = D(a′′, T ).
By invariance of µ we have that

µ(Ωn) = µ(f−p(Ωn)) � µ(f−p
a (Ωn ∩ D′′)) + µ(Ωn+1), n � 0.

If we define Wn = f−p
a (Ωn ∩ D′′), then we get inductively that

µ(Ω0) �
∑
n�0

µ(Wn).

Since |(fp)′|σ is bounded on B({a} ∪ (Pf ) ∩ Jf , 2T ), there exists L > 1 such that Wn ⊃
D(a, L−n) for every n � 1. Therefore,

µ(Ω0) �
∑
n�0

µ(D(a, L−n)) �
∑
n�0

µ(f−1(D(a, L−n)) ∩ Ua)

with Ua a logarithmic tract over the asymptotic value a. But, on Ua, µ is equivalent to
the conformal measure m (Lemma 4.2) and, with the same calculations that lead to (3.8),
we get that

∑
n�0

m(f−1(D(a, L−n)) ∩ Ua) �
∑
n�0

( ∑
N�n

∑
k

(N2 + k2)−(ρ+1)/(2ρ)h
)

, (4.2)

which is finite if and only if h > 3ρ/(ρ + 1). �

It remains to investigate the case when h > 3ρ/(ρ + 1). In order to do so we write

f−p(Γn) = Γn+1 ∪ Wn ∪ Sn, (4.3)

where
Wn =

⋃
a∈Af

W a
n with W a

n = f−p
a (D′′

a ∩ Γn), D′′
a = D(fp(a), T )

and where Sn is the remaining set. The measure µ being f -invariant, the sequence
(µ(Γn))n is decreasing. We need the following additional property.

Lemma 4.7. For the σ-finite invariant measure µ we have that limn→∞ µ(Γn) = 0.

https://doi.org/10.1017/S0013091507001332 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507001332


Ergodic properties of semi-hyperbolic functions 491

Proof. Let l = limn→∞ µ(Γn). From (4.3) it follows inductively that

µ(Γ0) = l +
∞∑

n=0

(µ(Wn) + µ(Sn)).

It is therefore natural to consider the set B =
⋃∞

n=0(Wn ∪ Sn). Define Γ∞ = Γ0 ∪ B and
let f∞ be the induced map, i.e. the first return map, of fp on the set Γ∞. Since µ is
conservative, the conditional measure µ∞ = µ/µ(Γ∞) is f∞-invariant [1]. Hence,

µ∞(B) = µ∞(f−1
∞ (Γ0)) = µ∞(Γ0),

which implies that µ(B) = µ(Γ0). But this is only possible if l = 0. �

The last step of the proof of Theorem 4.4 is the following.

Lemma 4.8. If hf > 3ρ/(ρ + 1), then the measure µ is finite.

Proof. We have to show that µ(Ω0) < ∞. Since limn→∞ µ(Γn) = 0, it follows by
induction that

µ(Ω0) =
∞∑

N=0

µ(ΓN ) =
∞∑

N=0

( ∞∑
n=N

µ(Wn) + µ(Sn)
)

.

Let us first consider the term corresponding to Sn.
Again choose a Besicovitch covering of Ω0 by discs Dj = D(xj , 2T ), xj ∈ Pf ∩ Jf . Let

D be one of these discs and denote by f−p
∗ the inverse branches of fp defined on D such

that
Sn =

⋃
D∈{Dj}

⋃
∗

f−p
∗ (Γn ∩ D) for every n � 0.

Since there exists c > 0 for which the sets Sn ⊂ ∆ = Ĉ \ B(Af ∪ Pf , cT ), we have
µ(Sn) � m(Sn) (Lemma 4.2). Therefore, we can make the following estimation:

µ

( ⋃
∗

f−p
∗ (Γn ∩ D)

)
�

∑
∗

m(f−p
∗ (Γn ∩ D)) �

∑
∗

|(fp)′(z∗)|−h
σ m(Γn ∩ D),

where, for every ∗, z∗ is any fixed point in f−p
∗ (D). Since D ∩ B(Af , T ) = ∅, it follows

from Lemma 2.6 together with Proposition 2.7 that

µ

( ⋃
∗

f−p
∗ (Γn ∩ D)

)
�

∑
∗

(1 + |z|ρ+1)−hm(Γn ∩ D) � m(Γn ∩ D).

