A NOTE ON RELATIONS BETWEEN THE ZETA-FUNCTIONS OF GALOIS COVERINGS OF CURVES OVER FINITE FIELDS

BY
AMILCAR PACHECO

Abstract

Let C be a complete irreducible nonsingular algebraic curve defined over a finite field k. Let G be a finite subgroup of the group of automorphisms $\operatorname{Aut}(C)$ of C. We prove that certain idempotent relations in the rational group ring $\mathbf{Q}[G]$ imply other relations between the zeta-functions of the quotient curves C / H, where H is a subgroup of G. In particular we generalize some results of Kani in the special case of curves over finite fields.

Introduction. Let C be a complete irreducible nonsingular algebraic curve defined over a finite field $k=\mathbb{F}_{q}$. Let G be a finite subgroup of the group of automorphisms $\operatorname{Aut}(C)$ of C. For any subgroup H of G let C / H be the quotient curve. Let g_{H}, respectively σ_{H}, be the genus, respectively the Hasse-Witt invariant of C / H.

If C is defined over an arbitrary field K then Kani proves that certain idempotent relations in the rational group ring $\mathbb{Q}[G]$ imply relations between the genera, respectively the Hasse-Witt invariants, of the curves C / H (see [4, Theorems 1, 2]). In the case where C is defined over a finite field \mathbb{F}_{q}, we show that these idempotent relations imply relations between the zeta-functions $\zeta_{C / H| |_{q}}$, which yield the desired relations.

The Result. Let H be a subgroup of G and

$$
\epsilon_{H} \stackrel{\text { def }}{=} \frac{1}{|H|} \cdot \sum_{h \in H} h \in \mathbb{Q}[G]
$$

the "norm idempotent" associated to H.
Let $\zeta_{C / H \mid F_{q}}$ be the zeta-function of C / H. Recall that

$$
\begin{equation*}
\zeta_{C / H \mid \mathbb{F}_{q}}(t)=\exp \left(\sum_{\nu>0} \# C / H\left(k_{\nu}\right) \cdot \frac{t^{\nu}}{\nu}\right), \tag{1}
\end{equation*}
$$

where \#C/H($\left.k_{\nu}\right)$ is the number of k_{ν} - rational points of C / H and $k_{\nu}=\mathbb{F}_{q^{\nu}}$.

[^0]Theorem. Any relation $\sum_{H} r_{H} \cdot \epsilon_{H}=0$, with $r_{H} \in \mathbb{Z}$, between the norm idempotents yields a relation

$$
\prod_{H} \zeta_{C / H \mid \mathbf{F}_{q}}(t)^{r_{H}}=1 .
$$

To prove this theorem we need the following well-known result (cf. [2]).
Twisting Lemma. Let $\pi: Y \rightarrow X$ be a finite Galois covering of complete irreducible nonsingular algebraic curves defined over a finite field $k=\mathbb{F}_{q}$ with Galois group G of order m. Then for each $\sigma \in G$ there exists a curve $Y^{(\sigma)}$ defined over k with $Y^{(i d)}=Y$ and $Y^{(\sigma)}$ isomorphic to Y over \bar{k} such that

$$
\frac{1}{m} \cdot \sum_{\sigma \in G} \# Y^{(\sigma)}(k)=\# X(k),
$$

where $\# Y^{(\sigma)}(k)$, respectively $\# X(k)$ denotes the number of k - rational points of $Y^{(\sigma)}$, respectively X.

Remark. The twisted curves are defined as follows. Let $k_{m} \stackrel{\text { def }}{=} \mathbb{F}_{q^{m}}$ and f be the generator of $\operatorname{Gal}\left(k_{m} / k\right)$. Let $k_{m}(Y)$ be the constant field extension of $k(Y)$ by k_{m}. The $\operatorname{Galois} \operatorname{group} \operatorname{Gal}\left(k_{m}(Y) / k(X)\right)$ is isomorphic to $\operatorname{Gal}\left(k(Y) / k(X) \times \operatorname{Gal}\left(k_{m} / k\right)\right.$. For each $\sigma \in \operatorname{Gal}(k(Y) / k(X))$ let

$$
k\left(Y^{(\sigma)}\right) \stackrel{\text { def }}{=} k_{m}(Y)^{(\sigma, f)}
$$

be the subfield of $k_{m}(Y)$ fixed by (σ, f). This is the function field of $Y^{(\sigma)}$ over $k(c f$. [7, Chapter \mathbf{X}, Theorem 2.2]). The relation between the k-rational points of X and those of the curves $Y^{(\sigma)}$'s is not difficult to obtain (cf. [3, Lemma 3.18]).

