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1. Introduction

In [5] Magill showed that compactness is a composable property of
Hausdorff spaces. (That is, if a,/? are compact subsets of X x X, then a o ft is
also compact when X is T2.) Also Magill gave an example to show that the
composition of connected relations need not be connected. Subsequently, he
characterized Hausdorff /c-spaces in terms of the semigroup of compact rela-
tions in X.

The purpose of the present note is to obtain an analogous characteriza-
tion of semi-locally connected, i?0-spaces in terms of the relations which preserve
connectedness. We also give another proof of the above stated result of Magill,
and then obtain an equivalent formulation of his result that sheds considerable
light on the connectedness situation. We then use the new technique to obtain
an extension of some of Magill's results to non-Hausdorff spaces. Finally, we
combine compactness and connectedness to obtain a new composable property
and to characterize semi-locally connected, cc-spaces.

Let X be a set and let a , j ? c j x I be relations in X. Then

a o /? = {(x,y) e X x X: there exists a z e X such that (x, z) e/? and (z, y)e a}.

A set of relations S in X is a semigroup of relations is case a, /? e S implies that
<xo fieS. If a £ Xx X, then the domain of a is denoted by Z)(a) and the range
by fl(oc).

In [4] a triform was defined as a triple (X,&X,S[X~\) where X is a nonempty
set, ?FX is a family of subsets of X, S[X~\ is a set of relations in X, and the following
conditions are satisfied:

(i) For each xeX, {(x,x)} e S[X].
(ii) He&x if and only if H x {X}ES[X] for some xeX.
(iii) If ct,|?eS[I], then aopeS[X].
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From (iii) we note that S[X] is a semigroup of relations, and S[X] is called
a triform semigroup. We shall use the following theorem concerning bijections
on triform semigroups. The statement of Theorem A is as in [5], but the proof
is in [4].

THEOREM A. Let S[X] and S[7] be two triform semigroups and let 8 be
a bijection on S[Z] onto S[7]. Then the following are equivalent:

(a) 6 is an isomorphism.
(b) There exists a bijection h from X onto Y such that h{A)e^Y for

each Ae3?x, h~l{A)e^x for each Ae3FY, and 0(a) = / l o a o / r 1 for each

(c) There exists a bijection h from X onto Y such that h(A)
each Ae^r

x,h-\A)e^r
xfor each Ae^Y, and 0(a) = {(/i(x), h(y)) : (x,y)e<x]

for each aeS[X].

2. Connectedness

In this section we characterize certain spaces in terms of the relations in
the space which preserve connected sets both ways and have connected domain.
We shall see that this is appropriate in section 3. If <x£X x X, and if AzX, then

a(A) = {y : (x,y) e a for some xeA}.

Note that a o fi(A) = tx(P(AJ) when ji is another relation in X.
Now let S be the relations a in X such that D(<x) is connected and such that

a(A) and a'1 {A) are connected whenever A is connected. Further, let fF be the
set of connected subsets of X. (Note that 4> e & and a($) = <j) for all a £ X x X
where 4> is the empty set.) Then with these sets we obtain the following theorem.

THEOREM 2.1. The triple (X,^,S) is triform.

PROOF. Clearly {(x,x)}eS for all xeX. If a = H x {x} where H e3? and
if A^X, then D(a) = H, a(A)c{x}, OL~\A) = H if xeA, and oT^/l) = <j>
if x$A. Thus aeS. Conversely, if a = H x {x}eS, then a-1(x) = H and so
H6 J5". Thus H x { x } e S i f and only if He3F. Let now a,0eS. Then D(ao 0)
= ^(ZXaOeJ^. If A is a connected subset of X, then ao J5(/1) = <x(p(A)),
and since /?(,4) is connected, <x(P(A)) is connected. Similarly, (ao fi)~1(A)
— /?~1(a-1(/l)) is also connected. Thus S is a semigroup of relations.

REMARKS. If aeS, then R(a) = a(£>(oc)) is connected and so ueS if and
only if a " ' e S . We could replace the set S denned above with either of the
following two sets:

S' = {a^X x X : a(A) and a~ '(/I) are connected for all connected Az

S" = { « c l x l : a" 1 ^) is connected for all connected A^
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Then the triples (X,^,S') and (X,^,S") are triform. Observe that S s
From the proof of Theorem 2.1, S" is a maximal triform.

Before proceeding we give some definitions and examples.

DEFINITIONS. A multifunction is a relation on a set X into a set Y. (A rela-
tion is a multifunction on its domain.) Let F: X -+ Y be a multifunction on
the topological space X into the topological space Y. Then F is upper semicon-
tinuous (u.s.c.) in case

F~\B) = {xeX : F(x)nB # 0}

is closed whenever B is a closed subset of Y. Further, F is point closed (compact,
connected) if F(x) is closed (compact, connected) for each XEAT. Finally, F is
continuum valued just in case F(x) is a continuum for each x e l .

