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ON THE FIELD OF RATIONALITY FOR

AN ABELIAN VARIETY

GORO SHIMURA

The purpose of this paper is to prove the following two facts:

(I) Every generic polarized abelian variety of odd dimension has a model
rational over its field of moduli.

(II) No generic principally polarized abelian variety of even dimension has a
model rational over its field of moduli.

In both statements and throughout the paper, we assume that the
universal domain is of characteristic 0. We call a polarized abelian variety
generic if its field of moduli has the maximum transcendence degree (i.e.,
n{n + l)/2 if the variety is of dimension n) over the rational number field.

It is well-known that an elliptic curve has a model rational over its
field of moduli. However, no general result, not even a counter-example,
seems to have been obtained in the higher-dimensional case. In a previous
paper [5], we have shown that a polarized abelian variety with sufficiently
many complex multiplications, under a certain condition, has a model rational
over its field of moduli. We discuss here the other extreme case in which
varieties are generic. A negative answer similar to (II) will be given also
for abelian varieties with a certain type of polarization which is not neces-
sarily principal, and for hyperelliptic curves of even genera.

It is still an open question to obtain a criterion under which an arbi-
trarily given polarized. abelian variety has a model rational over its field
of moduli. The above two statements combined together seem to indicate
a rather complicated nature of the problem, which almost defies conjecture.
A new viewpoint is certainly necessary to understand the whole situation.

Since the proofs are not so long, we do not try to explain the main
ideas at this point, except the following two general remarks.
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168 GORO SHIMURA

(A) The parity of dimensionality intervenes in the problem in the

following way. If ω is a holomorphic n-form on an abelian variety of

dimension n, then the automorphism —1 sends ω to (—l)n ω. Our proof

of (I) relies heavily on this fact. It is not clear, however, whether or not

this connection of differential forms with the problem is essential.

(B) The existence of a model is closely connected with the problem

of extending a given Galois extension to a larger Galois extension with a

preassigned Galois group. But our proof is rather implicit in this respect.

Actually we could make it more explicit at the cost of lengthening the

paper. It may be interesting to investigate this point in full generality.

1. Preliminaries

Since our treatment is restricted to the case of characteristic 0, we may

assume, without losing generality, that the universal domain is the complex

number field C. Let P= {A, W) be a polarized abelian variety, i.e., a

structure formed by an abelian variety A and a polarization W of A. Con-

sider a structure

Q = (A, W, t l t . . , f j

with points tu , tm of A of finite order. Then we can define, in a natural

manner, the notion of an isomorphism of Q onto another structure of the

same type, and also the transform Qσ of Q by an isomorphism σ of a field

of rationality for Q into C. For details, see [1], [2, II, 1.1]. By the field of

moduli of Q, we mean the subfield k of C which is characterized by the fol-

lowing property:

For every automorphism σ of C, Qσ is isomorphic to Q if and only if σ is the

identity map on k.

Such a field k always exists and is unique for Q (see [1, § 2], [2, II, 1.4]).

Obviously the field of moduli depends only on the isomorphism-class of Q>

and is contained in any field of rationality for Q. We identify {A, W) with

(A, W, 0), and define the field of moduli of {A, W) to be that of (A, W9 0).

We call any structure isomorphic to Q a model of Q. Our construction of

a model over a desired field is based on the following proposition which

follows immediately from the result of Weil [8],

PROPOSITION 1. Let Q be rational over a finite Galois extension K of a field
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F. Suppose there is, for each <τeGal {K/F)9 an isomorphism λσ of Q onto Qσ,

satisfying λaτ = λτ

σ ° λτ for all σ, τ <Ξ Gal (/f/F). Then there is a structure Q' rational

over F and an isomorphism μ of Q' onto Q rational over K such that μσ = λσ° μ

for all σeGal(KIF).

PROPOSITION 2. Let Q be as above, and λ an isomorphism of Q onto another

structure Q''. Suppose that Q has no automorphisms other than the identity map.

Then λ is rational over any field of rationality for Q and Qr.

