A CHARACTERIZATION OF THE GROUP Aut(PGL 3 , 4) $)$

D. E. TAYLOR
(Received 25 September 1968, revised 13 February 1969)
Communicated by G. E. Wall

1. Introduction

In a recent paper, Z. Janko [5] announced the discovery of two new finite non-abelian simple groups and characterized these groups in terms of the centralizer of an involution. In fact, he proved the following result.

Theorem. Let G be a non-abelian finite simple group with the following properties:
(i) The centre $Z(T)$ of a Sylow 2-subgroup T of G is cyclic.
(ii) If z is the involution in $Z(T)$, then the centralizer H of z in G is an extension of a group E of order 2^{5} by \boldsymbol{A}_{5}. Then we have the following possibilities.

If G has only one class of involutions, then G has order 50, 232, 960 and a uniquely determined character table.

If G has more than one class of involutions, then G has order 604, 800 and is uniquely determined (up to isomorphism).

It is proved in [5] that E is the central product of a dihedral group of order 8 and a quaternion group and that $C(E)=Z(E)$.

This result suggests studying finite groups of even order in which the centralizer of an involution has a structure similar to that described above. In this paper we shall prove the following result.

Main Theorem. Let G be a finite group of even order which contains an involution z such that the centralizer H of z in G has the following properties:
(i) H has a normal subgroup E of order 32 which is the central product of a dihedral group of order 8 and a quaternion group.
(ii) We have $C_{H}(E) \subseteq E$.
(iii) The factor group $H \mid E$ is isomorphic to the symmetric group S_{4} in four letters.

Then $O(G)$ is abelian and G is isomorphic to either
(a) the group $H \cdot O(G)$.
(b) the group $\operatorname{Aut}(P G L(3,4))$, or
(c) the normalizer in $\operatorname{Aut}(P G L(3,4))$ of an S_{2}-subgroup of $P G L(3,4)$. Ïn particular, if G is non-soluble, then G is isomorphic to $\operatorname{Aut}(\operatorname{PGL}(3,4))$.

The group $\operatorname{Aut}(P G L(3,4))$ is a split extension of $P G L(3,4)$ by a four-group. The group $P G L(3,4)$ has been described by Suzuki [7]. An S_{2}-subgroup T of $\operatorname{PGL}(3,4)$ is a special 2-group of order 64 whose centre is a four-group. The normalizer of T in $\operatorname{Aut}(\operatorname{PGL}(3,4))$ has order $2^{8} \cdot 3^{2}$; it is a split extension of T by the group of those automorphisms of T which induce non-trivial automorphisms of $T / Z(T)$. It is now straightforward to verify that the groups described in (b) and (c) satisfy the conditions of the theorem.

Since the outer automorphism group of E is isomorphic to \boldsymbol{S}_{5}, it follows from condition (ii) that H / E is isomorphic to a subgroup of S_{5}. The case in which H / E is isomorphic to S_{5} has been studied by A. Struik in his M.Sc. thesis at Monash University. He proves that G must contain as a subgroup of index 2 one of the simple groups discovered by Janko [5]. If H / E is isomorphic to A_{4}, then a conclusion similar to that of the main theorem holds. The proof is almost identical with that of the main theorem.

Throughout this paper G will denote a finite group of even order which has an involution z such that the centralizer H of z in G satisfies the conditions (i), (ii) and (iii) above. From time to time we shall impose further conditions on G. For any subset X of G we shall put $N(X)=N_{G}(X)$ and $C(X)=C_{G}(X)$. If Y is a group, then we shall use $D(Y)$ to denote the Frattini subgroup of Y and $O(Y)$ to denote the largest normal subgroup of odd order in Y. The other notation follows [3].

Suppose that $O(G) \neq 1$ and set $\bar{G}=G / O(G)$. For a subset X of G, let X be the image of X in \bar{G}. By the Frattini argument we have $C_{G}(\bar{z})=\bar{H}$. Since \bar{H} is isomorphic to H, \bar{G} satisfies the conditions of the theorem together with $O(\bar{G})=1$. In order to prove the theorem we shall assume that \bar{G} is not equal to \bar{H} and then determine the structure of G. From Theorem 4 of [2] we see that $\langle z\rangle$ is not weakly closed in H. The fact that $O(G)=1$ in cases (b) and (c) follows from Lemma 10 and the Brauer-Wielandt formula [4].

2. The structure of E

The group E has order 32 and is the central product of a dihedral group of order 8 and a quaternion group. Therefore E has 10 dihedral subgroups, of order 8,10 quaternion subgroups and 15 subgroups which are abelian of type (4,2). These being all the subgroups of E of order 8 . Furthermore, E has 10 non-central involutions and 20 elements of order 4. Since
$C_{H}(E) \subseteq E$ it follows that $z \in E$ and we have $Z(E)=E^{\prime}=D(E)=\langle z\rangle$. If T is an S_{2}-subgroup of H, then $Z(T)=Z(E)=\langle z\rangle$ and so T is an S_{2}-subgroup of G. Furthermore, we have $C(E)=\langle z\rangle$ and $N(E)=H$. Hence the factor group H / E is isomorphic to a subgroup of the outer automorphism group of E.

We may suppose that E is generated by elements t_{1}, t_{2}, h_{1} and h_{2} which satisfy the following relations:

$$
\begin{aligned}
t_{1}^{2}=t_{2}^{2}=1, & \left(t_{1} t_{2}\right)^{2}=z \\
h_{1}^{2}=h_{2}^{2}=z, & h_{2}^{h_{1}}=h_{2}^{-1} \\
{\left[t_{i}, h_{j}\right]=1, } & i, j=1,2
\end{aligned}
$$

Then $E_{1}=\left\langle t_{1}, t_{2}\right\rangle$ is a dihedral group of order $8, E_{2}=\left\langle h_{1}, h_{2}\right\rangle$ is a quaternion group and E is the central product of E_{1} and E_{2}. The 10 noncentral involutions of E give rise to 5 cosets in $E \mid\langle z\rangle$ with representatives:

$$
t_{1}, t_{2}, t_{1} t_{2} h_{1}, t_{1} t_{2} h_{2}, t_{1} t_{2} h_{1} h_{2}
$$

We label these cosets with the numbers 1, 2, 3, 4 and 5 respectively. The outer automorphism group of E is isomorphic to S_{5} and acts faithfully and transitively on the above 5 cosets by conjugation. Since H / E is isomorphic to S_{4} we may suppose that each element of H fixes the coset 1 with representative t_{1}.

