ON EXTREMAL POLYNOMIALS
Kenneth S. Williams

(received April 9, 1967)

Let p denote a prime number and let k denote the finite
field of p elements. Let f(x) ek [x] be of fixed degree d > 2 .
p Z

We suppose that p is also fixed, large compared with d, say,
p > po(d) . By V(f) we denote the number of distinct values of

f(x), xek . We call { rnaxirnal'1 if V(f) = p and quasi-maximal

if V(f) = p +0(1) . Clearly a maximal polynomial is quasi-maximal
but it is not known under what conditions the converse holds. As

-1
dV(f) > p, the minimum possible value of V(f) is > [P—d—] +1.

When f(x):xd and p =1 (mod d), V(f) = ;}1+1, so [‘1%1-]+1

-1
is in fact the actual minimum. I V(f) = [Ld'] +1 we call f a

minimal polynomial and if V(f) = % + O(1) a quasi-minimal poly-

nomial. Clearly a minimal polynomial is a quasi-minimal poly-
nomial and Mordell has noted in an addendum to [7] that the converse
is true for p>p (d) . It seems reasonable to conjecture that a

— 7o

quasi-maximal polynomial is maximal for p > po(d) .

It is the purpose of this paper to generalize the ideas of
quasi-maximal and quasi-minimal. We set

(1) f'<(x,y) - M

A
x-y

1
Dickson [6] calls such a polynomial a substitution polynomial.

We shall see later that these are the exceptional polynomials
of Davenport and Lewis [5]. (See Corollary 1 and Theorem 2.)
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and call f(x) an extremal polynomial of index £ 1if, in the (unique)
decomposition of f*(x,y) into irreducible factors in kp[x, vl,

there are ( linear factors and no non-linear absolutely irreducible

4
factors. Clearly 0< ¢ < d-1 . For example, f(x)=x is extremal
of index 1 when p = 3 (mod 4) since

4 4
_x-y _ 2 2
(x-y)(ty) Y

is irreducible but not absolutely irreducible. When p = 1 (mod 4)

2
there exists w ¢ kp such that w = -1 so that

4 4
§:i;¥— = (x+y) (x+wy)(x-wy) ;

4
x 1is extremal of index 3 in this case. On the other

hence f£(x)

1

3
hand, f(x) = x + x is not an extremal polynomial as

3 3
) - 2 2
(x 12 = (v +y) =X txy+y +1
x-y

is absolutely irreducible in k [x,y] for any prime p > 3 .
p
THEOREM 1. If f(x) is extremal of index ¢ then

vi) = P o+ o).

2 +1
Proof. As f(x) is extremal of index ¢ we can write
£ m
Feay)= T oglxy) T hixy),
i=1 j=1 7

where each gi(x, y) ic linear so that £ (possibly 0) is the index

of f and each h (x,y) is irreducible but not absolutely irreducible
J

in kp[x, y] . Clcarly no two of gi, gz, e gﬂ are associates and
none is associated with (x-y) . Let
586
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gi(x,y)zaix+biy+c_ (i=1,2,...,12)

and suppose that some a, = 0. Then

f(x) - f(y) = (X-V)(biy+ci)g(x, y)

for some g(x,y) ek [x,y]. Now bi # 0, otherwise g. would
P 1

not be linear, so on taking y = -c./b. we have
i
f(x) = f(-c /b.) = constant ,
i i

contradicting d > 2 Hence no a,

= 0 and similarly no b, =0
0 i
Set a= II a.,, d =b. /a, and e = c. /a. so that
. i i it i i it i
i=1
Y/ m
f*(x, y)=a I (x+dy+e,) II h(xvy).
. i it .
i=1 j=1