EXAMPLE 1. Let X be the reals with the usual topology and set

a = {0,1/x) : x e X and x # 0} U {(0,>>) : y e X}.

Then a is point connected and u.s.c. and therefore a preserves connected sets.
Also D(a) and R(a) are connected. But a"1 does not preserve connected sets
and a is not connected. Observe that a(0) is not compact. This must occur since
an u.s.c. continuum valued multifunction with connected domain is connected.

EXAMPLE 2. Let X be the unit interval with the usual topology and set

a = {(x,0) 10 ^ x ^ 1/2} U {(1/2,3010 ^ y < 1} U {(x,l) 11/2 < x ^ 1}.

Then a,a"' preserve connected sets and a has connected domain. So oceS, but
a is not connected. Conversely, a connected does not even imply that a is point
connected (for example, a circle).

EXAMPLE 3. Let X and a be as in example 1 and let /? = {(1,0)}. Then a,/?
preserve connected sets and have connected domain, but D(fioa) = {0,1} is
disconnected. This shows the necessity of assuming that the inverse function
preserves connected sets if one requires connected domains.

By example 2 the set of connected relations is not related to S under inclusion.
The importance of this remark will become evident in section 3.

In order to give the characterization of certain topological spaces in terms
of the semigroup of relations S (S' or S"), we need a result of Sanderson [6].
For this we use the following definitions.

DEFINITIONS. A topological space X is an R0-space in case distinct point
closures are disjoint. (Note that a Trspace is Ro.) Further, a function/ : X -> Y is
called biconnected in case / is one-to-one and both / and /~ ' preserve connected
sets.
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LEMMA 2.2. A biconnected function onto a semi-locally connected, R0-space
is continuous.

REMARKS. The definition of an i?0"sPace *s due to Davis [1], and the
definition of a biconnected function is due to Tanaka [7]. Observe that Lemma
2.2 includes the locally connected, locally compact T2-spaces and hence the
trees. As a consequence of Lemma 2.2, among such spaces homeomorphisms
coincide with biconnected functions.

Lemma 2.2 is a corollary of the main results in [6], and its proof is omitted.

Let S[X] (S[Y]) be the semigroup of relations in X(Y) such that a
anc* only if a^X x X (Y x Y), D(a) is connected, and a,a-1 preserve

connected sets. One makes similar definitions of S'[X] and S"[X] (S'[7] and
that correspond to our earlier definitions of S' and S".

THEOREM 2.3. Let X,Y be semi-locally connected, R0-spaces. If S[.Y] and
S[Y~\ are isomorphic, then X and Y are homeomorphic, and conversely.

PROOF. Let S[X] and S[Y] be isomorphic. By Theorem A there is a bijection
h on X onto Y such that h(A) is connected for all connected subsets A of X and
h~1(B) is connected for all connected subsets B of Y. Thus, by Lemma 2.2, h
and h~i are continuous. Hence, X is homeomorphic to Y. Conversely, if h : X -» Y
is a homeomorphism, then S[X] and S[y] are isomorphic by Theorem A because
a e S[X] implies

For clearly hoaoh~l and ho a.'1 o h~l preserve connected subsets of Y if
a,a-1 preserve connected subsets of X. Also

DQioaoh-1) =

is connected if £>(a) is connected. This completes the proof.

Also a semi-locally connected, i?0-space X is characterized topologically
by either of S'[X] or S"[Z]. In fact any triform semigroup S0[X] with the
following property will serve to characterize X topologically:

If h : X -»• Y is a homeomorphism on X onto another space Y, then
aeS0[X] implies l ioao h'1 eS0[Y] (compare Proposition 3.6 of [5]).

REMARK. The diagonal A = {(x,x) : xeX} is clearly an identity for S'[X]
and S"[X]. Moreover, if S[X] has an identity, it must be A. Thus we get

PROPOSITION 2.4. The semigroup of relations S[X] has an identity if and
only if X is connected.
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3. Compact relations

In this section we give a new proof that compact relations in Hausdorff
spaces are composable in the sense of Magill [5], and we extend Magill's results
to non-Hausdorff spaces. For this we need some basic results from the theory
of multifunctions. The first lemma follows directly from the definition and its
proof is omitted.

LEMMA 3.1. A multifunction F : X -> Y is u.s.c. if and only if whenever
F(x)c U, an open subset of Y, there exists an open set F £ X containing x such
thatF(V)^U.

LEMMA 3.2. / / F : X -* Y is a point compact, u.s.c. multifunction and if
c j is compact, then F(A) is compact.

