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1. Introduction

In a recent paper, Z. Janko [5] announced the discovery of two new
finite non-abelian simple groups and characterized these groups in terms
of the centralizer of an involution. In fact, he proved the following result.

THEOREM. Let G be a non-abelian finite simple group with the following
properties:

(i) The centre Z{T) of a Sylow 2-subgroup T of G is cyclic.

(ii) If z is the involution in Z(T), then the centralizer H of z in G is an
extension of a group E of order 2s by A5. Then we have the following
possibilities.

If G has only one class of involutions, then G has order 50, 232, 960 and
a uniquely determined character table.

If G has more than one class of involutions, then G has order 604, 800
and is uniquely determined {up to isomorphism).

It is proved in [5] that E is the central product of a dihedral group of
order 8 and a quaternion group and that C(E) = Z(E).

This result suggests studying finite groups of even order in which the
centralizer of an involution has a structure similar to that described above.
In this paper we shall prove the following result.

MAIN THEOREM. Let G be a finite group of even order which contains an
involution z such that the centralizer H of z in G has the following properties:

(i) H has a normal subgroup E of order 32 which is the central product
of a dihedral group of order 8 and a quaternion group.

(ii) We have CH(E) Q E.

(iii) The factor group H\E is isomorphic to the symmetric group S4 in
four letters.

Then O (G) is abelian and G is isomorphic to either
195
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(a) the group H • O(G).
(b) the group Aut(PGZ,(3, 4)), or
(c) the normalizer in Aut(PGZ.(3, 4)) of an S2-subgroup of PGL(3, 4).
In particular, if G is non-soluble, then G is isomorphic to Aut( PGZ. (3, 4)).

The group Aut( PGZ, (3, 4)) is a split extension of PGZ. (3, 4) by a
four-group. The group PGZ, (3, 4) has been described by Suzuki [7]. An
S2-subgroup T of PGZ, (3, 4) is a special 2-group of order 64 whose centre is
a four-group. The normalizer of T in Aut(PGL(3, 4)) has order 28 • 32;
it is a split extension of T by the group of those automorphisms of T which
induce non-trivial automorphisms of TjZ{T). It is now straightforward
to verify that the groups described in (b) and (c) satisfy the conditions of
the theorem.

Since the outer automorphism group of E is isomorphic to S5, it
follows from condition (ii) that H\E is isomorphic to a subgroup of S6.
The case in which R\E is isomorphic to S5 has been studied by A. Struik
in his M.Sc. thesis at Monash University. He proves that G must contain
as a subgroup of index 2 one of the simple groups discovered by Janko [5].
If HjE is isomorphic to Ait then a conclusion similar to that of the main
theorem holds. The proof is almost identical with that of the main theorem.

Throughout this paper G will denote a finite group of even order which
has an involution z such that the centralizer H of z in G satisfies the condi-
tions (i), (ii) and (iii) above. From time to time we shall impose further
conditions on G. For any subset X of G we shall put N(X) = NG{X) and
C(X) = CG{X). If Y is a group, then we shall use D(Y) to denote the
Frattini subgroup of Y and 0(Y) to denote the largest normal subgroup
of odd order in Y. The other notation follows [3].

Suppose that O(G) ^ 1 and set G = GjO(G). For a subset X of G,
let X be the image of X in 0. By the Frattini argument we have C&(z) = H.
Since H is isomorphic to H, G satisfies the conditions of the theorem together
with 0(0) = 1. In order to prove the theorem we shall assume that G is not
equal to H and then determine the structure of G. From Theorem 4 of [2]
we see that <z> is not weakly closed in H. The fact that 0 (G) = 1 in cases
(b) and (c) follows from Lemma 10 and the Brauer-Wielandt formula [4].

2. The structure of E

The group E has order 32 and is the central product of a dihedral group
of order 8 and a quaternion group. Therefore E has 10 dihedral subgroups,
of order 8, 10 quaternion subgroups and 15 subgroups which are abelian
of type (4,2). These being all the subgroups of E of order 8. Furthermore,
E has 10 non-central involutions and 20 elements of order 4. Since
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CH{E) Q E it follows that z e E and we have Z(E) = E' = D{E) = <z>.
If T is an S2-subgroup of H, then Z{T) = Z(E) = <2> and so T is an
S2-subgroup of G. Furthermore, we have C(E) = <z> and N(E) = H.
Hence the factor group HjE is isomorphic to a subgroup of the outer
automorphism group of E.