Proof Let σ be an automorphism of C over a field of rationality for

Q and Qf. Then λ~λ o χσ is an automorphism of Q, hence λ'1 o / = l, so

that λσ = λ, q.e.d.

PROPOSITION 3. If the identity map is the only automorphism of Q, then Q

has a model rational over its field of moduli.

For the proof, see [2, I I , 1.5].

Let us now fix P = (A, W), and put, for a positive integer r,

(1) Tr = {teA\rt = 0}.

Let {tu ,tm] be a set of generators of the module T r , and let Kr denote

the field of moduli of Qr = {A, W, tu ,*TO). Then Kr depends only on

P and r; it is independent of the choice of tu , tm. Moreover, Kr is

normal over Kx. Of course Kλ is the field of moduli of P.

PROPOSITION 4. Suppose that P has no automorphisms other than + 1 . Then,

for every integer r > 1, Qr has a model rational over Kr.

Proof If r > 2, this follows immediately from Prop. 3. To prove the

case r = 2, we start with a structure Q4 = (A, W, tu , tm) rational over K4.

Let G denote the group of all automorphisms a of the module T4 such that

a(t) = t if 2t = 0. We see easily that a2 = 1 for every αeG. Therefore G

is a product of several cyclic groups of order 2. Therefore G= {+1} H

with a suitable subgroup H not containing — 1. (Of course — 1 means the

element of G that maps t onto — t.) Let σeGal (KJK2). Then there is an

isomorphism λ of Q2 onto Q"2. By Prop. 2, λ is rational over K4. We observe

that λ-\tσ) = a{t) for all / e Γ 4 with an element a of G. Changing λ for — λ

if necessary, we may assume that αeiJ. Under the condition a^H, λ is

unique for σ. Putting λ = λσ, we can easily verify λστ = λl ° λτ for all σ, r e

Gal (K4/K2). By Prop. 1. Q2 has a model rational over K2.
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170 GORO SHIMURA

PROPOSITION 5. Let P be rational over a field F. Suppose that (i) P has no

automorphisms other than ± 1 (ii) [F : Kr Π F\ with an integer r > 2, is odd.

Then P has a model rational over Kr Π F.

Proof. Put M= Krf)F. Since K^cM, Kr is normal over M, so that Kr

and F are linearly disjoint over M. For simplicity, let us hereafter write K

for Kr. Consider Q = (A, W, tu •••,*„) with (Λ T7) rational over F and

with a set of generators {tu ',tm} of T r . Let S be the smallest field of

rationality for Q containing F. Then KaS. By Prop. 4, Q has a model

Qf = (̂ 4', W'', ίί, , ίm) rational over if. Let Λ be an isomorphism of Q onto

Q'. By Prop. 2, λ is rational over 5. Obviously S is normal over F. Put

L = F K. If (7GGal (S/L), there is an isomorphism ε of Q onto (?σ. Since

Pσ = P, we have ε = ± 1. It follows that [S : L] ^ 2. Now we divide our

discussion into two cases according to [S : L\

(I) S = L. In this case, Gal (S/F) can be identified with Gal (K/M).

Put P' = (A'9W) and μβ = λβoχ-i for every *eGal (S/F). Then ^ is an

isomorphism of Pr onto Prσ. By Prop. 2, μ, is rational over K. Since μaτ

= μl°μτ for <τ, r e Gal (K/M), we obtain, by Prop. 1, a model rational over

M.

(II) [S : L] - 2. Let G = Gal {S/F), and let sr be the generator of

Gal (S/L). Then G/{1, π} can be identified with Gal {L/F) and Gal {KjM).

Take an element v of S so that S = L(v), V2<ΞL. Put xσ = vσ/v for every

σ e f t Then xκ=—l9 xσ<EL, and xσt=xlxt. Put yσ = NL/κ(xσ), and z = NL/κ(v2).

Then 3/5 = 272 a nd 2/̂r = 3/Ξ3/r Since [L : K] is odd, yπ = —1. Let w; be

a square root of z. We discuss two cases w&K and ίdφX separately.