Summing now over the discs of the Besicovitch covering and using the exponential decay
of the m-mass of the sets Γn given in Lemma 3.4, we finally get

µ(Sn) � m(Γn) � γn,
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and thus
∞∑

N=0

∞∑
n�N

µ(Sn) < ∞.

It now suffices to obtain the corresponding statements for the sets Wn. Notice again
that

µ(Wn) = µ(f−1(Wn)) � m(f−1(Wn)).

The set f−1(Wn) contains a subset that lies in parabolic tracts and a remaining set, say
S′

n. The m-mass of the latter can be estimated exactly as for Sn. It therefore suffices
to see what happens in just one tract, Ua, and to estimate the mass of Ua ∩ f−1(Wn).
Clearly, there exists c > 0 such that Wn ⊂ D(a, c2−n). We can therefore conclude, just
as in (4.2), that

∞∑
N=0

∞∑
n�N

µ(Wn) < ∞

if and only if h > 3ρ/(ρ + 1). �

5. Bowen’s Formula, Hausdorff dimension and Hausdorff measures

We start with the following fact concerning the h-dimensional Hausdorff measure Hh

on Jf .

Proposition 5.1. If h < 2, then the h-dimensional Hausdorff measure of Jf vanishes:
Hh(Jf ) = 0. If h = 2, then Jf = Ĉ. In either case HD(Jf ) � h.

Proof. Fix an arbitrary

z ∈ Jf \
∞⋃

n=0

f−n(Af ∪ {∞}).

Then there exists an increasing unbounded sequence (nj)∞
j=1 such that for every j � 1

there exists a meromorphic inverse branch f
−nj
z : D(fnj (z), 2T ) → Ĉ sending fnj (z) to

z. Then f
−nj
z (D(fnj (z), T )) ⊂ D(z, KT |(fnj )′(z)|−1), and therefore

m(D(z, KT |(fnj )′(z)|−1
σ )) � K−h|(fnj )′(z)|−h

σ m(D(fnj (z), T ))

� Mm(T )(K2T )−h(KT |(fnj )′(z)|−1
σ )h.

Hence,

lim sup
r→0

m(D(z, r))
rh

� lim inf
j→∞

m(D(z, KT |(fnj )′(z)|−1
σ ))

(KT |(fnj )′(z)|−1
σ )h

� Mm(T )(K2T )−h > 0.

Thus,
Hh|Jf

� Cm (5.1)
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with some universal constant C > 0. Proceeding further, suppose first that h < 2. Recall
that WR = {z ∈ Ĉ : |z| > R}. It follows from (3.6) that

m(WR) � R2ρ−(ρ+1)h. (5.2)

Due to conservativity and ergodicity of the measure m, there exists a Borel set

Y ⊂ Jf \
⋃
n�0

f−n(∞)

such that m(Y ) = 1 and ∞ ∈ ω(z) for all z ∈ Y . Fix one z ∈ Y . There then exists an
unbounded increasing sequence (nj)∞

1 such that

lim
j→∞

|(fnj )(z)| = +∞ and |(fnj )(z)| � 4T−1 (5.3)

for all j � 1. Therefore, there exist meromorphic inverse branches

f−nj
z : W|(fnj (z)|) → Ĉ

sending fnj (z) to z. Set rj = 2K|(fnj )′(z)|−1
σ |fnj (z)|−1. Looking at (5.2), we get

m(D(z, rj))
rh
j

� m(f−nj
z (D(fnj )(z), 2|(fnj )(z)|−1))

rh
j

� K−h|(fnj )′(z)|−h
σ m(D(fnj )(z), 2|(fnj )(z)|−1)

Kh|(fnj )′(z)|−h
σ |(fnj )(z)|−h

� K−2h|(fnj )(z)|hm(W|(fnj )(z)|)

� K−2h|(fnj )(z)|h|(fnj )(z)|2ρ−(ρ+1)h

= K−2h|(fnj )(z)|ρ(2−h).

Since 2 − h > 0, we therefore conclude from this and (5.3) that

lim sup
r→0

m(D(z, r))
rh

� lim
j→∞

m(D(z, rj))
rh
j

� lim
j→∞

K−2h|(fnj )(z)|ρ(2−h) = +∞.

Thus, Hh(Y ) = 0. Since Hh(Jf \ Y ) = 0 by (5.1), we thus have Hh(Jf ) = 0. The case
when h < 2 is complete.