If x is any non-central element of E, then $\left|E: C_{E}(x)\right|=2$ and the conjugates of x in E are x and $x z$.

If F_{1} is a dihedral subgroup of E of order 8 , then $F_{2}=C_{E}\left(F_{1}\right)$ is a quaternion subgroup of E and E is the central product of F_{1} and F_{2}. Conversely, if F_{1} is a quaternion subgroup of E, then $F_{2}=C_{E}\left(F_{1}\right)$ is a dihedral subgroup of E of orders 8 and again E is the central product of F_{1} and F_{2}.

3. The involutions in \boldsymbol{H}

We first determine the conjugacy classes of H which lie in E. As remarked in section 2, the coset of $E /\langle z\rangle$ with representative t_{1} is fixed by H and H is faithfully represented as a transitive permutation group of the remaining four cosets of non-central involutions. Since any non-central element x of E is already conjugate to $x z$ in E we have the following lemma.

Lemma 1. The group H has three classes of involutions which lie in E with representatives t_{1}, t_{2} and z. The involution t_{1} has two conjugates in H and we have $C_{E}\left(t_{1}\right)=\left\langle t_{1}\right\rangle \times E_{2}$ and $C_{H}\left(t_{1}\right) / C_{E}\left(t_{1}\right) \cong S_{4}$. For t_{2} we have $C_{E}\left(t_{2}\right)=\left\langle t_{2}\right\rangle \times E_{2}, C_{H}\left(t_{2}\right) / C_{E}\left(t_{2}\right) \cong S_{3}$ and t_{2} has 8 conjugates in H.

The next lemma determines the action of an S_{3}-subgroup of H on E.

Lemma 2. Let P be an S_{3}-subgroup of H. Then $F_{1}=C_{E}(P)$ is a dihedral group of order 8 and $F_{2}=[E, P]$ is a quaternion group. The group E is the central product of F_{1} and F_{2}.

Proof. ${ }^{1}$ Since E has precisely 10 dihedral subgroups of order $8, P$ must normalize and hence centralize one of them. Let this be F_{1}. Since $C_{H}(E) \subseteq E$ by assumption, we must have $C_{E}(P)=F_{1}$ and P must normalize the quaternion group $F_{2}=C_{E}\left(F_{1}\right)$. Since E is the central product of F_{1} and F_{2} it follows that $[E, P]=F_{2}$.

For the rest of the paper we shall suppose that P is an S_{3}-subgroup of H such that $E_{1}=C_{E}(P)$ and $E_{2}=[E, P]$. Furthermore, let H_{1} be the subgroup of H such that $E \subseteq H$ and $H_{1} / E \cong \boldsymbol{A}_{4}$.

The involution t_{1} is contained in precisely 4 dihedral subgroups of E of order 8 and the elements of order 3 of H permute these dihedral groups transitively. Therefore, the 8 elements of order 4 which are contained in these dihedral groups are conjugate in H to $t_{1} t_{2}$. The remaining 12 elements of order 4 in E are contained in $C_{E}\left(t_{1}\right)$ and are conjugate in H to h_{1} since the 4 quaternion groups of $C_{E}\left(t_{1}\right)$ are permuted transitively by the elements of order 3 of H. The elements h_{1} and $t_{1} t_{2}$ cannot be conjugate in H since the order of H is not divisible by 5 . We have thus proved the following lemma.

Lemma 3. The group H has two classes of order 4 in E with representatives $t_{1} t_{2}$ and h_{1}. The element $t_{1} t_{2}$ has 8 conjugates in H and h_{1} has 12 conjugates in H. Therefore $\left|C_{H}\left(t_{1} t_{2}\right)\right|=2^{5} \cdot 3$ and $\left|C_{H}\left(h_{1}\right)\right|=2^{6}$.

The next step is to determine the classes of involutions in $H-E$.
Lemma 4. There exists an involution in $H-H_{1}$. Also $C_{H}(P)=E_{1} \times P$ and $N_{H}(P)=S P$ where we have the following two possibilities for S :
(1) The group S is the central product of E_{1} and Y, where Y is a cyclic group of order 4. In this case H has precisely one class of involutions in $H-H_{1}$.
(2) The group S is equal to $E_{1} \times\langle d\rangle$ where d is an involution in $H-H_{1}$ such that $d \in C_{H}\left(t_{1}\right)$. In this case there are either two or three classes of involutions in $H-H_{1}$.

Let x be an involution in $H-H_{1}$. Then $\langle z\rangle$ is characteristic in $C_{H}(x)$ and $C_{H}(x)$ is an S_{2}-subgroup of $C(x)$.

Proof. Since an S_{3}-subgroup of S_{4} is selfcentralizing, it follows that $C_{H}(P)=E_{1} \times P$. By a Frattini argument and a theorem of Burnside P is inverted by a 2 -element of $H-H_{1}$. Hence the order of $N_{H}(P)$ is $2^{4} \cdot \mathbf{3}$. Now let S be an S_{2}-subgroup of $N_{H}(P)$. Then $E_{1} \triangleleft S$ and $\left|S: E_{1}\right|=2$.