(IIα) Suppose w^K. Put /(σ) = yσw/wσ. Since 2/5 = {wσ/w)2, we have

/(#) = ± 1. Therefore / is a cocycle with values + 1, so that it must be a

character of G. Furthermore / is non-trivial, since f{π) = — 1. Let H be

the kernel of /. Then G = H {1, π}, and H can be identified with Gal

(K/M). For every σ&H, put μσ = λσ o χ*1. We see again that μa is an iso-

morphism of Pr onto Pfσ rational over K, and μστ = μl ° μτ. Therefore P'

has a model rational over M.

(II6) Suppose ί(;$K Extend an element of Gal (KJM) to an automor-

phism a of C. If an element ξ of G coincides with a on iζ then {waY = zξ

so that wα = ± yξwGK{w). Therefore K{w) is normal over M. Now,
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for every o eG, we can define an element [>] of Gal {K{w)/M) by w[a] = yσw,

and [σ] = σ on if. Then we see easily that σ \—> [<r] is an isomorphism of

G onto Gal(K{w)/M). Put μlσ] = λσoχ-i for every <τeG. Then μ[σ] is an

isomorphism of P' onto P/ σ, rational over K, and

tt,1Ir] = r o r 1 = (r o r 1 )* o (r O r 1 ) = /« o μw

Therefore, by Prop. 1, we obtain a model rational over M.

2. The odd dimensional case

Let P = (A, W) and Pr = (>!', TV) be two polarized abelian varieties of

dimension n, rational over a field K, and λ an isomorphism of P onto P ' ,

not necessarily rational over K. Take non-zero holomorphic differential n-

forms ω on ̂ 4 and <y' on A', rational over K. Denote by ωr ° λ the transform

of ω' by i?. Then ωf o λ = c ω with a constant c. If τ is an automorphism

of C over K, we have ύ ) Ό Γ = cf ω, hence 0 ) ' ° / ° Γ 1 = cTc"W. Now we

impose the following two conditions on P:

(2) P A&y ?20 automorphisms other than ± 1.

(3) n w o ϋ .

Then Γ o r 1 = ± 1, and ωr o ( - l) = ( - l ) W = - <»'. Therefore cτ = ± c, and

Γ = {cτjc) ^. I t follows that ϋΓ(c) is the smallest field of rationality for λ

containing K, c2^K, and [K(c) : K~\ ^ 2. After this preliminary consideration,

we now prove

PROPOSITION 6. Suppose that P = (A, W) satisfies (2) and (3). Zέtf K be a

field of rationality for P, and a an automorphism of K of order 2 such that Pσ is

isomorphic to P. Then P has a model rational over the fixed subfield of K by σ.

Proof Let F= {x&K\xσ = %}, and let λ be an isomorphism of P onto

P\ Take a non-zero holomorphic n-form ω on A rational over K, and put

ωσ o x = c ω with a constant c. Extend σ to an automorphism of C, and

denote it again by σ. Then ω o zσ = cσ ωσ, and ω o χ* o χ — cac* ω. Since λa o X

is an automorphism of P, we have Λσ o λ = ± 1, and cβc = ± 1. By the above

consideration, 2 is rational over iΓ(c), and c2eif, Now Nκ/F{c2) = 1, so that

c2 = &/£* with an element b of 7Γ. Let d be a square root of &. Suppose

J G £ Then c2 = (d/rf*)2, so that c = ± d\d°<E.K, hence cσc = 1. Therefore *

is rational over K, and ̂ * © ^ = 1. By Prop. 1, P has a model rational over

i7. Next suppose d&K. Then we can find a polarized abelian variety P'
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= {A', W) rational over K and an isomorphism μ of P to P' rat ional over

K{d) such that μa = — μ if a is the generator of Gal {K{d)/K). (This is

another application of Prop. 1.) Let ωf be a non-zero holomorphic w-form

on -4' rational over K. T h e n ω' o μ = e' ω with a constant £ such that K[e)