If h = 2, then, for the sequence (nj)∞
1 from the beginning of the proof, we will have

m(D(z, rj)) � r2
j , which implies that m and ls, the spherical Lebesgue measure on Ĉ, are

equivalent. So, ls(Jf ) > 0. Now, if Jf 	= Ĉ, then Jf would be nowhere dense in Ĉ and,
in the same way as Lemma 3.5, making use of the Lebesgue Density Theorem, we may
prove that ls(Jf ) = 0. This contradiction finishes the proof. �

Although Hh(Jf ) = 0 (if h < 2), we shall, however, show that h = HD(Jf ). The proof
will use the induced (first return) map we now describe. Let

X = Jf \
(

B(Pf , T ) ∪
⋃

a∈Af

f−1
a (D(f(a), T ))

)
. (5.4)
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Let f∗ : X → X be the first return map of f on X. That is,

f∗(x) = fτ(x)(x),

where τ(x) = min{n � 1 : fn(x) ∈ X}. Since f : Jf → Jf is conservative with respect
to the measure µ (see Theorem 3.8), the map f∗ is well defined on the complement of a
set of µ measure zero; in fact, as it is easy to see, it is well defined on the complement of⋃

n�0 f−n(Pf ), which is of measure zero by Lemma 3.5 and by formula (4.1). Since the
Radon–Nikodým derivative dµ/dm is uniformly bounded from above on X, µ(X) < +∞.
For every x ∈ X define

f ′
∗(x) = (fτ(x))′(x) and |f ′

∗(x)|σ = |(fτ(x))′(x)|σ.

We shall prove the following.

Lemma 5.2. β := inf{|f ′
∗(z)|σ : z ∈ X} > 0 and there exists k � 1 so large that

|(fk
∗ )′(z)|σ � 2 for all z ∈ X.

Proof. In the course of the proof of this lemma, Q denotes an appropriately large
positive constant.

Suppose first that z ∈ X ∩ Ua, where Ua is a logarithmic tract over some a ∈
Af ∩ Jf such that f(Ua) = f−1

a (D(f(a), T )). Let n � 0 be the least integer such that
fn+1(z) /∈ D(Pf , T ). Then

|f ′
∗(z)|σ = |(fn+1)′(z)|σ

� Q−1|f(z) − a|(1 + |z|ρ+1)|(fn)′(z)|σ
� Q−2(1 + |z|ρ+1)

� Q−2 (5.5)

and
|f ′

∗(z)|σ � 2Q2 if, in addition, |z| � R. (5.6)

For all other z ∈ X, Lemma 2.6 implies that

|f ′
∗(z)|σ � Q−1 � Q−2. (5.7)

If, in addition, |z| > R with R > 0 large enough, then

|f ′
∗(z)|σ � 2Q2. (5.8)

The first part of our lemma is thus proved. We shall now demonstrate the following.

Claim 5.3. There exists l = l(R) � 1 such that

|(fn
∗ )′(z)|σ � 2Q2

for all n � l and all z ∈ D(0, R) ∩ X.

https://doi.org/10.1017/S0013091507001332 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507001332


Ergodic properties of semi-hyperbolic functions 495

Proof of claim. Suppose to the contrary that there exist an increasing sequence
nj → ∞ and a sequence zj ∈ X ∩ D̄(0, R) such that

|(fnj
∗ )′(zj)|σ < 2Q2 (5.9)

for all j � 1. Since f
nj
∗ (zj) ∈ X, there exists a unique meromorphic inverse branch

f−Nj
zj

: D(fnj
∗ (zj , 2T )) → Ĉ

of fNj , sending f
nj
∗ (zj) to zj , where

Nj = τ(zj) + τ(f∗(zj)) + · · · + τ(fnj−1
∗ (zj)).

It then follows from Lemma 2.1 and (5.9) that

f−Nj
zj

(D(fnj
∗ (zj , T ))) ⊃ D(zj , (2KQ2)−1T )

or, equivalently,

fNj (D(zj , (2KQ2)−1T )) ⊂ D(fnj
∗ (zj), T ).

Passing to a subsequence, we may assume without loss of generality that the sequence
(zj)∞

1 converges to a point z ∈ Jf ∩ D̄(0, R) and |zj − z| < (4KQ2)−1T for all j � 1.
Since

D(fnj
∗ (zj , T )) ∩ B(Pf , T ) = ∅,

it follows from Montel’s Theorem that the family

{fNj |D(z,(4KQ2)−1T )}∞
j=1

is normal, contrary to the fact that z ∈ Jf . The claim is proved. �

Let k = 2l. If |f j
∗ (z)| � R for all j = 1, 2, . . . , l, then by (5.7)–(5.6), we get

|(fk
∗ )′(z)|σ � (2Q2)lQ−2l = 2l � 2.