[^0]The group $\left\langle t_{1} t_{2}\right\rangle$ is the unique cyclic subgroup of order 4 of E_{1} and so $\left\langle t_{1} t_{2}\right\rangle \triangleleft S$. Since $t_{1} t_{2}$ does not centralize E_{1} we have $\left|C_{S}\left(t_{1} t_{2}\right)\right|=8$. It follows that $C_{S}\left(t_{1} t_{2}\right)$ is abelian. If $C_{S}\left(t_{1} t_{2}\right)$ were cyclic, then an element of order 8 would induce an outer automorphism of E_{1}. This is impossible since t_{1} and t_{2} are not conjugate in H. Therefore, $C_{S}\left(t_{1} t_{2}\right)$ is abelian of type $(4,2)$ and so there exists an involution d in $C_{S}\left(t_{1} t_{2}\right)-\left\langle t_{1} t_{2}\right\rangle$. We have $d \in H-H_{1}$, d inverts P and $E_{2}\langle d\rangle$ is a semi-dihedral group of order 16. Therefore d is conjugate in H to $d z$. We may choose the notation so that $h_{1}^{d}=h_{1} z$ and $h_{2}^{d}=h_{1} h_{2} z$. For the action of d on E we have the following two cases:

$$
\begin{array}{lll}
t_{1}^{d}=t_{1} z & \text { and } & t_{2}^{d}=t_{2} z \\
t_{1}^{d}=t_{1} & \text { and } & t_{2}^{d}=t_{2} \tag{2}
\end{array}
$$

If x is an involution in $H-H_{1}$, then $x \notin O_{2}(H)$. By Theorem 3.8.2 of [3], x inverts an S_{3}-subgroup of H and so x is conjugate in H to an involution in $S-E_{1}$.

In Case (1) it follows that S is the central product of E_{1} and $Y=\left\langle t_{1} t_{2} d\right\rangle$. Since in this case d and $d z$ are the only involutions in $S-E_{1}$, all involutions in $H-H_{1}$ are conjugate. For the centralizer of d in E we have $C_{E}(d)=\left\langle t_{1} h_{1}, t_{2} h_{1}\right\rangle$, which is a quaternion group. The coset $E d$ contains 16 elements of order 8,12 elements of order 4 and 4 involutions. From the structure of S_{4} we have $\left|C_{H}(d) / C_{E}(d)\right| \leqq 4$ whence $\left|C_{H}(d)\right|=2^{5}$ and $C_{H}(d) / C_{E}(d)$ is a four-group.

Now suppose we are in Case (2). Then $C_{E}(d)=\left\langle t_{1}, t_{2}\right\rangle=E_{1}$ and $S=E_{1} \times\langle d\rangle$. It follows that the involution x is conjugate to one of d, $t_{1} d$ or $t_{2} d$. We have $C_{E}\left(t_{1} d\right)=\left\langle t_{2} h_{1}, t_{1}\right\rangle$ and $C_{E}\left(t_{2} d\right)=\left\langle t_{1} h_{1}, t_{2}\right\rangle$ whence $C_{E}(x)$ is always a dihedral group of order 8 and so $\left|E: C_{E}(x)\right|=4$. The coset $E d$ contains 16 elements of order 8,4 elements of order 4 and 12 involutions. Again from the structure of S_{4} we have $\left|C_{H}(x) / C_{E}(x)\right| \leqq 4$. Since $2^{4} \leqq\left|C_{H}(x)\right|$, it follows that there are either two or three classes of involutions in $H-H_{1}$.

In either case $C_{H}(x)^{\prime} \subseteq C_{E}(x)$ and so $C_{H}(x)^{\prime} \cap Z\left(C_{H}(x)\right)=\langle z\rangle$. It now follows that $\langle z\rangle$ is characteristic in $C_{H}(x)$ and $C_{H}(x)$ is an S_{2}-subgroup of $C(x)$.

Lemma 5. If u is an element of $O_{2}(H)-E$, then $\left|C_{E}(u)\right| \leqq 8$. If u is an involution of $O_{2}(H)-E$, then $C_{E}(u)=\left\langle t_{1}, z\right\rangle$ and $\left|C_{H}(u)\right|=2^{5}$. Furthermore, H has at most one class of involutions in $O_{2}(H)-E$.

Proof. Any element of $O_{2}(H)-E$ is conjugate to an element whose action on the cosets of non-central involutions in $E \mid\langle z\rangle$ is represented by the permutation (23)(45). It now follows that $C_{E}(u) \subseteq\left\langle h_{1}, t_{1}\right\rangle$ and so $\left|C_{E}(u)\right| \leqq 8$.

Suppose that u is an involution. We have $h_{2}^{u}=t_{1} h_{2}$ or $h_{2}^{u}=t_{1} h_{2} z$.

In either case it follows that $t_{1}^{u}=t_{1}$. Again, $t_{2}^{u}=t_{1} t_{2} h_{1}$ or $t_{2}^{u}=t_{1} t_{2} h_{1} z$ and in either case it follows that $h_{1}^{u}=h_{1} z$. Therefore, $C_{E}(u)=\left\langle t_{1}, z\right\rangle$ and since $\left\langle t_{1}, z\right\rangle$ is normal in H it follows that $\left\langle t_{1}, z\right\rangle$ is the centralizer in E of any involution in $O_{2}(H)-E$. The coset $E u$ contains 16 elements of order 8 , 8 elements of order 4 and 8 involutions. Since $\left|E: C_{E}(u)\right|=8$, it follows that all involutions in $E u$ are conjugate in $E\langle u\rangle$. Therefore, $\left|C_{H}(u)\right|=2^{5}$ and $C_{H}(u) / C_{E}(u)$ is a dihedral group of order 8.

The following information about the centralizer of t_{2} will be needed later.

Lemma 6. The group $\langle z\rangle$ is a characteristic subgroup of $C_{H}\left(t_{2}\right)$. An S_{2}-subgroup T_{0} of $C_{H}\left(t_{2}\right)$ is an S_{2}-subgroup of $C\left(t_{2}\right)$ and we have $Z\left(T_{0}\right)=\left\langle t_{2}, z\right\rangle$.