Now let Nr(r =2,3,...,d) denote the number of solutions of

f(xi) = f(XZ) =.,.. = f(xr)

with x, # x. (i 4], 1<i, j<r). This system has the same number
i S <
of solutions as the system

f(X'I’XZ) = f (xi,x3) =... =1 (X'l’xr) =0

2 m
h y = L.,

i.e., .l'I (Xi +diX2 + ei) .H j(x1 XZ)
i=1 j=1

Ji m

= d =
.H (x1 + X5 + ei) .H hj(xi’xr) 0
i=1 j=1

with x, #x. (1#], 2<i, j<r). Now itis known (see for example
3 < =
[1]) that if f(x,y) € k [x,y] is irreducible but not absolutely
p

irreducible then f(x,y) = 0 has O(1) solutions. Hence Nr
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differs from the number Nl_ of solutions, with X, # Xj

(i#j, 2<i, j<r), of

+d.x = ... =
(x) tdpx, te))

(x +d.x +e.)=0
. 1 ir i
1 i

1

o= s
oA

i

by only O(1) . Since for any i and j with i#j, 1<i, j<{4

)

+d.yte, = +d.y+te. =0
X, e =% Jy eJ

has 0 or 1 solutions (g.,g. are not associates)
1 ]

N' = = N, i ..,1) +0(1),
r . 2 r

37

where N(iz,i .,1 ) denotes the number of solutions of
r

300

d = ... = d . =0
(2) X1+ ix2+e x1+ iXr+e

with x #x. (i14]j, 2<i, j<r). Now
177 - -

x +d. x +e, =x +d, x +e. =0
i m i i n
m m n n
with i =1 gives x =x so
n
N' = N(@ i .
. ). (12, ,1r) + O(1)
1<i_, 1 <Y
i #i
m n
m # n

2<m, n<r

Let N'(iz, ce e, ir) denote the number of solutions of (2) without

the conditions x. #x (i#j, 2<i, j<r). As
i j - -

x1+d. xk+e_ =0 (2<k<r)
i i
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has one solution xk for each x1 ,

e s Cy
N(12,13,...,1r) p .

Now, as the number of solutions of

x +d., x +e. =x +4+d. x +e, =0
1 i n i
m m n n

x
i
b

(where m#n, 2<m, n<r) is 0 or 1,

. Sy = NI .
N(12, ...,1r) N (12, .. .,11_) + O(1)
giving
N_=p Z 1 + O(1)
<i_s,ea.,1i <
1_12 1r_£
i #i
m n
m#n

2<m, n<r

=4 -1) ... (£-(r-2))p + O(1) .

n

Now let M (r =1,2,...,d) denote the number of y ¢ kp
r

for which the equation f(x) =y has precisely r distinct roots

in k . Then
P

d d
(3) Vif)= T M , p= 2 rM
T T
r=1 r=1
and
d
(4) N = Z s(s—1)...(s-(r-1))MS (r=2,3,...,d).
T os=r
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Thus
d N d
> (1) — = T {=
r=2 ) s=2 r=2

w
o]

d
= {((1-1)° - (1-s)} M
s=2 S

so that

1
o
]
M a
T
(.

V(£)

d
z 1
r=2 r.

2(0-1) ... (£-(r-2)) + O(1)

n
T
1

£ +1 r
p{1- = S—I‘L’) 2(4-1) ... (£ -(r-2))} +0O(1)
r=2 '

£+
5 (_1)1‘—1 (/221) + O(1)

r=1

n
~
i
-

I

(1- -0 1o

~
+
-

__P_
T T o(1)

as required.

COROLLARY 1. If f(x) is extremal of index 0 then f
is quasi-maximal.

COROLLARY 2. If f(x) is extremal of index d-1 then
f is quasi-minimal.
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We now prove the converses of corollaries 1 and 2.

THEOREM 2. If f(x) is quasi-maximal then f(x) is
extremal of index O .

Proof. As f(x) is quasi-maximal
V() =p +0(1) .

Set M = M2 + ... +Md so that from (3) we have

M, tM=p+O(1), M, +2M<p .