PROOF. Let % be an open cover of F(A). Then for each xeXthere is a finite
subset 1/iOc), •••, Uk(x) of <% such that

Then since F is u.s.c, we obtain an open set F e z such that xe V and

F(V)S Uf. ! Uix).

Then, since A is compact, there is a finite subcover Vu •••, Vm of A of such open

sets. Then the corresponding set

{Ui(Xj) : i = 1 , •••, kj ; j = 1 , •••, m }

is a finite subcover of F(A).

LEMMA 3.3. If F : X -* Y and G : Y -*Z are u.s.c. multifunctions, then
H = GoF:X-+Z is u.s.c. Moreover, if both F,G are point compact, then
so is H.

PROOF. For the first part apply the definition. For the second part use Lemma
3.2.

LEMMA 3.4. If F : X —> Y is an u.s.c, point compact multifunction with
compact domain, then F is a compact subset of X x Y. Moreover, if X and
Y are T2, then F is a closed subset of X x Y.

PROOF. Let <% be an open cover of F in X x Y. Since F is point compact,
{x} x F(x) is a compact subset of F. Thus there is a finite subcover {Ut(x) : i
= 1, •••, kx} of {x} x F(x). Hence, by a theorem of A. D. Wallace (see Kelley
[2], page 142, Theorem 12), there exist open sets VsX and W^Y such that

x e V, F(x)<=W and F x F T g u{C/^x) : i = 1, •••, kx}.
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Since the domain of F is compact, we obtain a finite cover Vu •••, Vn (with

corresponding sets Wlt •••, Wn and finite collections {Ui} : i = I,---, fc,}) of

D(F). Then the collection

{Ui.j ••) = 1, •••, n ; i = 1, •••, /Cj)

is a finite subcover of °ll for F.

NOTE. Lemma 3.4 was stated so that it will apply even when the domain
of F is not all of X.

LEMMA 3.5. Suppose the compact subsets of X are closed. If Fs X x Y is
compact, then F is u.s.c. and point compact.

PROOF. Let A^Y be closed and let nl,it2 be the projections on X x Y onto
X and Y, respectively. Then n2~

i(A) is closed and so n2~
l(A)C\ F is compact.

Thus

is compact; hence, closed. Thus F is u.s.c. Also for xe X, F(x) = 7r2(7r1~
1(x)nF)

is compact.

REMARK. In particular, if X is T2 and F is compact, then F is u.s.c. and
point compact.

LEMMA 3.6. / / the compact subsets of X are closed and if a,/?c x x X
are compact relations, then D(ao /?) is compact.

PROOF. By Lemma 3.5, j3~l is u.s.c. and point compact. Now £>(oc) = n^oc)

and R(P) = n2(P) are compact. Thus D(a)nR(P) is compact. Finally,

is compact by Lemma 3.2.

THEOREM 3.7. (Magill). / / X is T2 and if a,/J are compact relations in
X, then ao p is a compact relation.

PROOF. By Lemma 3.5 and a slight extension of Lemma 3.3, we get that
ao p is u.s.c. and point compact. Further, by Lemma 3.6, D(cco j6) is compact.
Thus Lemma 3.4 applies. Hence, ao p is compact.

REMARK. The advantage of the new proof of Magill's result, and its display
in the series of lemmas is that it leads us directly to the desired extension.

The next definition is from [8].

DEFINITION. A topological space X is a cc-space in case the compact subsets
of X are closed.

The proof of Theorem 3.8 is exactly the same as the proof of Theorem 3.7.
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THEOREM 3.8. Compactness is a composable property of the class of
cc-spaces.

THEOREM 3.9. Let X be a cc-space and let a^ X x X. Then the following
are equivalent:

(i) a is compact.
(ii) a is u.s.c. and point compact and D(a) is compact.
(iii) a,a-1 preserve compact sets and D(a) is compact.

PROOF. Lemma 3.4 is (ii) implies (i). Lemma 3.5 is (i) implies (ii) since
Tt̂ a) = D(a). So (i) and (ii) are equivalent. (This much generalizes the Compact
Graph Theorem of Kolodner [3] to multifunctions.) Suppose (i) holds and C is
a compact subset of X. Then

a(C) = ^(Ttj

is compact. Similarly, a.~l{C) = nl{n1~
l(C)(~\a) is compact. So (iii) holds,

and (i) implies (iii). Assume now that (iii) holds. Then a is point compact, D(oe)
is compact, and R(a) = a(D(a)) is compact. Let C be a closed subset of X. Then

a-'(C) = a - ' ( C n % ) )

is compact and hence closed. Thus a. is u.s.c. and (ii) holds.

REMARKS. Lemma 3.3 and the equivalence of (i) and (ii) in Theorem 3.9
are exactly the reasons why compactness is a composable property of cc-spaces.
The equivalence of (i) and (iii) in Theorem 3.9 sheds light on the connectedness
setting and provides motivation for our choice of Sin section 2. In the connec-
tedness setting, the correspondent of Theorem 3.9 is completely false, and this
single fact goes far in explaining why connectedness is not a composable property.

