
A note on small vibrations

By ROBERT SCHLAPP.

(Received Ibih February, 1941. Read 8th March, 1941.)

This note exhibits some old results in what is possibly a new
form.

The simple harmonic oscillator, whose kinetic and potential
energies are given in terms of a single coordinate x by

2T = x2,

2 V = bx2

where 6 is a positive constant, has the equation of motion

x + bx = 0.

The solution, appropriate to the initial conditions x = x0) x =x0 at
t = 0 is conveniently written

x = xu cos \/b t H—~r sin \/b t. (1)

The problem of the small oscillations of a conservative dynamical
system of n degrees of freedom about a position of stable equilibrium
is a generalisation of the problem of the oscillator; in seeking a
generalisation of the solution (1) a matrix notation at once suggests
itself. Let the dynamical system be defined by the two quadratic
forms

IT = x'x

2 V = x'Bx

where B is a symmetric square matrix, x a column matrix and x' its
transpose. The form T is of course positive definite, and F is
assumed to be non-negative. The equations of motion are

x + Bx = 0. (2)

The standard method of solution is to find the latent roots
p\, pi p\ of the matrix B, which will for the moment be
assumed positive and distinct, and to construct the matrix L whose
columns are the normalised latent vectors. Then L'BL is a diagonal
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32 ROBERT SCHLAPP

matrix, A, whose diagonal elements are the latent roots of B, and
L'L = / , the unit matrix, i.e. L is orthogonal. Hence in terms of
" normal coordinates " | given by

x =
the equations of motion become

i.e.
l+tfSr=O, r = 1,2 ....n.

Each coordinate £r is therefore given by a formula of type (1),

$r = £« cos pj + -^ sin 2>r«,
Pr

(3)

and the most general motion of the system is a superposition of n
such normal modes with arbitrary amplitudes and phases. The set
of equations (3) may be written as a single matrix equation

cos
COS

(sin T>\t)IP\
(sin p-,t)/p2

I

where the diagonal matrices involving trigonometric functions have
been denoted by C and S respectively for brevity.

The solution for x is obtained by writing $ = L~1x, which gives

Now the transformation L~l.. . .L which reduces B to diagonal form,
with diagonal elements p\.. . .p\, will also reduce any function f (B)
of B to diagonal form, with diagonal elements f (p\).. . -f(pl)- Thus

L'1 cos \/BtL = C,

sin
L L = S. (4)
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When these values of C and S are substituted in the solution it
becomes

sin \/Bt • /c\

x = cos ^B t. x0 + JB x0 i 1°)
in complete formal analogy with (1).

The more general problem in which

2T = x'Ax

2 V = x'Bx,
where A and B are symmetric matrices, and T is positive-definite
and V non-negative as before, can be treated in the same way. The
equations of motion are

Ax + Bx = 0
or .. (6)

x+ A~xBx = 0.
Here A~1B is no longer in general a symmetric matrix, but there still
exists a transformation H-1 (A~l B) H which diagonalises it, although
the transformation is no longer orthogonal. For if A is definite, it is
a well-known result that H can be found such that simultaneously

H'AH = I
H'BH = n,

where II is a diagonal matrix, whose elements are the squares of the
normal frequencies. From these equations it follows that

H~1(A-1B)H = n,
and the columns of H are the latent vectors of A~XB. Thus the
general solution of the equations (6) is

x = cos V(A-*B)t- - o + S i D
v / ^ : ^ - ) - - o . (7)

In the foregoing the matrix functions cos \/Bt, ;_, -, etc., have

in effect been defined by the relations

cos y/Bt = LCL-1

which follow from (4). These express e.g. cos \/Bt as a linear

1 Note added in proof: This solution is given in Chapter X I I of the third
volume of W. D. MacMillan's Theoretical Mechanics (McGraw-Hill, 1936), with
acknowledgement to unpublished work by W. Bartky.
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combination of cos pxt, cos p2t . . . . cos pnt, showing that it is allow-
able to write the time-derivates of cos -y/Bt and sin -\/Bt as
— \/B sin y/Bt and y/B cos \/Bt respectively, and thus to verify the
solutions (5) or (7) by direct substitution in the differential equations
(2) or (6).