We may suppose that E is generated by elements tlt t2, hx and h%

which satisfy the following relations:

t\ = t\ = l, (M«)2 = *,

Af = h\ = z, Aji = V ,

[*,,A,] = 1, »,/ = 1 , 2 .

Then E1 = <71; t2} is a dihedral group of order 8, E2 = <A1( A2> is a
quaternion group and E is the central product of Ex and £2- The 10 non-
central involutions of E give rise to 5 cosets in £/<z> with representatives:

»li £2> ' i*2^1' ^1^2"2» t\tz"'\""L-

We label these cosets with the numbers 1, 2, 3, 4 and 5 respectively. The
outer automorphism group of £ is isomorphic to S5 and acts faithfully and
transitively on the above 5 cosets by conjugation. Since H\E is isomorphic
to S4 we may suppose that each element of H fixes the coset 1 with re-
presentative tx.

If x is any non-central element of E, then \E : CE(x)\ = 2 and the
conjugates of x in E are # and xz.

If i7! is a dihedral subgroup of £ of order 8, then F2 = CEIFJ) is a
quaternion subgroup of E and E is the central product of Fx and F2.
Conversely, if Ft is a quaternion subgroup of E, then F2 = CE(F1) is a
dihedral subgroup of E of orders 8 and again E is the central product of
Fj and F2.

3. The involutions in H

We first determine the conjugacy classes of H which lie in E. As
remarked in section 2, the coset of E/(z} with representative tx is fixed by
H and H is faithfully represented as a transitive permutation group of the
remaining four cosets of non-central involutions. Since any non-central
element x of E is already conjugate to xz in E we have the following lemma.

LEMMA 1. The group H has three classes of involutions which lie in E
with representatives tlt t2 and z. The involution tx has two conjugates in H
and we have C£(^) = <^1>x£'2 and C/r^jJ/C^^) ^ S4. For t2 we have
CE(t2) = (t2}xE2, CH(t2)ICE(t2) ~ S3 and t2 has 8 conjugates in H.

The next lemma determines the action of an S3-subgroup of H on E.
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LEMMA 2. Let P be an S3-subgroup of H. Then F1 = CE(P) is a dihedral
group of order 8 and F2 = [E, P] is a quaternion group. The group E is the
central product of Fx and F2.

PROOF.1 Since E has precisely 10 dihedral subgroups of order 8, P must
normalize and hence centralize one of them. Let this be F1. Since CH{E) Q E
by assumption, we must have CE(P) — F1 and P must normalize the
quaternion group F2 = CE(F1). Since E is the central product of Fx and
F 2 it follows that [E, P] = F 2 .

For the rest of the paper we shall suppose that P is an S3-subgroup
of H such that Et = CB(P) and £ 2 = [E, P]. Furthermore, let H1 be the
subgroup of H such that E Q H and HJE s A±.

The involution tt is contained in precisely 4 dihedral subgroups of E
of order 8 and the elements of order 3 of H permute these dihedral groups
transitively. Therefore, the 8 elements of order 4 which are contained in
these dihedral groups are conjugate in H to txt2. The remaining 12 elements
of order 4 in E are contained in C^ft) and are conjugate in H to ht since
the 4 quaternion groups of CB(i1) are permuted transitively by the elements
of order 3 of H. The elements hx and ttt% cannot be conjugate in H since
the order of H is not divisible by 5. We have thus proved the following
lemma.

LEMMA 3. The group H has two classes of order 4 in E with representatives
£^2 and hx. The element txt2 has 8 conjugates in H and hx has 12 conjugates
in H. Therefore | C H ( ^ 2 ) | = 25 • 3 and \CH(hx)\ = 26.

The next step is to determine the classes of involutions in H—E.

LEMMA 4. There exists an involution in H—H1. Also CH(P) = ExxP
and NH{P) = SP where we have the following two possibilities for S:

(1) The group S is the central product of Ex and Y, where Y is a cyclic
group of order 4. In this case H has precisely one class of involutions in H—H1.

(2) The group S is equal to Exx <rf> where d is an involution in H~HX

such that d e CH(^ ) . In this case there are either two or three classes of involu-
tions in H—Hx.

Let x be an involution in H—Hx. Then <z> is characteristic in CH(X)
and CH{X) is an S2-subgroup of C(x).