= K{d) and £α = — e. T h e n dje^K. Changing ω' for (d\e) ω\ we may

assume that ωr o μ — d* ω. Put λr = μa ° λo μ-1. T h e n Λ' is an isomorphism

of P ' onto P " , and α>/<τ o ̂  = ω» o ̂  o Λ o ̂ -i = (rf c/rf). ω ' . Now (rfσc/rf)2

= c26σ/6 = 1, hence dσc/c/ = ± 1. Therefore A' is rational over K, and

ω' o (χfσ o Λ') = ω\ hence λ'a o Λ' = 1. By Prop. 1, P ' has a model rational over

F. This completes the proof.

PROPOSITION 7. Suppose that P satisfies (2) β r̂f (3). Let Kr be defined for

P as in § 1. Let r be a positive integer > 2, and F a finite normal extension of Kx

over which P has a model. Then P has a model rational over Kr Π F.

Proof Let H be a 2-Sylow subgroup of Gal {FIKt)9 and M the subfield

of F corresponding to H. The field F can be obtained from M by succes-

sive quadratic extensions. Therefore, by Prop. 6, P has a model rational

over M Now AiCMn/frcΛf, and {M: K{\ is odd. By Prop. 5, P has a

model rational over 7ΓrΠM, hence over Krf]F, q.e.d.

As an immediate consequence, we obtain

PROPOSITION 8. Suppose that P satisfies (2) and (3). Let r and s be positive

integers such that r > 2 and s >1. Then P has a model rational over KrΠKs.

Let us now consider a generic P = {A, W) of even or odd dimension.

Define Kr for P as above. The structure of Gal {Kr/Ki) has been deter-

mined in [2] and [4]. To explain the result, take a basic polar divisor X

belonging to W, let Tr = {t<=A\rt = 0}, and define the symbol ex,r(s9 t)

for (5, /)6Γ r x Tr as in Weil [7, § XI]. Let G denote the group of all

automorphisms a of Tr such that

eXtr(a(s), a(t)) = ez,r(s, *) c ( β )

with an integer c{a) pr ime to r. Further let L denote the algebraic closure

of Ku For every o e G a l (L/ϋCi), take an isomorphism Λ of P onto Pσ. T h e n

/1—> λ~ι(ta) is an automorphism of T r , which can be shown to belong to G.

Writing it aβ9 we have

(4) f = λ(a.(t))
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The element aσ of G is uniquely determined for a by (4), up to the factor

— 1. Then the map σ \—> + a0 gives an injection of Gal (KrjKι) into G/{+ 1}.

This much is true for any P9 not necessarily generic, whose automorphisms

are ± 1. Suppose that r is prime to the degree of the polarization. (By

the degree of the polarization W, we understand the degree of the isogeny

of A onto its Picard variety associated with X.) Then G is isomorphic to

a group ®r defined by

®r = {S^GL2n{ZlrZ)\tSJS = c{S)J with c(S)^Z\rZ\,

ΓO -
n = dim (A).

Lin 0 '

If P is generic, the map of Gal {KrIKι) into © r/{+l} is surjective. (For the

proof, see [2, II, § 7], where a more general result is given with no restriction

on r, nor on the type of polarization. See also [4, 9.5, 9.8].)

PROPOSITION 9. Suppose P is generic. If r and s are relatively prime, and rs

is prime to the degree of the polarization, then KrΓ\Ks = Ku

Proof. It can easily be seen that @rs = ©r x @s, and Kr, as a subfield

of Krs, corresponds to the subgroup {+1} x &s of © r s, and Ks to @r x {+1},

hence KrΓιKs = Kx.

(Note that [Krs : KrKs] = 2 if both r and s are > 2.)

Combining Prop. 9 with Prop. 8, we obtain

THEOREM 1. Every generic polarized abelian variety of odd dimension has a

model rational over its field of moduli.