The expansions (8) of the matrix functions are of course
equivalent to Sylvester's interpolation formula. This formula is most
conveniently arrived at by noting that if B is a matrix with latent
roots Al5 A2 . . . . A,,, assumed distinct, the determinant

1 1 1
i Aj A2 B

A2 A| B2

(9)

/(A2) f(B)
vanishes. For (B — A]/) (B — A27) (B — AnI) is obviously a
factor, and by the Cayley-Hamilton identity this is the null matrix.
The expression for f(B) follows by expanding from the last row.
Thus for a matrix B of the third order, with latent roots p\, p\, p\

(B

, 9 o , 2 0/ cos Pit + , o \ ) 2(P\ - Pi) {P\ - V\) (Pi —Pi) (Pi -
(B pi*) (£ PU) (B PU)(B IAI)

cos V-B t = , 9 o , 2 0/ cos Pit + , o \ ) 2 , ' cos p2t(P\ Pi) {P\ V\) (Pi —Pi) (Pi Pf)

with a similar formula for -~— , the matrix coefficients being the

same in both.
The process may be illustrated by the example of three equal

masses m spaced at equal intervals a along a light string at tension T1

and vibrating transversely. In this case

2 — 1 0
= I, B = o2 - 1 2 - 1 | , (T2=Ti/a?n.

0—1 2
The latent roots of B are

p\ = (2 - V2) a*

p* = (2 + V2) a2
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and the expression for cos \/B t, by (10), is

1 V2

cos V2 2 V2

V2 1.
cos

+ i

Pit + i

1

- V 2

" 1

0
— 1

- V 2
2

0
0
0

Y~

0
1

1~

- V 2

cos p2t

cos

A similar expression, with the same matrix coefficients, holds for
(sin -\/Bt)/\/B, and the general solution (5) can therefore be written
down at once in eztenso. The matrix L, if required, can be con-
structed by taking a non-vanishing column from each of the matrix
coefficients, and normalising each column to unity:

' 1 - A / 2 1
L=\ V2 0 -V2

|_ 1 A/2 1

The same rule gives the diagonalising matrix H when (7) is the form
of solution, but the appropriate normalisation is then with respect to
A instead of / .

The case of coincident roots of the secular determinant is of
historic interest. If the equations of motion are of the form (2) as
before, each of the coordinates xr will satisfy an equation, obtained
by elimination of the remaining variables, which is simply

(D2 + p\) (Z)2 + p\) . . .. (Z)2 + pi) xr = 0, D* = d2/dt*,

where some of the p2's are now assumed to coincide. The general
solution might therefore be expected to contain " secular" terms
h (t) cos pt, k (I) sin pt corresponding to a repeated root p, h (I) and
k (t) being polynomials of degree one less than the multiplicity of the
root, in addition to the usual terms in cos pt, sin pt, for the single
roots. This is indeed what Lagrange and others who followed him
supposed. It turns out, however, that on substituting the assumed
solutions into the original differential equations (2) in accordance
with the usual procedure for determining the relations between the
constants, all the coefficients in h (I) and k (t) vanish identically, with
the exception of their constant terms. The reason for this is not
directly obvious, although of course the matter has been well under-
stood since Weierstrass discussed it in 1858. The matrix solution
given above concisely demonstrates the disappearance of the
" secular " terms in the dynamical problem, as will now be shown.
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When repeated roots occur, (5) is still formally the solution of
(2), but as there is now a certain arbitrariness in the matrix L in the
definitions (8), the trigonometric functions will be assumed to be
defined by Sylvester's theorem, in its confluent form. This may be
obtained from (9) by a simple limiting process; if a matrix B of the
fourth order with latent roots a, /S, ft, /3 is taken as an illustration, the
resulting confluent formula is

; 1 1 . . 1
a /3 1 B

( j 8 - a ) 3 / ( J B ) = - I a2 p2 2/3 1 B2 . (11)
a3 /S3 3/S2 3p B3

/(a) /OS) f'(p) H'(P) .
The expansion of e.g. cos V B t in the solution (5) would thus contain
terms in cos \/pt, tsin yjpt, <2cos \/pt, arising from the terms f{P),f'{P),
j'\P) in (11) respectively. I t will now be shown that the coefficients
of f'{P), f"(P) in (11) vanish, so that the secular terms do not appear.