Proof. Since $\left|C_{H}\left(t_{2}\right)\right|=2^{5} \cdot 3$ we have $\left|T_{0}\right|=2^{5}$. From Lemma 4 we may suppose that either d or $t_{1} d$ lies in T_{0}. We have

$$
T_{0} \cap E=C_{E}\left(t_{2}\right)=\left\langle t_{2}\right\rangle \times E_{2}
$$

and $E_{2}=\left\langle h_{1}, h_{2}\right\rangle$ is a quaternion group. Thus $T_{0}^{\prime}=\left\langle h_{1}\right\rangle$ and $\sigma^{1}\left(T_{0}^{\prime}\right)=\langle z\rangle$. Hence $\langle z\rangle$ is characteristic in T_{0} and T_{0} is an S_{2}-subgroup of $C\left(t_{2}\right)$.

Suppose that $Z\left(T_{0}\right) \neq C_{E}\left(t_{2}\right)$ and let x be an element of $Z\left(T_{0}\right)-C_{E}\left(t_{2}\right)$. Then we have $C_{E}(x)=\left\langle t_{2}\right\rangle \times E_{2}$ and so x centralizes $E \mid\langle z\rangle$. This contradicts the fact that x permutes some cosets of $E \mid\langle z\rangle$. Thus we must have $Z\left(T_{0}\right) \subseteq C_{E}\left(t_{2}\right)$, whence $Z\left(T_{0}\right)=\left\langle t_{2}, z\right\rangle$.

Lemma 7. The involution t_{2} cannot be fused in G with any involution in H.
Proof. By Lemma 6 an S_{2}-subgroup of $C\left(t_{2}\right)$ has order 2^{5}. Therefore t_{2} cannot be conjugate to either z or t_{1}. Suppose that t_{2} is conjugate in G to an involution x in $H-H_{1}$. An S_{2}-subgroup T_{0} of $C_{H}\left(t_{2}\right)$ is an S_{2}-subgroup of $C\left(t_{2}\right)$ and $C_{H}(x)$ is an S_{2}-subgroup of $C(x)$. Thus, there exists $g \in G$ such that $T_{0}^{g}=C_{H}(x)$ and then $Z\left(T_{0}\right)^{g}=Z\left(C_{H}(x)\right)$. But then $z^{0} \in\langle x, z\rangle$, which is impossible, since $g \notin H$ and z is not conjugate to t_{2}. Thus t_{2} is not conjugate to any involution in $H-H_{1}$.

Suppose that t_{2} is conjugate to an element u in $H_{1}-E$. By Lemma 5 and Lemma 6, $C_{H}(u)$ is an S_{2}-subgroup of $C(u)$. By the above argument we again get a contradiction. The lemma is proved.

We now use the assumption that $\langle z\rangle$ is not weakly closed in H to prove the existence of involutions in $H_{1}-E$.

Lemma 8. There exists precisely one class of involutions in $H_{1}-E$.
Proof. Suppose that there are no involutions in $H_{1}-E$. By Lemma 4, Lemma 7 and the fact that $\langle z\rangle$ is not weakly closed in H it follows that z is conjugate to t_{1}. We have $\left|E: C_{E}\left(t_{1}\right)\right|=2$ and $C_{H}\left(t_{1}\right) / C_{E}\left(t_{1}\right) \cong S_{4}$. Let
T_{1} be an S_{2}-subgroup of $C_{H}\left(t_{1}\right)$. Then $T_{1} \cap E=C_{E}\left(t_{1}\right)=\left\langle t_{1}\right\rangle \times E_{2}$, $\left|T_{1}\right|=2^{7}$ and $T=T_{1} E$ is an S_{2}-subgroup of H. Furthermore, $T_{1} / C_{E}\left(t_{1}\right)$ is a dihedral group of order 8 . Suppose at first that $Z\left(T_{1}\right) \nsubseteq C_{E}\left(t_{1}\right)$ and let u be an element of $Z\left(T_{1}\right)-C_{E}\left(t_{1}\right)$. By Lemma 5 we have $\left|C_{E}(u)\right| \leqq 8$, which contradicts $\left|T_{1} \cap E\right|=16$. Therefore, $Z\left(T_{1}\right)=\left\langle t_{1}, z\right\rangle$. Let T^{*} be an S_{2}-subgroup of $C\left(t_{1}\right)$ which contains T_{1}. Then $T_{1}=T^{*} \cap H$, $\left|T^{*}: T_{1}\right|=2, \quad\left|T: T_{1}\right|=2 \quad$ and $\quad Z\left(T_{1}\right) \triangleleft\left\langle T, T^{*}\right\rangle$. Also we have $C\left(Z\left(T_{1}\right)\right)=C_{H}\left(t_{1}\right)$. All this shows that $N\left(Z\left(T_{1}\right)\right) / C_{H}\left(t_{1}\right)$ is a non-abelian group of order 6. Let us put $T_{2}=O_{2}\left(C_{H}\left(t_{1}\right)\right)$. Then $T_{2} \triangleleft N\left(Z\left(T_{1}\right)\right)$ and T_{2} has order 2^{6}. We have $C\left(T_{2}\right) \subseteq T_{2}$ since an S_{3}-subgroup of $C_{H}\left(t_{1}\right)$ cannot centralize T_{2}. An S_{3}-subgroup Q of $N\left(Z\left(T_{1}\right)\right)$ has order 9 and acts faithfully on $T_{2} / D\left(T_{2}\right)$. Since $\left|T_{2} / D\left(T_{2}\right)\right| \leqq 2^{5}, Q$ is elementary. If t_{1} were not a square in T_{2}, then $\langle z\rangle$ would be characteristic in T_{2}, which is not possible. Hence we have $\left|T_{2}\right| D\left(T_{2}\right) \mid=2^{4}$ and $D\left(T_{2}\right)=Z\left(T_{1}\right)$. Let \tilde{Q} be a subgroup of order 3 of Q such that $Q \nsubseteq H$ and \bar{Q} fixes a non-trivial element in $T_{2} / D\left(T_{2}\right)$. Then \tilde{Q} fixes an element y in $T_{2}-D\left(T_{2}\right)$ and so \tilde{Q} fixes y^{2}. But $T_{2} \subseteq H_{1}$ and so $y^{2} \neq 1, y^{2} \in\left\langle t_{1}, z\right\rangle$, whence \widetilde{Q} centralizes $\left\langle t_{1}, z\right\rangle$ which is a contradiction. We have proved that there exists an involution in $H_{1}-E$. By Lemma 5 there is precisely one class of involutions in $H_{1}-E$.