PROOF. Since an S3-subgroup of S4 is selfcentralizing, it follows that
CH{P) = E±xP. By a Frattini argument and a theorem of Burnside P is
inverted by a 2-element of H—Hx. Hence the order of NH(P) is 24 • 3.
Now let S be an 52-subgroup of NH(P). Then £ , < S and \S : Ex\ = 2.

I The author owes a simplification in the proof of Lemma 2 to the referee.
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The group (txt2y is the unique cyclic subgroup of order 4 of Ex and so
<^<2><] S. Since txt2 does not centralize El we have |C5(^2) | = 8 . It
follows that C5(^2) is abelian. If Cs{txt2) were cyclic, then an element of
order 8 would induce an outer automorphism of E1. This is impossible since
tt and t2 are not conjugate in H. Therefore, Cs{txt2) is abelian of type (4, 2)
and so there exists an involution d in Cs(^2) — <A 2̂>. We have d e H—H^,
d inverts P and E2(dy is a semi-dihedral group of order 16. Therefore d
is conjugate in H to dz. We may choose the notation so that h\ = hxz and
h2 = h1h2z. For the action of d on £ we have the following two cases:

(1) t{ = txz and t\ = t2z

(2) ** = ^ and *2 = *2.

If x is an involution in H—H1, then a; <£ 02(H). By Theorem 3.8.2 of
[3], x inverts an S3-subgroup of H and so x is conjugate in H to an involution
in S —£j .

In Case (1) it follows that S is the central product of Ex and
Y == (J,xtid~). Since in this case d and dz are the only involutions in S—Elt

all involutions in H—H1 are conjugate. For the centralizer of d in E we have
CE(d) — (txhx, t2h{), which is a quaternion group. The coset Ed contains
16 elements of order 8, 12 elements of order 4 and 4 involutions. From the
structure of S4 we have \CH{d)}CE{d)\ ^ 4 whence \CH(d)\ = 25 and
CH{d)/CE(d) is a four-group.

Now suppose we are in Case (2). Then CE(d) = <£1,£2> = E1 and
S = E±x<idy. It follows that the involution x is conjugate to one of d,
t-^d or t2d. We have C ^ ( ^ ) = (.t2K> *i> a n ( i CE(t2d) = <<iAi,^2> whence
CE(a;) is always a dihedral group of order 8 and so \E : CE(x)\ = 4. The
coset Ed contains 16 elements of order 8, 4 elements of order 4 and 12
involutions. Again from the structure of S4 we have \CH{X)/CE(X)\ SS 4.
Since 24 5j \CH(x)\, it follows that there are either two or three classes of
involutions in H—H1.

In either case CH{x)' Q CE(x) and so CH{x)' n Z(CH{x)) = <z>. It now
follows that <2> is characteristic in Ca(x) and CH{%) is an S2-subgroup of
C(x).

LEMMA 5. / / u is an element of O2(H)—E, then \CE(u)\ ^ 8. / / u is an
involution of O2(H) — E, then CE{u) = <tlt z)> and \CH{u)\ = 25. Further-
more, H has at most one class of involutions in 02(H)—E.

PROOF. Any element of O2(H)—E is conjugate to an element whose
action on the cosets of non-central involutions in Ej(z)> is represented by
the permutation (23)(45). It now follows that CE{u) Q (h^ try and so
\CE(u)\ ^ 8.

Suppose that u is an involution. We have h^ = tth2 or h2 = txh2z.
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In either case it follows that t\ = tx. Again, t\ — t^h^ or t2 = t^h-^z
and in either case it follows that h" = hxz. Therefore, CE(u) = (tlt z> and
since (tx, z> is normal in H it follows that (tt, z> is the centralizer in E of
any involution in 02(H)—E. The coset Eu contains 16 elements of order 8,
8 elements of order 4 and 8 involutions. Since \E : CE(u)\ = 8, it follows
that all involutions in Eu are conjugate in £<w>. Therefore, \CH{U)\ = 26

and CH(U)/CE(U) is a dihedral group of order 8.
The following information about the centralizer of t2 will be needed

later.