If |f j
∗ (z)| < R for some 0 � j � l, let j be minimal with this property. It then follows,

from (5.8), (5.6) and the claim, that

|(fk
∗ )′(z)|σ = |(f j

∗ )′(z)|σ|(fk−j
∗ )′(f j(z))|σ � |(fk−j

∗ )′(f j(z))|σ � 2Q2 � 2.

This completes the proof. �

Now, we shall prove the following lemma.

Lemma 5.4. The function z �→ log |f ′
∗(z)|σ is integrable on X with respect to µX ,

the conditional measure on X induced by µ. In addition,

χ :=
∫

log |f ′
∗|σ dµX > 0.
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Proof. Since the Radon–Nikodým derivative dµ/dm is uniformly bounded on X, it
suffices to demonstrate that the function z �→ log |f ′

∗(z)|σ is integrable on X with respect
to the measure m (χ > 0 follows immediately from Lemma 5.2). For every a ∈ Af ∩ Jf

let An(a), n � 0, be the annuli defined by formula (3.4). Set

An =
⋃

a∈Af

An(a).

Partition X \ f(A0) by disjoint Borel sets Xn, n � 0, such that D(xn, 2 diam(Xn)) ∩
(Af ∪ Pf ) = ∅ with some xn ∈ Xn. Then, by Lemma 2.6 and Proposition 2.7, we get
that∫

X∩f−1(X\f(A0))
|log |f ′

∗|σ| dm

=
∞∑

n=1

∫
X∩f−1(Xn)

|log |f ′
∗|σ| dm

�
∞∑

n=1

m(Xn)
∑

z∈X∩f−1(wn)

|f ′
∗(z)|−h

σ | log |f ′
∗(z)|σ|

�
∞∑

n=1

m(Xn)
∑

z∈X∩f−1(wn)

(1 + |z|ρ+1)−h| log(1 + |z|ρ+1) + O(1)|

�
∞∑

n=1

m(Xn)
∑

z∈X∩f−1(wn)

(1 + |z|ρ+1)−t

� Mt

∞∑
n=1

m(Xn) � Mt < +∞, (5.10)

where wn is an arbitrary point in Xn and t is a fixed number in (ρ/(ρ + 1), h). Now,
following notation from Proposition 3.2, for every a ∈ Af and every n � 0, set

Γa = f−1(f(a)) \ (Af ∪ Pf ),

Yn(a) =
⋃
b∈Γ

f−1
b ◦ g−n

f(a)(An(a)) ∪
⋃

b∈f−1(a)

f−1
b ◦ f−1

a ◦ g−n
f(a)(An(a))

and

Ya =
∞⋃

n=0

Yn(a).

Keep t ∈ (ρ/(ρ + 1), h). Again, by virtue of Lemma 2.6 and Proposition 2.7, and also
Lemma 3.4, we get that∫

Ya

|log |f ′
∗|σ| dm

=
∞∑

n=0

∫
Yn(a)

|log |f ′
∗|σ| dm
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�
∞∑

n=0

( ∑
b∈Γ

m(f−1
b ◦ g−n

f(a)(An(a)))|log |f ′(b)||(gn)′(f(a))| + O(1)|

+
∑

b∈f−1(a)

m(f−1
b ◦ f−1

a ◦ g−n
f(a)(An(a)))|log |f ′(b)||(gn)′(f(a))| + O(1)|

)

�
∞∑

n=0

∑
b∈Γ

(1 + |b|ρ+1)−hγn|log(1 + |b|ρ+1) + log |(gn)′(f(a))| + O(1)|

+
∞∑

n=0

∑
b∈f−1(a)

(1 + |b|ρ+1)−hγn| log(1 + |b|ρ+1) + log |(gn)′(f(a))| + O(1)|

�
∞∑

n=0

γn
∑
b∈Γ

(1 + |b|ρ+1)−hγn| log(1 + |b|ρ+1) + O(n)|

+
∞∑

n=0

γn
∑

b∈f−1(a)

(1 + |b|ρ+1)−hγn| log(1 + |b|ρ+1) + O(n)|

�
∞∑

n=0

γn
∑

b∈Γ∪f−1(a)

(1 + |b|ρ+1)−h|log(1 + |b|ρ+1)|

+
∞∑

n=0

nγn
∑

b∈Γ∪f−1(a)

(1 + |b|ρ+1)−h

�
∞∑

n=0

γn
∑

b∈Γ∪f−1(a)

(1 + |b|ρ+1)−t + Mh

∞∑
n=0

nγn

< +∞.