4. The structure of $N\left(\left\langle t_{1}, z\right\rangle\right)$

We first establish some notation. Let a be an involution in $H_{1}-E$. We choose a so that its action on the cosets of non-central involutions in $E \mid\langle z\rangle$ is represented by (23) (45). Replacing a by $t_{1} a, h_{1} a$ or $t_{1} h_{1} a$ if necessary, we may suppose that a has the following action on E :

$$
\begin{array}{ll}
t_{1}^{a}=t_{1}, & t_{2}^{a}=t_{1} t_{2} h_{1} \\
h_{1}^{a}=h_{1} z, & h_{2}^{a}=t_{1} h_{2} z
\end{array}
$$

We put $T_{2}=O_{2}\left(C_{H}\left(t_{1}\right)\right)$ as in Lemma 8 . It is easily seen that the 8 involutions in $E a$ lie in T_{2}. Let $P=\langle\sigma\rangle$, where P is the S_{3}-subgroup of H chosen after Lemma 2. We may choose σ so that it has the following action on E.

$$
\begin{aligned}
t_{1}^{\sigma}=t_{1}, & t_{2}^{\sigma}=t_{2} \\
h_{1}^{\sigma}=h_{2}, & h_{2}^{\sigma}=h_{1} h_{2}
\end{aligned}
$$

We next set $b=a^{\sigma}$. It follows that $b^{\sigma}=a b e$, where $e \in E$ and $(a b e)^{\sigma}=a$. By calculation we see that $e=1$ or $e=z$. In either case it follows that $a b=b a$. Replacing a by $a z$ and b by $b z$ if necessary, we may suppose that $b=a^{\sigma}$ and $a b=b^{\sigma}$. The group $A=\left\langle t_{1}, z, a, b\right\rangle$ is elementary of order 16 and if $t \in A-\left\langle t_{1}, z\right\rangle$, then $C_{H_{1}}(t)=A$. Since there are precisely 24 involutions in $T_{2}-C_{E}\left(t_{1}\right)$ it follows that T_{2} has exactly one more elementary
subgroup B of order 16 and we have $B=\left\langle t_{1}, z, h_{1} a, h_{2} b\right\rangle$. The groups A and B are both normal in T_{2} and are the only elementary subgroups of order 16 of H. Both A and B are P-admissible and we have

$$
N_{H}(A) / A \cong N_{H}(A) / B \cong \boldsymbol{S}_{\mathbf{4}}
$$

Furthermore, we have $A^{t_{2}}=B$.
Lemma 9. The group $T_{2}=O_{2}\left(C_{H}\left(t_{1}\right)\right)$ is a special 2-group of order 64 such that $T_{2}^{\prime}=D\left(T_{2}\right)=Z\left(T_{2}\right)=\nabla^{1}\left(T_{2}\right)=\left\langle t_{1}, z\right\rangle$. Furthermore, T_{2} has precisely two elementary subgroups A and B of order 16 such that $A \cap B=A \cap E=B \cap E=\left\langle t_{1}, z\right\rangle$. These groups A and B are the only elementary groups of order 16 of H. The group T_{2} is generated by A and B. We also have $N_{H}(A) / A \cong N_{H}(B) / B \cong S_{4}$ and $C(A)=A, C(B)=B$. Finally, any involution t in $H_{1}-E$ lies either in A or in B and so we have either $C_{H_{1}}(t)=A$ or $C_{H_{1}}(t)=B$.

Proof. We have only to prove that T_{2} is a special 2-group. To this end we consider the action of P on T_{2}. Since $T_{2}=\left\langle h_{1}, h_{2}, t_{1}, a, b\right\rangle$ we see that $\left[P, T_{2}\right]=T_{2}$ and $C_{T_{2}}(P)=\left\langle t_{1}, z\right\rangle$. If $Z\left(T_{2}\right) \supset\left\langle t_{1}, z\right\rangle$, then $Z\left(T_{2}\right)$ would be elementary of order 16. This contradicts the fact that $\left|C_{T_{\mathbf{2}}}(t)\right|=2^{4}$ for any involution t in $T_{2}-\left\langle t_{1}, z\right\rangle$. Hence $Z\left(T_{2}\right)=\left\langle t_{1}, z\right\rangle$ and $T_{2} / Z\left(T_{2}\right)$ is elementary of order 16. Since both z and t_{1} are squares it follows that. $D\left(T_{2}\right)=\delta^{1}\left(T_{2}\right)=\left\langle t_{1}, z\right\rangle$. Again, both t_{1} and z are commutators so that $T_{2}^{\prime}=\left\langle t_{1}, z\right\rangle$. The lemma is proved.

Lemma 10. The involution z is conjugate in G to t_{1}.
Proof. Suppose that z is not conjugate to t_{1}. Since we assume that $\langle z\rangle$ is not weakly closed in H it follows that z is conjugate to a. But now the 13 involutions in $A-\left\{t_{1}, t_{1} z\right\}$ are conjugate in G, whence $\left\{t_{1}, t_{1} z\right\}$ is $N(A)$ invariant. Hence $\left\langle t_{1}, z\right\rangle \triangleleft N(A)$ and so $\langle z\rangle \Delta N(A)$, a contradiction since $N(A)$ is not contained in H. The lemma is proved.