Eliminating M < we have M = O(1) so that each Mi(i > 2) is

1
O(1) . Hence N2 = O(1) . Now if t*(x, y) has t absolutely
irreducible facters (linear or non-linear) in kp[x, y] then by a
result of Lang and Weil (see for example Lemma 8 in [4]),

2
¥ (x, y) =0 has tp + O(pi/ ) solutions. Hence t =0 as required.

THEOREM 3. If f(x) is quasi-minimal then f(x) is
extremal of index d-1 .

Proof. This was proved by Mordell in [7].

Finally we calculate the number Vn(f) of residues of an

extremal polynomial in the sequence 1,2,...,h, where h<p .
(Here we are identifying the elements of kp with the residues

1,2,...,p (mod p).) We require a lemma.

LEMMA. If f(x) is an extremal polynomial of index {

then, for r=2,...,d,
p-1
1/2
S e(ti(x_)) = O(p" %)
T
b ..,x =0

1’ r

x #x, (i#])

1 J

flx )=...=1(x)
1 r

uniformly in t # 0, the implied constant depending only on d .
(e(u) denotes exp(2wiu/p)).
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Proof. From the proof of the estimation of Nr in
Theorem 1 we see that

p-1
y e(tf(x ) = Y | 5 e(tf(x )|
r . . r
X ,.0..,% =0 1<i_,...,1 <4 =x +d, x_+e,
1 r -2 r— 1 i, 2 1
$x. (i#]) i #i 2 2
* ] m n = ...
f(x1)=...=f(xr) m#n =X1+di Xr+ei
2<m, n<r r r
=0
p-1
=0{ Z e(tf(x ))}
T
x =0
r
1/2
=0(p ),

by a deep result of Carlitz and Uchiyama [3].

THEOREM 4. If f(x) is an extremal polynomial of

+0(1)

index £ the number Vh(f) of residues of f(x) (mod p) in the

set {1,2,...,h} 1is given by

h 1/2
— + 0 )
Y] (p log p)

Proof. Let N (h) (r =2,3,...,d) denote the number of
EE— r

solutions of

f(xi) = f(xz) = ... = f(xr) =y

with ye {4,2,...,h} and xi;ij (i#j) . Then

h
N (h) = = = 1,
* =1 x,...,x
Yy 1 T
where the dash (') denotes summation over oo X satisfying
T
x, #x. (i#j) and f(x,)=... =f(x )=y . Thus
i ] 1 T
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p
er(h)= = =t z 2 e(tly-2))
y=1 X y X z=1 t=1
p p-1 p
=h Z = 1+ = {Z =! e(ty)}
y=1 X, X t=1 y=1 Xy X
h
X {Z (-tz)}
z=1

1

BN_ +0(p" /% - p log p) |

by the lemma and the familiar result
p-1 h
= | = e(—tz)lsplogp.

t=1 z=1

Hence appealing toTheorem 1 we obtain

Nr(h) =4(e-1) ... (£ - (r-2))h+O(p1/2 log p) .

=1,2,...,d) denotes the number of ye {1,2,...,h}

Now if Mr(h) (r =
for which the equation f(x) = y has precisely r distinct roots in

k we have

r=1 t
and
d
1/2
= er(h) =h + O(p / log p).
r=1

The first of these is obvious and the second is. due to Mordell [8].
Corresponding to (4) we have

d
Nr(h) =2 s(s-1) ... (s- (r-1))Ms(h)

s=r
593
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and the rest of the proof is the same as in Theorem 1 with
Vh(f), M (h), Nr(h)’ h replacing V(f), Mr’ Nr’ p respectively.
r

This proves a conjecture of the author [9] in the case of extremal
polynomials. When the index { is > 1 it shows that the least

1/2
positive non-residue of f(x) (mod p) is O(p / log p) . This has
been proved for more general polynomials, without obtaining an
asymptotic formula for Vh(f) , by Bombieri and Davenport [2],

using the recent work of Bombieri on the L-functions corresponding
to multiple exponential sums.
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