3. The even dimensional case

Let § w denote the Siegel upper half space of degree n, i.e., the set of

all complex symmetric matrices with positive definite imaginary parts. Let

δ be a diagonal matrix of degree n whose diagonal elements are non-zero

rational integers with no common divisors other than + 1. For each zeξ)n,

we consider an {n X 2ri)-matrix

Ω{z) = (z δ)

and a lattice L{z) in Cn generated by the column vectors of Ω(z). Then the

complex torus Cn/L{z) has a structure of an abelian variety. Moreover, we

obtain a Riemann form Φz on it by
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Φz(Ω(z)x, Ω{z)y) = ι<%Δy (x, y

ΓO -δ
Δ =

\$ o
Here we consider the elements of RZn as column vectors. Each point z of

§ w determines in this way an isomorphism class of polarized abelian varieties

over C. We take any model in the class, and call it Pz = {Atf Wz). The

degree of Wz coincides with det(J).

It is well-known that an arbitrary polarized abelian variety P is isomor-

phic to Pz for some δ and z; the invariant factors of δ are completely de-

termined by P; z is unique for P modulo a certain discontinuous group

commensurable with Sp (2n, Z).

Now we assume that n is even, and put n — 2m. Furthermore we

consider the following condition on the type of polarization.

(5) Each invariant factor of δ occurs with an even multiplicity. In other words,

there exist two elements a and β of GLn{Z) such that aδβ = ΓQ ^ Ί with a diagonal

matrix d of size m.

If this is satisfied, we may assume, by transforming J by f o , that

δ itself is of the form

PROPOSITION 10. Suppose that δ = Γί ^ with a diagonal matrix d of size

m. Let j = Π[ "~~ Q W Ί , and let ?) be the set of all z e § n such that jz = — zpj.

Then, for every zeg), there is an isomorphism λ of Pz onto Pp

z such that λp ° λ = — 1.

Here and henceforth, p denotes the complex conjugation.

Proof. Let / be a holomorphic map of Cn onto Az which induces an

isomorphism of Cn\L{z) onto Az. Then we can define a holomorphic map

/ ' of Cn onto A% with kernel L{z)p by f'(u) = f(up)p for u<ΞCn. Suppose

zeg). Then

[i o
j Ω(z)=Ω(-zp)J', / ' =

Lo j.
Since L{z)p = L(— zp), the automorphism of Cn obtained from j gives an
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isomorphism of CnlL{z) onto CnIL{z)p. Therefore we can define an isomor-

phism λ of Az onto Ap by λ(f(u)) = f'(ju) for UCΞC71. Then

λp(f(u)) = λ'(f(u')>) = f'Uu'Y = f(ju),

so that λp(λ{f{u))) = λp(f{ju)) = /(i2w) = - /(«), hence λp ° Λ = - 1. Let X be

a polar divisor of Az corresponding to Φz with respect to /. Define the

symbol eXtN(s, t) as in Weil [7, § XI] for every positive integer N. By [6,

p. 25, (7)1 we have

e*Mf(u), /(")) = exp[-2πi.N.φz(u, v)] (u, v^N^L(z)).

Applying p to this relation ,we obtain

exΆf'W), f(v)) = exip[2πi.N Φz(up, vp)] {u, v^N^L{- zp)).

Put 5 = [~ QW J J , u=Ω(-zp)x, v=Ω(-zp)y with α, t/e/22w. Then up=Ω(z)Sx>

vp = β(2) 52/5 so that

Φ,(MP, ^) = 'x-'SΔSy = — '

Therefore

ez'.Nif'iu), f'{v)) = exp[-2πi.N Φw(u, v)l

This implies that Xp is a divisor of Ap corresponding to Φw with respect to

/'. Since j Ω(z) = Ω(— zp)Jr and ιJ'Δ]' = Δ, we see that λ sends Wz onto

Wί, q.e.d.

PROPOSITION 11. The set D of Prop, 10 ύ non-empty. Moreover, let g be a

holomorphic function defined on a connected domain D contained in ξ>n. If g = 0 on

a non-empty open subset of DΠty, then g is identically 0 on D.