Proceeding as in Lemma 8 we see that $N\left(Z\left(T_{2}\right)\right)$ is a group of order $2^{8} \cdot 3^{2}$ and an S_{3}-subgroup of $N\left(Z\left(T_{2}\right)\right)$ is elementary of order 9.

Lemma 11. Let P be the S_{3}-subgroup of H chosen at the beginning of this section. Then $C(P) / P$ is isomorphic to S_{4} or S_{5} and $N(P)$ is isomorphic to $\boldsymbol{S}_{\mathbf{3}} \times \boldsymbol{S}_{4}$ or $\boldsymbol{S}_{\mathbf{3}} \times \boldsymbol{S}_{5}$. An S_{2}-subgroup of $N(P)$ is the direct product of a dihedral group of order 8 and a group of order 2. Hence Case (1) of Lemma 4 does not occur and we have $d \in C_{H}\left(t_{1}\right)$, where d is the involution chosen in the proof of Lemma 4.

Proof. We have $C_{H}(P)=E_{1} \times P$. Since $\langle z\rangle=Z\left(E_{1}\right)$ is characteristic in E_{1} it follows that E_{1} is an S_{2}-subgroup of $C(P)$. The involutions in $C(P)$ are conjugate either to z or to t_{2}. Acting on $O(C(P))$ with the four-group
$\left\langle t_{1}, z\right\rangle$ we see from the Brauer-Wielandt formula [(4], Lemma 3) that $O(C(P))=P$. Since $9||C(P)|$ it follows that $C(P)$ has no normal 2-complement. It now follows from a result of Gorenstein and Walter [4] that $C(P) / P$ is isomorphic to S_{4} or S_{5} (see the last two lines of p. 592 of [4]).

Since P splits in $C(P)$ we may put $C(P)=P \times V$, where V is isomorphic to \boldsymbol{S}_{4} or \boldsymbol{S}_{5}. Now V is the 3 -commutator subgroup of $C(P)$ so that V is normal in $N(P)$. By Lemma 4, P is inverted by an involution. This involution induces an automorphism of V. But V is a complete group (Burnside [1], p. 209) so that $N(P)=V \times V_{1}$, where $P \cong V_{1}$ and $V_{1} \cong S_{3}$. The lemma now follows.

We are now able to determine all the classes of H. Let d be the involution chosen in the proof of Lemma 4. Then d inverts P and by Lemma 11 and Lemma $4 d$ centralizes E_{1}. Therefore, $C(P)=P\langle d\rangle \times V$ and $P\langle d\rangle \cong S_{3}$. Let P_{0} be the S_{3}-subgroup of V which normalizes $Z\left(T_{2}\right)$ and is inverted by t_{2}. We put $P_{0}=\langle\tau\rangle$. Then $Q=P \times P_{0}$ is an S_{3}-subgroup of $N\left(T_{2}\right)=N\left(Z\left(T_{2}\right)\right)$. As in Lemma 8 we have $C\left(T_{2}\right)=Z\left(T_{2}\right)$. The special 2-group T_{2} is characteristic in $N\left(T_{2}\right)$ since A and B are the only elementary groups of order 16 in $N\left(T_{2}\right)$. Since $T_{2} \cap N(Q)=1$, it follows that $N\left(T_{2}\right)=T_{2} N_{N\left(T_{2}\right)}(Q)$ and $T_{2} \cap N_{N\left(T_{2}\right)}(Q)=1$. By choice of Q we have $N_{N\left(T_{2}\right)}(Q)=Q\left\langle t_{2}, d\right\rangle$. Let P_{1} and P_{2} be the other two subgroups of order 3 of Q. Since $Q \cap H=P$, it follows that P_{0}, P_{1} and P_{2} act faithfully on $Z\left(T_{2}\right)$. By Maschke's theorem Q normalizes a complement of $Z\left(T_{2}\right)$ in A. Since $\langle a, b\rangle$ is the unique complement of $Z\left(T_{2}\right)$ in A which is P-admissible, it follows that $\langle a, b\rangle$ is Q-admissible. We have $A^{t_{2}}=B, P_{1}^{t_{2}}=P_{2}, t_{2}$ inverts P_{0} and $C_{Q}\left(t_{2}\right)=P$. Since P_{0} does not centralize $T_{2} / Z\left(T_{2}\right)$, it follows that one of P_{1} or P_{2} must centralize $\langle a, b\rangle$. We choose the notation so that $C_{\boldsymbol{T}_{\mathbf{a}}}\left(P_{1}\right)=\langle a, b\rangle$. Then we have

$$
A=Z\left(T_{2}\right) \times C_{T_{2}}\left(P_{1}\right) \quad \text { and } \quad B=Z\left(T_{2}\right) \times C_{T_{2}}\left(P_{2}\right) .
$$

In fact,

$$
C_{T_{2}}\left(P_{2}\right)=C_{T_{2}}\left(P_{1}\right)^{t_{2}}=\left\langle t_{1} h_{1} a z, t_{1} h_{2} b z\right\rangle
$$

Replacing τ by τ^{-1} if necessary, we may suppose that $a^{\tau}=b$ and $b^{\tau}=a b$. Since t_{2} inverts τ and σ commutes with τ, we calculate that $h_{1}^{\tau}=h_{1} h_{2} a z$ and $h_{2}^{\tau}=h_{1} b z$. It now follows that $t_{1}^{\tau}=z$ and $z^{\tau}=t_{1} z$. From the action of d and a on E we calculate that $a^{d}=t_{1} h_{1} a$ or $a^{d}=t_{1} h_{1} a z$. Suppose that $a^{d}=t_{1} h_{1} a$. Then $b^{d}=a^{\tau d}=a^{d \tau}=h_{1} h_{2} a b$, whence $b^{d^{2}}=\left(h_{1} h_{2} a b\right)^{d}=b z$, a contradiction. Therefore, we have $a^{d}=t_{1} h_{1} a z$ and $b^{d}=t_{1} h_{1} h_{2} a b z$. It now follows that $a^{t_{2} d}=a$ and $b^{t_{2} d}=a b$. Thus $\left|C_{H}(d)\right|=2^{4}$ and $\left|C_{H}\left(t_{2} d\right)\right|=2^{5}$. It follows from Lemma 4 that $H-H_{1}$ has precisely two classes of involutions with representatives d and $t_{2} d$. We have proved the following result about $N\left(T_{2}\right)$.