LEMMA 6. The group <z> is a characteristic subgroup of CH(<2). An
S2-subgroup To of CK(22) *s an S2-subgroup of C(t2) and we have
Z(T0) = <t2, *>•

PROOF. Since \Cu{t2)\ = 25 • 3 we have |T0| = 2s. From Lemma 4
we may suppose that either d or txd lies in To. We have

a n d £ 2 = (.hi> A2)> is a quaternion group. Thus T^ = <AX> and^1(To) = <z>.
Hence <2> is characteristic in r o and To is an S2-subgroup of C{t2).

Suppose that Z(T0) £ CE(t2) and let x be an element of Z(TQ)—CE(t2).
Then we have CE(x) = <22> x E2 and so x centralizes £/<2>. This contradicts
the fact that x permutes some cosets of £/<«>. Thus we must have
Z{T9) Q CE{t2), whence Z{T0) = <*2, *>.

LEMMA 7. The involution t2 cannot be fused in G with any involution in H.

PROOF. By Lemma 6 an S2-subgroup of C(t%) has order 2s. Therefore
t2 cannot be conjugate to either z or tt. Suppose that t2 is conjugate in G
to an involution x in H—H^ An S2-subgroup To of Cji{h) is an S2-subgroup
of C(t2) and CH{X) is an S2-subgroup of C{x). Thus, there exists g e G such
that Tg = CH{x) and then Z{T0)" = Z(CH{xj). But then z' e <x, z>, which
is impossible, since g $ H and z is not conjugate to t2. Thus t2 is not conjugate
to any involution in H—Hx.

Suppose that t2 is conjugate to an element u in H1—E. By Lemma 5
and Lemma 6, CH(U) is an S2-subgroup of C(u). By the above argument
we again get a contradiction. The lemma is proved.

We now use the assumption that <z> is not weakly closed in H to prove
the existence of involutions in Hx—E.

LEMMA 8. There exists precisely one class of involutions in Hx—E.

PROOF. Suppose that there are no involutions in H1—E. By Lemma 4,
Lemma 7 and the fact that <2> is not weakly closed in H it follows that z
is conjugate to tx. We have \E : C£(^)| = 2 and Cff^/Cgfo) S S4. Let
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Tx be an S2-subgroup of Cjf(tx). Then Tx c\ E = CB{tx) = (t1yxE2,
| 7 \ | = 27 and T = 7\.£ is an 52-subgroup of H. Furthermore, TJCB(tx)
is a dihedral group of order 8. Suppose at first that Z(TX) $ CE(tx) and let
« be an element of Z{Tx)—CE{tx). By Lemma 5 we have \CE{u)\ <J 8,
which contradicts \TX n E\ =• 16. Therefore, Z(7\) = <&, *>. Let T* be
an S2-subgroup of C (^) which contains 7 \ . Then Tx = T* n H,
\T* : Tx\ = 2, \T : Tx\ = 2 and Z(TX) <i (T, T*>. Also we have
C(Z(7\)) =Cff(i!1). All this shows that N(Z(T1))ICH(h) is a non-abelian
group of order 6. Let us put T2 = O2(Cjj[t1)). Then T^^iNlZlT^) and T2

has order 26. We have C(T2) Q T2 since an S3-subgroup of CJJ(^) cannot
centralize 2"2. An S3-subgroup ^ of N{Z(T1)) has order 9 and acts faithfully
on Ta/D(TS). Since \T2/D(T2)\ ^ 25, (? is elementary. If tx were not a
square in 7"2, then (z) would be characteristic in T%, which is not possible.
Hence we have \T2jD{T2)\ = 2* and D(T2) = Z{TX). Let Q be a subgroup
of order 3 of Q such that Q <£ H and Q fixes a non-trivial element in
TzJD{T2). Then # fixes an element y in T2—D(T2) and so 0 fixes «/2. But
T2 QHX and so y2 ^ 1, ?/2 e <^, z>, whence Q centralizes (tlt z} which is a
contradiction. We have proved that there exists an involution in H1—E.
By Lemma 5 there is precisely one class of involutions in H1—E.

4. The structure of ,/V((/,,*))

We first establish some notation. Let a be an involution in H1—E.
We choose a so that its action on the cosets of non-central involutions in
Ej(zy is represented by (23) (45). Replacing a by txa, hxa or txhta if neces-
sary, we may suppose that a has the following action on E:

t\ = tx, t\ = txt2hx

hi = hxz, hi = txh2z.