Proof. It can easily be verified that every point z of g) can be written

in the form

[a b
z =

Lδ' ~ap.
with complex matrices a and b of size m such that ιa = a, tbp = b. Con-

versely, such a 2, whose imaginary part is positive definite, belongs to g)

If we put a = x+ iy and b = r + is with real matrices x, y, r, s, then the

conditions become as follows:

ιx = x, ty = y, tr = r, ts = —s;
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is positive definite.
y]

Therefore g) is non-empty. Our second assertion follows from the following

well-known facts:

(i) A holomorphic function h(z) in one complex variable z is identically

0, if h(x) = 0 for all real x.

(ii) A holomorphic function h{z, zr) in two complex variables z and

z' is identically 0, if h(z, zp) = 0 for all complex z.

Of course the function in each case must be defined on a connected

domain for which the condition h(x) = 0 or h(z, zp) = 0 is meaningful.

PROPOSITION 12. If Pz, with zeg), has no automorphisms other than ± 1,

then Pz has no model rational over its field of moduli.

Proof Since Pz is isomorphic to Pp

z, the field of moduli of Pz is con-

tained in JR. Assume that Pz has a model P rational over R, and let μ be

an isomorphism of P onto Pz. Then λ"1 o μp o μM, with Λ as in Prop. 10, is

an automorphism of Pz, so that λ"1 o μp o μ-1 = ± ιt hence λ = + μp o ̂ -J. But

this contradicts the equality Λp o ̂  = — l.

THEOREM 2. Z^ί P be a generic polarized abelian variety of even dimension.

If the polarization satisfies the condition (5), then P has no model rational over its

field of moduli.

Proof. As mentioned above, there is a discrete subgroup Γ of Sp(2n, R)

such that Pz is isomorphic to Pw if and only if 7(z) = w for some ΐ&Γ.

Moreover JQJΓ is isomorphic to a Zariski open subset V of a projective

variety. Let 9 be a holomorphic map of ξ>Λ onto V which induces an iso-

morphism of ξ>nlΓ onto V. By [3], we can take V and ψ so that the follow-

ing conditions are satisfied:

(i) V is defined over the rational number field Q

(ii) Q(φ{z)) is the field of moduli of Pzfor every ^ e ^ ;

(iii) For an automorphism σ of C, Pz is isomorphic to P^ if and only if

•φ{z) = φ(w)σ.

Thus Pz is generic if and only if φ{z) is generic on V over Q. Therefore if
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Pz and Pw are generic, there is an automorphism σ of C such that P2 is

isomorphic to Pa

w. For this reason and by virtue of Prop. 12, to prove our

theorem, it is sufficient to find a generic Pz with z in $). This can be done

as follows. Let 5 be the set of all homogeneous polynomials with rational

coefficients viewed as functions in the projective space in which V is situated.

Let S' be the subset of S consisting of all the / e S such that foφ is not

identically 0. Put, for each

Then Xf is a closed subset of $, which contains no non-empty open subset

of 2) by Prop. 11. Since Sr is a countable set, D cannot be covered by

the Xf% Therefore ?) has a point z for which f{φ{%))¥= 0 for all / e S ' .

Then φ(z) is generic on V over Q, q.e.d.

A counter-example of the same nature can be obtained also for hyperel-

liptic curves of even genera. In fact consider a hyperelliptic curve U of

genus m — 1 defined by

m

y2 = aox
m + Σ {arx

m¥r + (- l)r^a;w"r), am = 1,

where β0 is a real number and «i, ,#m-i are complex numbers. Suppose

m is odd. Then we can define a birational map μ of ί/ onto Up by

i«fe 2/) = i—x'1, i χ~my).

We see that μ9 ° /«maps (α;, 2/) onto (α;, —2/). Take the ar so that aθ9 aίy ,

m̂-i> βi» »̂ TO-I are algebraically independent over Q. Then ί7 has no

automorphisms other than the obvious two. Therefore, for the same reason

as in the proof of Prop. 12, U cannot have a model rational over R. Thus

w3obtain

THEOREM 3. No generic hyperelliptic curve of even genus has a model rational

over its field of moduli.
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