Lemma 12. The group $N\left(T_{2}\right)=N\left(Z\left(T_{2}\right)\right)$ has order $2^{8 \cdot} \cdot 3^{2}$ and an S_{3}-subgroup $Q=P \times P_{0}$ of $N\left(T_{2}\right)$ is elementary of order 9 , where P_{0} is centralized by d and inverted by t_{2}. We have $N\left(T_{2}\right)=T_{2} Q\left\langle t_{2}, d\right\rangle$, $T_{2} \cap Q\left\langle t_{2}, d\right\rangle=1$ and $N(Q) \cap N\left(T_{2}\right)=Q\left\langle t_{2}, d\right\rangle$. The groups A and B are the only elementary groups of order 16 in $N\left(T_{2}\right)$ and we have $A=Z\left(T_{2}\right) \times C_{T_{2}}\left(P_{1}\right), B=Z\left(T_{2}\right) \times C_{T_{2}}\left(P_{2}\right)$ where $Q=P_{1} \times P_{2}$ and P_{1} and P_{2} act faithfully on $Z\left(T_{2}\right)$. We have $P_{1}^{t_{2}}=P_{2}, P_{1}^{d}=P_{2}, A^{t_{2}}=B$ and $A^{d}=B$. The group $N\left(T_{2}\right)$ has precisely five classes of involutions with representatives z, a, t_{2}, d and $t_{2} d$. Here $a \in T_{2}$ and $C_{N\left(T_{2}\right)}(a)=A P_{1}\left\langle t_{2} d\right\rangle$ has order $2^{5} \cdot 3$. For t_{2} we have

$$
C_{N\left(T_{2}\right)}\left(t_{2}\right)=\left\langle t_{2}\right\rangle \times E_{2} P\langle d\rangle \text { and } E_{2} P\langle d\rangle \cong G L(2,3) .
$$

For d we have $C_{N\left(T_{2}\right)}(d)=\langle d\rangle \times E_{1} P_{0}$ and $E_{1} P_{0} \cong S_{4}$. For $t_{2} d$ we have $C_{N\left(T_{2}\right)}\left(t_{2} d\right)=\left\langle t_{2} d\right\rangle \times\left\langle t_{2} a, a\right\rangle$, and $\left\langle t_{2} a, a\right\rangle$ is a dihedral group of order 16. The group $N\left(T_{2}\right)$ has precisely three classes of elements of order 3 with representatives σ, τ and $\sigma \tau^{-1}$, where $P=\langle\sigma\rangle, P_{0}=\langle\tau\rangle$ and $P_{1}=\left\langle\sigma \tau^{-1}\right\rangle$. For σ we have $C_{N\left(T_{2}\right)}(\sigma)=E_{1} P_{0} \times P$, and $E_{1} P_{0} \cong S_{4}$. For τ we have $C_{N\left(T_{8}\right)}(\tau)=P\langle d\rangle \times P_{0}$ and $P_{0}\langle d\rangle \cong S_{3}$.

Finally, $C_{N\left(T_{2}\right)}\left(\sigma \tau^{-1}\right)=\langle a, b\rangle P_{2} \times P_{1}$ and $\langle a, b\rangle P_{2} \cong \boldsymbol{A}_{4}$.

5. The structure of \boldsymbol{G}

Lemma 13. The group G has a normal subgroup G_{2} of index 4 in G such that $N\left(T_{2}\right) \cap G_{2}=T_{2} Q$.

Proof. We continue to use the notation developed in the preceding sections.

The group $T=T_{2}\left\langle t_{2}, d\right\rangle$ is an S_{2}-subgroup of G, and we have $T^{\prime}=Z\left(T_{2}\right) E_{2}\langle a\rangle$ and $N(T)=T$. From a theorem of Grün ([3], Theorem 7.4.2) and our knowledge of the possible fusion of involutions we see that the focal group of T in G is equal to T_{2}. Therefore G has a normal subgroup G_{2} of index 4 such that $G_{2} \cap T=T_{2}$, and $G=T G_{2}$. It is clear that $N_{G_{2}}\left(T_{2}\right)=T_{2} Q$. The lemma is proved.

We now turn to the investigation of $N(A)$. Since A and B generate T_{2}, it follows that

$$
N(A) \cap N(B) \subseteq N\left(T_{2}\right) \text { and } N(A) \cap N(B)=N_{N\left(T_{\mathbf{2}}\right)}(A)=N_{N\left(T_{2}\right)}(B) .
$$

Furthermore, we have $N(A) \cap N(B)=T_{2} Q\left\langle t_{2} d\right\rangle$. Let us put $X=C_{A}\left(P_{1}\right)$ and $Y=C_{B}\left(P_{2}\right)$. Both X and Y are normalized by Q and we have $X^{t_{2}}=Y$.

Lemma 14. We have the following two possibilities:
(1) The group $N(A) / A$ equals $S_{1} L$, where $\left|S_{1}\right|=3, L \cong S_{5}, S_{1} \triangleleft S_{1} L$
and $S_{1} \cap L=1$. In this case the involution z is conjugate to a and G_{2} has precisely one class of involutions.
(2) The group $N(A)$ is contained in $N\left(T_{2}\right)$ and G has precisely five classes of involutions.