Proof of Theorem. By the Twisting lemma for each $\nu>0$ we have

$$
\begin{equation*}
\# C / H\left(k_{\nu}\right)=\frac{1}{|H|} \cdot \sum_{h \in H} \# C^{(h)}\left(k_{\nu}\right) . \tag{2}
\end{equation*}
$$

Let J_{C} be the Jacobian variety of C. Each $\sigma \in \operatorname{Aut}(C)$ induces an automorphism in the divisor group $\operatorname{Div}(C)$ of C :

$$
\sigma^{*}\left(\sum_{P} n_{P} \cdot P\right)=\sum_{P} n_{P} \cdot \sigma P
$$

Moreover for each function x of C we have $\sigma^{*}((x))=(\sigma x)$. Thus σ induces an automorphism α_{σ} in J_{C}. Similarly, if F is the Frobenius morphism of C over k then F induces an endomorphism α_{F} in J_{C}.

By [8, p. 81]

$$
\begin{equation*}
\# C^{(h)}\left(k_{\nu}\right)=1+q^{\nu}-\operatorname{Tr}\left(\alpha_{h^{-1}} \circ \alpha_{F^{\nu}} \mid J_{C}\right) . \tag{3}
\end{equation*}
$$

Let ℓ be a prime number with $\ell \neq p$. Let $T_{\ell}\left(J_{C}\right)$ be the ℓ-adic Tate module of J_{C}. By [8, p. 218, Theorem 36] or [5, p. 186, Theorem 3] there exists an anti-representation

$$
\begin{gathered}
\operatorname{End}\left(J_{C}\right) \rightarrow \operatorname{End}_{z_{\ell}}\left(T_{\ell}\left(J_{C}\right)\right) \\
\alpha \mapsto \alpha^{*},
\end{gathered}
$$

where \mathbb{Z}_{ℓ} denotes the ℓ-adic integers, such that the characteristic polynomials of α and α^{*} are equal (see [8, p. 213]). In particular

$$
\begin{equation*}
\operatorname{Tr}\left(\alpha \mid J_{C}\right)=\operatorname{Tr}\left(\alpha^{*} \mid T_{\ell}\left(J_{C}\right)\right) . \tag{4}
\end{equation*}
$$

By (1), (2), (3) and (4) we have

$$
\begin{equation*}
\log \zeta_{C / H \mid F_{q}}(t)=\sum_{\nu>0}\left(1+q^{\nu}-\frac{1}{|H|} \cdot \sum_{h \in H} \operatorname{Tr}\left(\alpha_{h}^{*} \circ \alpha_{F^{\nu}}^{*} \mid T_{\ell}\left(J_{C}\right)\right)\right) \cdot \frac{t^{\nu}}{\nu} . \tag{5}
\end{equation*}
$$

Note that

$$
\sum_{H} r_{H}=1_{G}\left(\sum_{H} r_{H} \cdot \epsilon_{H}\right)=0
$$

where 1_{G} is the trivial character of G. Whence by (5)
(6) $\sum_{H} r_{H} \cdot \log \zeta_{C / H| |_{q}}(t)=-\sum_{\nu>0}\left(\sum_{H} \frac{r_{H}}{|H|} \sum_{h \in H} \operatorname{Tr}\left(a_{h}^{*} \circ \alpha_{F \nu}^{*} \mid T_{\ell}\left(J_{C}\right)\right)\right) \cdot \frac{t^{\nu}}{\nu}$.