Now we need another definition and a result from Wattel [8].

DEFINITION. A space X is called a c-space in case a subset A of X is closed
if and only if its intersection with each closed compact set is compact.

LEMMA 3.10. (Wattel). A space is a c-space if and only if it is a cc-space
and a k-space. So all locally compact T2 spaces and all first countable T2

spaces are c-spaces being k-spaces.

PROOF. Suppose X is a c-space and let K be a compact subset of X. Then
K has a compact intersection with every closed compact set, and so K is closed.
Thus X is a cc-space. If A has a closed intersection with each closed compact
set, then A has a compact intersection with each closed compact set. Thus A is
closed, and so X is a fe-space. Conversely, if X is a cc-space and a fc-space and if
A has a compact intersection with each closed compact set, then A has a closed
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intersection with each closed compact set. Thus A is closed, and hence, X is
a c-space.

Now let S [ X ] and S [ 7 ] be the compact relations in X and Y, respectively.

THEOREM 3.11. If X and Y are c-spaces, then X is homeomorphic to Y if

and only if S [ Z ] is isomorphic to

PROOF. By using Theorem 3.8 and Lemma 3.10, it is easy to see that
and S[Y] are triform semigroups where ^x and ^~Y are the compact subsets
of X and Y, respectively. Suppose that S[X] and S[F] are isomorphic. By
Theorem A there is a bijection h on X onto Y such that h and h~l map compact
sets onto compact sets. Finally, since X and Y are c-spaces, it is easy to show
that h and h~l are continuous. Thus X and Y are homeomorphic. Conversely,
if if : X -*• Y is a homeomorphism, then S[X~\ and S\Y~\ are isomorphic by
Theorem A because a e S\X~] implies ho ao h'1 eS[7] (Proposition 3.6 of [5]).

REMARK. If X is a c-space, then the semigroups of relations defined by
conditions (ii) and (iii) of Theorem 3.9 coincide with S[X], and so they too
suffice to characterize the space X.

4. Continua

We establish another composable property.

DEFINITION. A multifunction F : X ->• Y is monotone if and only if F~1(y) is
connected for each yeY. Equivalently, F " 1 : R(F)->X is point connected.

Let X be a space and let S be the set of relations a in X such that a is
point connected, monotone and a continuum.

THEOREM 4.1. If X is a cc-space, then S is a semigroup of relations.

PROOF. Let a , /?eS . Then a,/? are compact. By Theorem 3.9, /? is continuum

valued and a is an u.s.c. continuum valued multifunction with Z)(a) a continuum.

As mentioned ealier, a therefore preserves continua. Thus for xeX, a o fi(x)

— tx(P(x)) is a continuum. Similarly, ( a o p)~1(x) is connected and so a o J5 is

monotone. Now D(<xo ft) = fl~l{D{a)) is connected since /i~l is u.s.c. (Theorem

3.9) and point connected. By Theorem 3.8, a o /? is compact, and so a o ji is

an u.s.c. continuum valued multifunction with connected domain. Hence, a o /?

is connected and this completes the proof.

The following Theorem is an easy consequence of our previous work.

THEOREM 4.2. Let X be a cc-space and let a. s X x X. Then the following

are equivalent:

(i) a is point connected, monotone and a continuum.
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(ii) a is u.s.c, continuum valued, and monotone and D(a) is a continuum.
(iii) tx,a~l preserve both compact sets and connected sets and D(a) is a

continuum.

Now let S[AT] and S [ 7 ] be those relations a in X and Y respectively, such
that a is point connected, monotone and a continuum.

THEOREM 4.3. / / X and Y are semi-locally connected, cc-spaces, then X
is homeomorphic to Y if and only if S[X] is isomorphic to

PROOF. Since X is a cc-space, Theorems 4.1 and 4.2 apply. Thus S[X~] and
S[y] are triform semigroups where !FX and fFx are the subcontinua of X and
Y, respectively. Suppose that S[X~\ and S[Y] are isomorphic. By Theorem A
there is a bijection Ii o n l onto Y such that h and h'1 map continua onto
continua. But X and Y are semi-locally connected, and thus the proof of Theorem
9 of [6] applies showing that h and h'1 are continuous. Thus X and Y are
homeomorphic. Conversely, if h : X —• Y" is a homeomorphism, then S\_X~\
and S\Y~\ are isomorphic by Theorem A because oceS[X] implies

(apply Theorem 4.2).

REMARKS. Theorems 2.3, 3.11, and 4.3 all apply to trees. Finally, the
relationship of cc to Ro is: T2 implies cc implies Tl implies Ro. None of these
implications reverse, in general.
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