Proof. Since A is not normal in an S_{2}-subgroup of G, an S_{2}-subgroup of $N(A) / A$ is dihedral of order 8 . Since $N(A) / A$ is isomorphic to a subgroup of $G L(4,2) \cong A_{8}$ and from the structure of $N(A) \cap N\left(T_{2}\right) / A$ it follows that either $N(A)=T_{2} Q\left\langle t_{2} d\right\rangle \subseteq N\left(T_{2}\right)$ or $N(A) / A=S_{1} L$, where $\left|S_{1}\right|=3$, $L \cong S_{5}, S_{1} \triangleleft S_{1} L$ and $S_{1} \cap L=1$. If $N(A) / A=S_{1} L$, then $N(A)$ acts transitively on the involutions in A and so z is conjugate to a. We see that $N_{G_{2}}(A) / A=S_{1} \times L_{1}$, where $L_{1} \cong L$, and $L_{1} \cong A_{5}$. Thus z is conjugate in G_{2} to a. Since $N_{G_{2}}(B)=N_{G_{2}}(A)^{t_{2}}$, it follows that $N_{G_{2}}(B)$ has the same structure as $N_{G_{2}}\left(A^{2}\right)$ whence all involutions in B are conjugate in $N_{G_{2}}(B)$. Thus G_{2} has precisely one class of involutions in this case.

Now suppose that z is conjugate to a. By considering $C(a) \cap N(A)$ we see that $N(A) \nsubseteq N\left(T_{2}\right)$, whence $N(A) / A=S_{1} L$. From previous lemmas we see that no further fusion can occur in either case. The lemma is proved.

Lemma 15. In Case (1) of Lemma $14 G$ is isomorphic to the group $\operatorname{Aut}(P G L(3,4))$.

Proof. By a theorem of Suzuki [7] we see that G_{2} is isomorphic to the group $\operatorname{PGL}(3,4)$. Since $C\left(G_{2}\right)=1$ and from a comparison of orders, it follows that $G \cong \operatorname{Aut}(\operatorname{PGL}(3,4))$. The lemma is proved.

Because of Lemma 15 we henceforth assume that we are in Case (2) of Lemma 14. It follows that G_{2} has precisely three classes of involutions with representatives z, a and $t_{1} h_{1} a$. We have

$$
N_{G_{2}}\left(T_{2}\right)=N_{G_{2}}(A)=N_{G_{2}}(B)=T_{2} Q .
$$

Lemma 16. In Case (2) of Lemma 14 the group $N_{G_{2}}\left(T_{2}\right)$ contains the centralizer in G_{2} of each of its involutions.

Proof. Suppose the lemma to be false. Since $C_{G_{2}}(z) \subseteq T_{2} Q$ and $a^{t_{2}}=t_{1} h_{1} a$ it follows that $C_{G_{2}}(a) \ddagger T_{2} Q$ and $C_{G_{2}}\left(t_{1} h_{1} a\right) \nsubseteq T_{2} Q$. Since $N_{G_{2}}(A)=T_{2} Q, A$ is an S_{2}-subgroup of $C_{G_{2}}(a)$. The focal group A^{*} of A in $C_{G_{2}}(a)$ is equal to $Z\left(T_{2}\right)$ and so $C_{G_{2}}(a)$ has a normal subgroup M of index 4 such that $C_{G_{2}}(a)=A M$ and $M \cap^{2} A=Z\left(T_{2}\right)$ is an S_{2}-subgroup of M. We have $C_{M}(z)=Z\left(T_{2}\right), N_{M}\left(Z\left(T_{2}\right)\right)=Z\left(T_{2}\right) P_{1}$ and $M \supset Z\left(T_{2}\right) P_{1}$. By a result of Suzuki [6], we get $M \cong A_{5}$. Thus $C_{G}(a)=X \times M$ and we have $C_{G_{2}}(a)=C_{G_{2}}(b)$. Therefore, we have $C_{G_{2}}(x)=X \times M$ and both X and M are characteristic in $X \times M$. It follows that $N_{G_{2}}(X) / C_{G_{2}}(X)$ has order 3. An S_{3}-subgroup of $D=N_{G_{2}}(X)$ has order 9 and so $K=C_{D}(M) \cong \boldsymbol{A}_{4}$. Since $Z\left(T_{2}\right) P_{1} \subseteq M$, it follows that $K=X P$, and so $M \cong V$ where V is
the group defined in Lemma 11 such that $C(P)=P \times V$. But P_{0} is contained in V, whence P_{0} is contained in M. This contradiction proves the Lemma.

We can now apply Theorem 9.2 .1 of [3] to the $\operatorname{subgroup} T_{2} Q$ of G_{2} to conclude that $G_{2}=T_{2} Q$. Thus in Case (2) of Lemma 14 we have $G=N\left(Z\left(T_{2}\right)\right)$. This completes the proof of the Main Theorem of the Introduction.

Acknowledgements

I wish to thank Professor Z. Janko for suggesting this problem to me. This work was done at Monash University while holding a CSIRO Postgraduate Studentship.

6. References

[1] W. Burnside, Theory of groups of finite order. (2nd ed. Dover, 1955).
[2] G. Glauberman, "Central elements in core-free groups", J. Algebra 4 (1966), 403-420.
[3] D. Gorenstein, Finite Groups (Harper and Row, 1968).
[4] D. Gorenstein and J. H. Walter, 'On finite groups with dihedral Sylow 2-subgroups', Illinois J. Math. 6 (1962), 553-593.
[5] Z. Janko, 'Some new simple groups of finite order, I', Symp. Math., Rome, Vol. I, (1968), 25-64.
[6] M. Suzuki, 'On characterizations of linear groups, I', Trans. Amer. Math. Soc. 92 (1959), 191-204.
[7] M. Suzuki, 'On characterizations of linear groups, II', Trans. Amer. Math. Soc. 92 (1959), 205-219.
[8] M. Suzuki, 'Finite groups in which the centralizer of any element of order 2 is 2 -closed', Ann. of Math. (2) 82 (1965), 191—212.

Monash University
Victoria, Australia

[^0]: 1 The author owes a simplification in the proof of Lemma 2 to the referee.