We put T2 — O2[Cn{tx)) as in Lemma 8. It is easily seen that the 8 involu-
tions in Ea lie in T2. Let P = (a}, where P is the S3-subgroup of H chosen
after Lemma 2. We may choose 0 so that it has the following action on E.

tx = tx, t2 = t2

K = K, hi = hxh2.

We next set b = a". It follows that b" — abe, where e e E and (abe)" = a.
By calculation we see that e = 1 or e — z. In either case it follows that
ab = ba. Replacing a by az and 6 by 6z if necessary, we may suppose that
b = a" and ab = b". The group A = (tx, z, a, b} is elementary of order 16
and if t e A — <7X, z)>, then C# (t) = A. Since there are precisely 24 involu-
tions in T2—CE(tx) it follows that T2 has exactly one more elementary
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subgroup B of order 16 and we have B = (tx, z, hxa, h2b~). The groups
A and B are both normal in T2 and are the only elementary subgroups of
order 16 of H. Both A and B are P-admissible and we have

NH(A)/A ~ NH(A)/B S S4.

Furthermore, we have A1' — B.

LEMMA 9. The group T2 = 02{Cn{h)) is a special 2-group of order 64
such that T'2 = D(T2) = Z(T2) = Gl(T,) = <*lf z>. Furthermore, T2 has
precisely two elementary subgroups A and B of order 16 such that
A r\ B = A r\ E = B r\ E = (Jt-L, zy. These groups A and B are the only
elementary groups of order 16 of H. The group T2 is generated by A and B.
We also have NH(A)/A ~ NH{B)jB ~ S4 and C(A) = A, C(B) = B.
Finally, any involution t in H1—E lies either in A or in B and so we have
either CHJf) = A or CHl(t) = B.

PROOF. We have only to prove that T2 is a special 2-group. To this end
we consider the action of P on T2. Since T2 = (hx, h2,tt, a, b} we see that
[P, T2] = T2 and CTi(P) = <tlt z>. If Z(T2) D <tfx, z>, then Z(T2) would
be elementary of order 16. This contradicts the fact that \CT (t)\ = 24 for
any involution t in T2—(tltzy. Hence Z(T2) = (,tltz} and T2IZ(T2) is
elementary of order 16. Since both z and tx are squares it follows that.
D(T2) = C?1(r2) = (tlt 2>. Again, both t1 and z are commutators so that
T'2 = (tx, z~y. The lemma is proved.

LEMMA 10. The involution z is conjugate in G to tx.

PROOF. Suppose that z is not conjugate to tt. Since we assume that <2>
is not weakly closed in H it follows that z is conjugate to a. But now the
13 involutions in A — {tlt t-^z) are conjugate in G, whence {t1, ttz} is iV(^4)-
invariant. Hence (tx, z}<iN(A) and so <z)<iV(i) , a contradiction since
N(A) is not contained in H. The lemma is proved.

Proceeding as in Lemma 8 we see that N(Z(T2)) is a group of order
28 • 32 and an S3-subgroup of N(Z(T2)) is elementary of order 9.

LEMMA 11. Let P be the S3-subgroup of H chosen at the beginning of this
section. Then C(P)jP is isomorphic to S4 or S5 and N(P) is isomorphic to
S3xSior S3xS5. An S2-subgroup of N(P) is the direct product of a dihedral
group of order 8 and a group of order 2. Hence Case (1) of Lemma 4 does
not occur and we have d e C'H(^I), where d is the involution chosen in the proof
of Lemma 4.

PROOF. We have CH{P) = EtxP. Since <z> = Z(E1) is characteristic
in Ex it follows that Ex is an 52-subgroup of C(P). The involutions in C(P)
are conjugate either to z or to t2. Acting on 0(C(P)) with the four-group
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<<i,2> we see from the Brauer-Wielandt formula [(4], Lemma 3) that
O(C(P)) = P. Since 9| \C(P)\ it follows that C(P) has no normal 2-comple-
ment. It now follows from a result of Gorenstein and Walter [4] that
C(P)/P is isomorphic to S4 or S5 (see the last two lines of p. 592 of [4]).

Since P splits in C (P) we may put C(P) = PxV, where V is isomorphic
to S4 or S5. Now V is the 3-commutator subgroup of C(P) so that V is
normal in N(P). By Lemma 4, P is inverted by an involution. This in-
volution induces an automorphism of V. But V is a complete group
(Burnside [1], p. 209) so that N(P) = VxVx, where PQVX and Vx s S3.
The lemma now follows.