Hence, ∫
⋃

a∈Af
Ya

|log |f ′
∗|σ| dm < +∞. (5.11)

Finally, for every a ∈ Af , let
Ua =

⋃
n,k�1

Un,k(a).

In view of (3.6) and (3.7) we get that∫
Ua

|log |f ′
∗|σ| dm =

∑
n,k�1

∫
Un,k(a)

|log |f ′
∗|σ| dm

�
∑

n,k�1

m(Un,k(a))|log(|zn,k|ρ+1|f(zn,k) − a||f(zn,k) − a|−1)|

�
∑

n,k�1

|zn,k|−h(ρ+1)|log(|zn,k|ρ+1|)

�
∑

n,k�1

(n2 + k2)−h(ρ+1)/2ρ log(n2 + k2)
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�
∑

n,k�1

(n2 + k2)−t(ρ+1)/2ρ

< +∞.

Hence, ∫
⋃

a∈Af
Ua

|log |f ′
∗|σ| dm < +∞.

Adding this equation to (5.10) and (5.11), we conclude that∫
X

|log |f ′
∗|σ| dm < +∞,

and the proof is complete. �

The main result of this section is the following.

Theorem 5.5. It holds that HD(Jf ) = h.

Proof. In view of Proposition 5.1 it suffices to show that HD(Jf ) � h. Let X ⊂ Jf

be the set defined by (5.4) and let f∗ : X → X be the corresponding induced map. By
virtue of Lemmas 5.4 and 5.2 and Birkhoff’s Ergodic Theorem, there exists a Borel set
X̂ ⊂ X such that µ(X̂) = 1 and

lim
n→∞

1
n

log |(fn
∗ )′(z)|σ = χ > 0

for all z ∈ X̂. In particular,

lim
n→∞

log |(fk(n+1)
∗ )′(z)|σ

log |(fkn
∗ )′(z)|σ

= 1, (5.12)

where k � 1 comes from Lemma 5.2. For every z ∈ X̂ and every n � 0, define

rn(z) = (2K)−1|(fkn
∗ )′(z)|−1

σ .

Fix ε ∈ (0, h). By virtue of (5.12), for every z ∈ X̂ we have

rn(z)
rn+1(z)

� rn(z)−ε/2 (5.13)

for all n � 1 large enough. It follows from Lemma 2.1 and conformality of m that

m(D(z, rn)) � m(f−Nkn(z)
∗ (D(fkn

∗ (z), 1
2T )))

� Kh|(fNkn(z)
∗ )′(z)|−h

σ m(D(fkn
∗ (z), 1

2T ))

� Kh|(fkn
∗ )′(z)|−h

σ

= (2K2T )hrh
n. (5.14)
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Now, keeping z ∈ X̂, take an arbitrary radius r ∈ (0, (2K)−1T ). Since the sequence
(rn)∞

0 is strictly decreasing, there exists a unique n � 0 such that rn+1 � r < rn. In
view of (5.14) and (5.13), we get that

lim
r→0

m(D(z, r))
rh−ε

� lim
n→∞

m(D(z, rn))
rh−ε
n+1

= lim
n→∞

(
m(D(z, rn))

rh−ε
n

(
rn

rn+1

)h−ε)
� lim

n→∞
(rε

nr−ε/2
n )

= lim
n→∞

rε/2
n

= 0.

Since m(X̂) > 0, we therefore conclude that

Hh−ε(Jf ) � Hh−ε(X̂) = +∞.

Thus, HD(Jf ) � h−ε and, eventually, letting ε ↘ 0, we get HD(Jf ) � h. This completes
the proof. �
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Appendix A. Examples of semi-hyperbolic functions

The aim of this appendix is to explain briefly some examples of semi-hyperbolic functions
in any given holomorphic family of Nevanlinna functions. In order to do so we first make
some general comments.