Extend $\rho: G \rightarrow \operatorname{End}_{Z_{\ell}}\left(T_{\ell}\left(J_{C}\right)\right)$ given by $\sigma \mapsto \alpha_{\sigma}^{*}$ to a map of the same name $\rho: \mathbb{Q}_{\ell}[G] \rightarrow \operatorname{End}_{\mathcal{Z}_{\ell}}\left(T_{\ell}\left(J_{C}\right)\right) \otimes \mathbb{Q}_{\ell}$, where \mathbb{Q}_{ℓ} denotes the ℓ - adic numbers. Then $\rho\left(\epsilon_{H}\right)=\frac{1}{|H|} \sum_{h \in H} \alpha_{h}^{*}$. Consider

$$
\mu_{\nu} \stackrel{\text { def }}{=} \rho\left(\sum_{H} r_{H} \cdot \epsilon_{H}\right) \circ \alpha_{F^{\nu}}^{*}=\sum_{H} \frac{r_{H}}{|H|} \cdot \sum_{h \in H} \alpha_{h}^{*} \circ \alpha_{F^{\nu}}^{*} .
$$

Since $\sum_{H} r_{H} \cdot \epsilon_{H}=0$ we have $\mu_{\nu}=0, \nu>0$. Hence

$$
\sum_{H} r_{H} \cdot \log \zeta_{C / H \mid \mathbb{F}_{q}}(t)=0
$$

i.e.,

$$
\prod_{H} \zeta_{C / H \mid \mathbb{F}_{q}}(t)^{r_{H}}=1
$$

Corollary. Any relation $\sum_{H} r_{H} \cdot \epsilon_{H}=0$, with $r_{H} \in \mathbb{Z}$, between the norm idempotents yields relations $\sum_{H} r_{H} \cdot g_{H}=0$ and $\sum_{H} r_{H} \cdot \sigma_{H}=0$.

Proof. By [8, p. 71, 83]

$$
\zeta_{C / H \mid \mathbb{F}_{q}}(t)=\frac{P_{C / H}(t)}{(1-t) \cdot(1-q t)},
$$

where $P_{C / H}(t) \in \mathbb{Z}[t]$ of degree $2 g_{H}$. Thus

$$
\begin{equation*}
\prod_{H} \zeta_{C / H \mid \mathbf{F}_{q}}(t)^{r_{H}}=\frac{\prod_{H} P_{C / H}(t)^{r_{H}}}{\left.\prod_{H}(1-t) \cdot(1-q t)\right)^{r_{H}}} . \tag{7}
\end{equation*}
$$

We take degrees of both sides of (7) and conclude from the theorem that $\sum_{H} r_{H} \cdot g_{H}=0$.

Since $\operatorname{deg}\left(P_{C / H}(t) \bmod p\right)$ is the Hasse-Witt invariant σ_{H} [6, Theorem 1], we conclude as above, by taking degrees of both sides of (7) reduced modulo p, that $\sum_{H} r_{H} \cdot \sigma_{H}=0$.

References

1. R. D. Accola, Two theorems on Riemann surfaces with noncyclic automorphisms groups, Proc. AMS 25 (1970), 598-602.
2. E. Bombieri, Hilbert's 8th problem: an analogue, in Mathematical Developments arising from Hilbert's problems, Proc. Symp. Pure Math. American Mathematical Society, 28, 269-274.
3. M. D. Fried, M. Jarden, Field Arithmetic, Berlin, Heidelberg, Springer-Verlag, 1986.
4. E. Kani, Relations between the genera and the Hasse-Witt invariants of Galois coverings of curves, Can. Math. Bull. 28 (3), 321-327 (1985).
5. S. Lang, Abelian Varieties, New York, Springer-Verlag, 1983.
6. J. I. Manin, The Hasse-Witt matrix of an algebraic curve, Trans. Amer. Math. Soc. 45, 245-264 (1965).
7. J. Silverman, The Arithmetic of Elliptic Curves, New York, Springer-Verlag, 1986.
8. A. Weil, Courbes Algébriques et Variétés Abélienes, Hermann, Paris, 1971.

Instituto de Matemática Pura e Aplicada
Estrada Dona Castorina 110
22460 Rio de Janeiro, RJ
Brasil.

[^0]: Received by the editors February 15, 1989 and, in revised form, June 5, 1989.
 AMS (1980) Mathematics Subject Classification Number: 14G10.
 © Canadian Mathematical Society 1990.