We are now able to determine all the classes of H. Let d be the involu-
tion chosen in the proof of Lemma 4. Then d inverts P and by Lemma 11
and Lemma 4 d centralizes Ex. Therefore, C(P) = P(d}xV and
P<i> ~ S3. Let Po be the S3-subgroup of V which normalizes Z(T2) and is
inverted by t2. We put Po = <T>. Then Q — PxP0 is an S3-subgroup of
JV(r2) =N(Z(T2)). As in Lemma 8 we have C{T2) = Z(T2). The special
2-group T2 is characteristic in N(T2) since A and B are the only elementary
groups of order 16 in N(T2). Since T2nN{Q) = 1, it follows that
N(T2) = T2NNiT )(Q) and T2 n NNiT )(Q) = 1. By choice of () we have
^JWT i (?) = Q(.h> ^)- Let Px and P2 be the other two subgroups of order 3
of Q? Since Q n H = P, it follows that Po, Px and P2 act faithfully on
Z(T2). By Maschke's theorem 0 normalizes a complement of Z(T2) in .4.
Since <(«, &) is the unique complement of Z(T2) in A which is P-admissible,
it follows that <a, 6> is (^-admissible. We have A** = B, P[* = P2,t2

inverts Po and CQ(12) = P. Since Po does not centralize T2\Z(T2), it follows
that one of Px or P2 must centralize <a, 6>. We choose the notation so that
CT (Pj) = <a, 6). Then we have

A = Z(T2) x Cj^Pi) and B = Z(T2) x CTt{P2).

In fact,

Replacing x by T^1 if necessary, we may suppose that aT = b and bT = ah.
Since <2 inverts r and a commutes with T, we calculate that AJ = hxh2az
and A2 = hxbz. It now follows that t{ = z and zT = ^2. From the action of
d and a on £ we calculate that ad = txhxa. or a* = txhxaz. Suppose that
ad = tx\a. Then M = aT<l = adT = hxh2ab, whence bi% = (hxh2ab)d = bz,
a contradiction. Therefore, we have cfi = txhxaz and 6d = txhxh2abz. It
now follows that a'** = a and &'»" = aft. Thus |Cn(i)| = 2* and
|CH(i2d)| = 25. It follows from Lemma 4 that H—Hx has precisely two
classes of involutions with representatives d and £2rf. We have proved the
following result about N(T2).
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LEMMA 12. The group N(T2) =N(Z(T2)) has order 2« • 32 and an
Sz-subgroup Q = PxP0 of N(T2) is elementary of order 9, where Po is
centralized by d and inverted by t2. We have N(T2) = T2Q(t2, d},
T2n Q<t,, d> = 1 and N{Q) nN(T2) = Q<t2, d}. The groups A and B
are the only elementary groups of order 16 in N(T2) and we have
A = Z(T2) x C ^ P i ) , B = Z(T2) XCT^(P2) where Q = PxxP2 and P1 and
P2 act faithfully on Z{T2). We have2 P[* = P2, P* = P2, A** = B and
Ad = B. The group N(T2) has precisely five classes of involutions with
representatives z,a,t2,d and t2d. Here aeT2 and CN{T)(a) = AP^t^dy
has order 25 • 3. For t2 we have

C W , ) ^ ) = <t2}xE2P(d} and E2P(d} ~ GL(2, 3).

For d we have CmT)(d) = ^d}xE1P0 and EXPO ~ S4. For t2d we have
CNIT )(hd) = (,t2dyx (t2a, a}, and (t2a, a)> is a dihedral group of order 16.
The group N(T2) has precisely three classes of elements of order 3 with
representatives a, r and ax"1, where P = <ff>, PO = <T> and Px = {or"1).
For a we have CNiT)(a) = E1PoxP, and E1P0 ^ S4. For r we have
C v ( T ) = P<d}xPl and Po<^> ~ S3.

Finally, Cy^^ar-1) = <a, b')P2xP1 and {a, b}P2 ~ At.

5. The structure of G

LEMMA 13. The group G has a normal subgroup G2 of index 4 in G such
thatN(T2) n C 2 = T2Q.

PROOF. We continue to use the notation developed in the preceding
sections.