First of all, two functions f0, f1 are called topologically equivalent if there exist home-
omorphisms ψ : C → C and φ : Ĉ → Ĉ such that φ ◦ f0 = f1 ◦ ψ (and we then write
f0 �top f1). Then, for a given function f0 : C → Ĉ, define the space

M(f0) = {f : C → Ĉ; f �top f0}.

Eremenko and Lyubich [8] showed (for entire functions of class S but this also works for
Nevanlinna functions; see also [6]) that this space is a holomorphic family (parametrized
by the asymptotic plus two extra values). Now, Nevanlinna’s topological characteriza-
tion implies that all (or none) of the functions f ∈ M(f0) have polynomial Schwarzian
derivative. As usual, the space M = M(f0) splits into two parts:

M = Mstable ∪ Mbif ,

where Mstable is the set of J-stable functions and Mbif is the bifurcation locus (or
unstable set); we refer the reader to [13] for a detailed discussion.
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Fix in the following an arbitrary Nevanlinna function f0, consider the associated space
M = M(f0) and set Af0 = {a1, . . . , ad}, where ai 	= aj for i 	= j. We first construct a
particular stable function.

Lemma A 1. There exists f1 ∈ M such that each of the asymptotic values
Af1 = {b1, . . . , bd} is in a different attracting component.

Proof. For j = 1, . . . , d, set Dj = D(aj , T ) and let Uj be a logarithmic tract over aj ,
i.e. a component of f−1(Dj). From the discussion on the critical directions in § 2 it follows
that there exist R > 0 and critical directions θj such that the sector Sj = {|arg z − θj | <

(2π/p) − δ; |z| > R} has a non-empty intersection with the tract Uj .
Let φ : Ĉ → Ĉ be a quasiconformal map fixing ∞ and such that every a′

j = φ(aj) has
argument θj and |a′

j | � 2. It follows from the Ahlfors–Bers Measurable Mapping Theorem
that there is a second quasiconformal map ψ : Ĉ → Ĉ also fixing ∞ and such that

g = φ ◦ f0 ◦ ψ : C → Ĉ

is holomorphic. By construction, Ag = {a′
1, . . . , a

′
d}. On the other hand, we know that g

is again a Nevanlinna function. Therefore, the discussion on the critical directions in § 2
also applies to g. Replacing if necessary g by eiαg for some angle α, it follows that f0 and
g do have the same critical directions. We denote by Vj the component of g−1(D(a′

j , T ))
that intersects ψ−1(Uj).

Fix now

β =
π

p
∈

(
0,

2π

p

)

and let r > 1. The function
f1 = reiβg

has asymptotic values bj = reiβa′
j and, if r has been chosen to be sufficiently large, then

D(bj , T ) ⊂ Vj .

This implies that the logarithmic tracts Vj belong to attracting components of the Fatou
set. �

In the same way, it is possible to construct a function f2 ∈ M(f0) such the first d − 1
asymptotic values behave like b1, . . . , bd−1 but the last one is in the same attracting
component as one of the asymptotic values b1, . . . , bd−1. Therefore, f2 is also a stable
map but is not in the same component of Mstable as f1. We showed the following.

Lemma A 2. The bifurcation locus Mbif 	= ∅.

In order to get a semi-hyperbolic example in M, we choose a particular point g ∈ Mbif .
First, we join f1 to f2 by a path in M as follows: suppose that a′

1 is the closest neighbour
of a′

d in the sense that the difference of the arguments L = |arg a′
1 − arg a′

d| is minimal.
We may suppose that L = arg a′

1 − arg a′
d. Then, for λ ∈ [0, L], let fλ be constructed
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precisely like f1, except that the first quasiconformal map φ will be replaced by φλ such
that again a′

j = φλ(aj) for j = 1, . . . , d − 1 but with

φλ(ad) = |a′
d|−λ/L|a′

1|2λ/Leiλa′
d.

Then there exists λ ∈ (0, L) such that fλ ∈ Mbif . More precisely, d − 1 asymptotic
values of fλ are in attracting stable domains, whereas the last one has unstable dynamics
under perturbation of fλ in M. Using the now standard normal family argument [17,
Propostion 2.2] (a detailed exposition can be found in [3]), we get the following.

Proposition A 3. Any open neighbourhood of fλ in M contains a Nevanlinna func-
tion g having d−1 asymptotic values in attracting components and one more asymptotic
value which eventually is mapped into a repelling cycle. This (Misiurewicz-type) function
is, in particular, semi-hyperbolic.
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