The peculiarity of the dynamical case is that if the matrix B has
repeated roots it satisfies an identical equation which is of lower
degree than the order of B. This reduced Cayley-Hamilton equation
is obtained by counting each distinct linear factor in the ordinary
Cayley-Hamilton equation once only. In the illustration just
chosen the reduced equation is (B — al) (B — pi) = 0 instead of
(B — al) (B — /3/)3 = 0. The truth of the reduced equation follows at
once from consideration of its diagonalised form; its existence
depends essentially on the fact that B (or A'1 B) can be reduced to
pure diagonal form, whether there are repeated roots or not (linearity
of the elementary divisors). The determinant on the right of (11)
may now be simplified by pre-multiplying it matrix-wise by the
following determinant whose value is unity:

1 . . . .
• . 1 . . .

a/3 - (a + P) 1 . . ' .
a/3 - (a + P) 1 .

. 1

The result is, in consequence of the relation B2 — (a + /S) B + a/3/ = 0,

i l l . . 1

a P j _ . B
(p — a)zf(B)=- . _(a_j3) 1 . .

| . . _0(o-j8) - a + 2/3 .
I /(a) /(jS) f'(P) W(P) .
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The elements underlined have vanishing co-factors, and may be
suppressed, so that the appearance of secular terms is only apparent.
The formula (11) thus reduces to

1 1 1
(p — a) / {£>) = — a p x> ,

/ ( a ) /OS) .

which might have been written down at once in the form

1 1 1
P B

, /(a) f(p) f(B)
from a knowledge of the reduced Cayley-Hamilton equation; but the
derivation by " confluence " throws more light on the disappearance
of the secular terms.

It can hardly have escaped notice fehat the confluent form of
Sylvester's expansion of a function f(B) of a matrix B can be
expressed by a simple formula of type (12) whenever the elementary
divisors are linear, as they always are in the dynamical case1.

Scarcely any modification is needed if a latent root of B vanishes,
say a = 0. I t is only necessary to replace cos \/a t by 1 and
(sin V i l)/Va by t. The solution of (2) will then contain a term linear
in t. The motion in the corresponding normal mode is one of constant
velocity, which may be regarded a simple harmonic motion of infinite
period.

The following example illustrates the occurrence of a vanishing
root, a pair of repeated roots, and a single root of the secular
equation. Four beads, each of mass m, slide on a smooth wire bent
into a circle of radius r. They are connected by four light springs
lying along the circle, each of natural length nr/2 and modulus A, so
as to form a closed chain.

If the angular displacements of the beads from their equilibrium
positions are dit 62, 63, 94, the kinetic and potential energies are given
by

2T = mr2d'6,
2F = (2Xr/n)6'Be,

1 With regard to the general case in which the elementary divisors are not
necessarily linear, the writer is indebted to the referee for the remark that the
confluent determinantal form (c/. (11)) essentially involving/', / " arises when and
only when the reduced characteristic equation has repeated roots. The order of the
determinant exceeds by unity that of the reduced characteristic equation.
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so that the equations of motion are

6 + o2B8 = 0,
with

2

- ]

0

— 1

- 1

2

- 1

0

0

— 1

2

— 1

- 1

0

— 1

2

a2 = 2\\irrm.

The latent roots of B are 0, 2, 2, 4, so tha t the reduced Cayley-
Hamilton equation is B (B — 21) (B — 4/) = 0. The confluent form
of Sylvester's formula is

i 1 1 1 1

1 0 2 4 B

JO 22 42 Bz

j / ( 0 ) /(2) /(4) /(B)

= 0,

or
i(B- 21) {B -

so that the solution is
6 = \ {Cr + 2C2 cos -v/2 at -f C3 cos 2at} 60

(sin 2<

where

1 1 1

1 1 1

1

1 1

1 1

1 1 - 1 1

1 - 1 1 _

- 1

1

- 1

1 — 1

- 1 1 - 1

1 - 1

The ratios of the coordinates in the various modes can be read off
from the matrix coefficients as

1 : 1 : 1 : 1 for the mode of zero frequency, correspond-
ing to a uniform rotation ;

' ' [ for the degenerate modes of frequency \/2a;

and 1 : — 1 : 1 : — 1 for the non-degenerate mode of frequency 2a.
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T H E U N I V E R S I T Y ,

E D I N B U R G H .
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