The group T = T2(t2,dy is an S2-subgroup of G, and we have
T' = Z(T2)E2(a} and A (̂T) = T. From a theorem of Griin ([3], Theorem
7.4.2) and our knowledge of the possible fusion of involutions we see that the
focal group of T in G is equal to T2. Therefore G has a normal subgroup G2

of index 4 such that G2 n T = T2, and G = TG2. It is clear that
NG {T2) = T2Q. The lemma is proved.

We now turn to the investigation oiN(A). Since A and B generate T2,
it follows that

N(A)nN(B) QN(T2) and N(A) n N(B) = NN{Ti)(A) = NN{Ts)(B).

Furthermore, we have N(A) n N(B) = T2Q(t2d}. Let us put X = CA{Pj)
and Y = CB(P2). Both X and Y are normalized by Q and we have X(* = Y.

LEMMA 14. We have the following two possibilities:

(1) The group N(A)/A equals S1L, where IS^ = 3, L ~ Sb, S±<i SXL
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and St r\ L = 1. In this case the involution z is conjugate to a and G2 has
precisely one class of involutions.

(2) The group N(A) is contained in N(T2) and G has precisely five
classes of involutions.

PROOF. Since A is not normal in an S2-subgroup of G, an S2-subgroup
of N (A) IA is dihedral of order 8. Since N{A)jA is isomorphic to a subgroup
of GL(4, 2) ~ As and from the structure of N(A) n N{T2)jA it follows that
either N(A) = T2Q(t2dy QN{T2) or N(A)/A = S^, where \Sj\ = 3,
L ^ S&, Sx<i SXL and S1nL = l. If N(A)\A = S^, then 2V(4) acts
transitively on the involutions in A and so z is conjugate to a. We see that
NG {A) IA — S1xL1, where Lx QL, and Z^ ^ /t5. Thus 2 is conjugate in
G2'to a. Since NGi{B) = NGM(A)\ it follows that NGt(B) has the same
structure as NG {A) whence all involutions in B are conjugate in NG (B).
Thus G2 has precisely one class of involutions in this case.

Now suppose that z is conjugate to a. By considering C(a) nN(A)
we see that N(A) $ N(TZ), whence N{A)\A =SXL. From previous lemmas
we see that no further fusion can occur in either case. The lemma is proved.

LEMMA 15. In Case (1) of Lemma 14 G is isomorphic to the group
Aut(PGL(3, 4)).

PROOF. By a theorem of Suzuki [7] we see that G2 is isomorphic to the
group PGL(3, 4). Since C(G2) — 1 and from a comparison of orders, it
follows that G ^ Aut(PGL(3, 4)). The lemma is proved.

Because of Lemma 15 we henceforth assume that we are in Case (2)
of Lemma 14. It follows that G2 has precisely three classes of involutions
with representatives z, a and txhxa. We have

NGi(T2) = NGi(A) = NGi(B) = T2Q.

LEMMA 16. In Case (2) of Lemma 14 the group NG (^2) contains the
centralizer in G2 of each of its involutions.

PROOF. Suppose the lemma to be false. Since CGt(z) QT2Q and
a** = tjixa it follows that Cc,(«) % T2Q and Cojf^a) $ T2Q. Since
NG (A) = T2Q, A is an S2-subgroup of CG (a). The focal group A* of A
in CGl(«) is equal to Z(T2) and so CGt[a) has a normal subgroup M of index
4 such that CG («) = AM and M n A = Z(T2) is an S2-subgroup of M.
We have CM{z) = Z{T2), NM(Z(T2)) = Z(T2)P1 and M D Z ( r , ) P , By
a result of Suzuki [6], we get M ~ As. Thus CG («) = X x M and we have
CCj(«) = CGi(&). Therefore, we have CGJix) = XxM and both X and Af
are characteristic in XxM. It follows that NG {X)ICGt{X) has order 3.
An 53-subgroup of D = NGt(X) has order 9 and so if = Cfl(M) ^ A4.
Since Z{J2)PX Q M, it follows that K = XP, and so M QV where F is
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the group defined in Lemma 11 such that C(P) — PxV. But Po is con-
tained in V, whence Po is contained in M. This contradiction proves the
Lemma.

We can now apply Theorem 9.2.1 of [3] to the subgroup T2Q of G2

to conclude that G2 = T2Q. Thus in Case (2) of Lemma 14 we have
G = N(Z(T2)). This completes the proof of the Main Theorem of the
Introduction.
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